# Emission of carbon dioxide from different attributes in India: A mathematical study

# Sumit Nandi<sup>1</sup>, Pijush Basak<sup>2</sup>

<sup>1</sup>Department of Chemistry, Narula Institute of Technology, Agarpara, Kolkata-700109, West Bengal, India <sup>2</sup>Department of Mathematics, Narula Institute of Technology, Agarpara, Kolkata-700109, West Bengal, India

**Abstract:** Increased emission of carbon dioxide from different sources is quite appalling for the last few decades which ultimately results global warming. Emission of carbon dioxide mainly comes from four attributes namely solid fuels, liquid fuels, gaseous fuels and cement industry. In this alarming situation, a mathematical model has been developed based on these attributes with a system of differential equations in Indian perspective. A statistical approach, namely search method is applied to study the behavior of the said attributes in the developed model utilizing the data set of twenty one years in India. The solutions of the environmental model are compared with the real data from where future prediction for the emission of carbon dioxide can be made.

Keywords: Carbon dioxide emission, Differential equation, Global warming.

#### I. INTRODUCTION

Environmental degradation for the last few decades increases so rapidly that existence of human life comes to a question in future. Global warming seems to be considered as one of the most important environmental tribulations for this issue. Among the green house gases responsible for global warming, carbon dioxide ( $CO_2$ ) is the most important that is being affected by human activities. Presently, the rate of  $CO_2$  rising in the environment is about 1.5 parts per million by volume (ppmv) per year and if emission continues in this rate, the concentration will reach 500 ppmv (at present 367 ppmv) by the end of twenty first century which is very much alarming for the existence of living system. Due to rise in concentration of  $CO_2$ , it is predicted that the average global surface temperature could rise 0.6-2.5<sup>o</sup> C in the next 50 years and 1.4<sup>o</sup> to 5.8<sup>o</sup> C by the year 2100 (1).

 $CO_2$  is emitted from different sources like solid fuels, liquid fuels, gaseous fuels and from cement industry. The major global sources of  $CO_2$  emission are liquid fuels (mainly petroleum products). Solid duels (mainly coal) come second in importance. But in India, solid fuel is much more important than liquid fuels regarding  $CO_2$  emission. For the world, the solid liquid ratio is 33:44. In India, it is 68:24. Cement manufacturing industry also releases  $CO_2$  as it uses essentially 100% calcium oxide which is obtained by burning calcium carbonate during calcinations. Several studies [2, 3, 4, 5 and 6] have been done by different researchers for the emissions of green house gases in India. Ghoshal and Bhattacharyya [7] made a detailed survey regarding state level  $CO_2$  emissions of India during the year 1980-2000.

Estimated emission of  $CO_2$  by mathematical modeling has been attempted by many researchers. Bert W. Rust [8] demonstrated the connections between fossil fuel emissions, atmospheric  $CO_2$  concentrations and global temperatures by coupled mathematical models for their measured time series. Chris P. Tokos et al [9] developed differential equations for the emission of  $CO_2$  based on six attributes. Jin et al [10] made a dynamic evolutionary model of carbon emissions in Yangtze Delta, China and they showed that due to excessive dependency of fossil fuels, carbon emission has risen dramatically after year 2000. In 1990, Thomas J. Goreau [11] briefly mentioned that the rate of change of  $CO_2$  emissions in the atmosphere could be studied using differential equations.

In the present study, we have developed mathematical models for the emissions of  $CO_2$  with a system of differential equations based on the four attributes namely, solid fuels, liquid fuels, gaseous fuels and cement industry in Indian perspective. Using real historical data on the subject phenomenon, analytical form of the equations are developed. From the analytical solution, the  $CO_2$  emissions by various sources is to be estimated for short and long range of time so that remedial measures can be taken to reduce the emissions as far as practicable without compromising economic growth.

#### **II. MATHEMATICAL FORMULATIONS:**

To generate a mathematical model of  $CO_2$  emissions in India, we need to consider the different sources of  $CO_2$  emissions mainly from solid fuels (S), liquid fuels (L), gaseous fuels (G) and cement industry(C) as these are the main sources. In our model, the functional form of the differential equations is represented by the following equation:

International Conference on Advances in Engineering & Technology – 2014 (ICAET-2014) 6 / Page

IOSR Journal of Applied Chemistry (IOSR-JAC) ISSN: 2278-5736, PP 06-10 www.iosrjournals.org

$$\frac{d(E)}{dT} = f\left(\frac{d(S)}{dT}, \frac{d(L)}{dT}, \frac{d(G)}{dT}, \frac{d(C)}{dT}\right)$$

where E is the total emission of  $CO_2$  by all the sources. Now, we can represent the total rate of change of carbon dioxide emissions as a function of time by the following equation:

$$\frac{d(E)}{dT} = \alpha \frac{d(S)}{dT} + \beta \frac{d(L)}{dT} + \gamma \frac{d(G)}{dT} + \delta \frac{d(C)}{dT} + \mu$$

where  $\alpha$ ,  $\beta$ ,  $\gamma$  and  $\delta$  are the coefficients of each differential term and  $\mu$  is a constant. Here, we consider the differential equations of each attribute. We use three statistical criteria, coefficient of determination (R<sup>2</sup>) [12], PRESS statistics [13] and residual analysis [14]. The coefficient of determination R<sup>2</sup> is defined as the proportion of the total response variation that is explained by the model. It provides an overall measure of how well the model fits. Model with the lowest value of PRESS indicates the best structure. Models that are overparameterized would tend to give small residuals and are included in the model-fitting but large residuals for observations are excluded. PRESS will evaluate how good the estimation will be if each time we remove one data. For the formulation and analysis of our model, we consider twenty one year's data from 1980 to 2000 in India [7].

#### **III. SOLID FUELS AND LIQUID FUELS:**

The differential equation for the emission of CO<sub>2</sub> from solid fuel and liquid fuel can be represented by S (T) +  $\frac{dS(T)}{dT}$  = 109.9T<sup>2</sup> - 4.2817 X 10<sup>5</sup> T + 4.17 X 10<sup>8</sup> ------(1) and L (T) +  $\frac{dL(T)}{dT}$  = 0.00011 X T<sup>3</sup> - 0.24596 X T<sup>2</sup> + 1.536 X 10<sup>3</sup> X T - 2.9211 X 10<sup>6</sup> -----(2) respectively, where T represents year in the equation (1) and (2). The solution of the equation (1) and (2) are given by S (T) = 109.9T<sup>2</sup> - 4.2839 X 10<sup>5</sup> T + 4.1743 X 10<sup>8</sup> ------(3) L (T) = 0.000112 X T<sup>3</sup> - 0.2463 X T<sup>2</sup> + 1537.0848 X T - 2922678 ------(4) respectively.







Figure 2 Emission of CO<sub>2</sub> due to liquid fuels

The graphical representation of the real data and the solution of the differential equation for the emission of carbon dioxide from solid fuels and liquid fuel are given by Fig. 1 and Fig. 2 respectively. It is evident from figures that our  $CO_2$  emission model matches well with the actual status of  $CO_2$  emission from solid fuels and liquid fuels.

The calculated values for the solid and liquid fuel model of  $R^2$ ,  $R^2$  adjusted and PRESS statistic are given by Table 1 below.

Table 1Solid fuelLiquid fuel $R^2$  $R^2$  adjustedPRESS statistic $R^2$  $R^2$  adjustedPRESS statistic0.89440.87581.30057638E+0090.85270.8267224305568

From the value of  $R^2$  and adjusted  $R^2$ , it can be concluded that we have developed a good model for solid and liquid fuel along with a PRESS statistic value that is the smallest of several models that we have

International Conference on Advances in Engineering & Technology – 2014 (ICAET-2014) 7 | Page

### IOSR Journal of Applied Chemistry (IOSR-JAC) ISSN: 2278-5736, PP 06-10

#### www.iosrjournals.org

tested. Furthermore, the residual analysis on the proposed differential equation of these fuels is given in Table 2 and Table 3 below.

| Vaar | Deel dete | Model dete | Desiduel Veen Deal date Medal date Desiduel |           |           |            |           |  |  |
|------|-----------|------------|---------------------------------------------|-----------|-----------|------------|-----------|--|--|
| rear | Real data | Model data | Residual                                    | rear      | Real data | Model data | Residual  |  |  |
| 1980 | 74800.09  | 69781.98   | 5018.10                                     | 1991      | 150505.18 | 158033.95  | -7528.76  |  |  |
| 1981 | 80958.90  | 76705.89   | 4253.01                                     | 1992      | 154222.09 | 167375.65  | -13153.56 |  |  |
| 1982 | 86733.96  | 83849.59   | 2884.37                                     | 1993      | 164893.28 | 176937.15  | -12043.87 |  |  |
| 1983 | 91875.82  | 91213.10   | 662.72                                      | 1994      | 173186.10 | 186718.46  | -13532.35 |  |  |
| 1984 | 93810.89  | 98796.40   | -4985.51                                    | 1995      | 183086.90 | 196719.57  | -13632.67 |  |  |
| 1985 | 101748.03 | 106599.51  | -4851.47                                    | 1996      | 187459.35 | 206940.48  | -19481.12 |  |  |
| 1986 | 109278.15 | 114622.42  | -5344.26                                    | 1997      | 199328.32 | 217381.18  | -18052.85 |  |  |
| 1987 | 118181.96 | 122865.12  | -4683.15                                    | 1998      | 200189.01 | 228041.68  | -27852.67 |  |  |
| 1988 | 127641.40 | 131327.62  | -3686.21                                    | 1999      | 208194.59 | 238922.00  | -30727.40 |  |  |
| 1989 | 133625.10 | 140009.93  | -6384.82                                    | 2000      | 218232.85 | 250022.10  | -31097.98 |  |  |
| 1990 | 138817.12 | 148912.04  | -10094.92                                   |           |           |            |           |  |  |
|      |           |            | Mean of resid                               | -10205.49 |           |            |           |  |  |
|      |           |            | Standard dev                                | 10621.10  |           |            |           |  |  |
|      |           |            | Standard erro                               | 2317.71   |           |            |           |  |  |

Table 2 Residual analysis for emission of CO<sub>2</sub> from solid fuels in India ('000 MT)

Table 3 Residual analysis for emission of CO<sub>2</sub> from liquid fuels in India ('000 MT)

| Year | Real data | Model data | Residual       | Year    | Real data | Model data | Residual |
|------|-----------|------------|----------------|---------|-----------|------------|----------|
| 1980 | 24326.73  | 24552.58   | -225.84        | 1991    | 46150.38  | 45272.35   | 878.02   |
| 1981 | 26667.35  | 26432.01   | 235.34         | 1992    | 51185.87  | 47161.05   | 4024.82  |
| 1982 | 28459.20  | 28312.21   | 146.99         | 1993    | 52056.78  | 49050.57   | 3006.21  |
| 1983 | 28943.68  | 30193.35   | -1249.66       | 1994    | 49939.97  | 50940.91   | -1000.94 |
| 1984 | 31234.90  | 32075.26   | -840.36        | 1995    | 60633.19  | 52832.14   | 7801.04  |
| 1985 | 34041.28  | 33958.06   | 83.22          | 1996    | 65118.39  | 54724.20   | 10394.18 |
| 1986 | 35626.44  | 35841.68   | -215.24        | 1997    | 66586.84  | 56617.14   | 9969.69  |
| 1987 | 36932.90  | 37726.13   | -793.23        | 1998    | 71606.75  | 58510.91   | 13095.84 |
| 1988 | 38433.11  | 39611.40   | -1178.28       | 1999    | 69702.04  | 60405.50   | 9262.54  |
| 1989 | 41738.91  | 41497.56   | 241.34         | 2000    | 72496.78  | 62300.98   | 15210.34 |
| 1990 | 43112.50  | 43384.54   | -272.04        |         |           |            |          |
|      |           |            | Mean of residu | 3267.04 |           |            |          |
|      |           |            | Standard devia | 5315.23 |           |            |          |
|      |           |            | Standard error | 1159.87 |           |            |          |

Small residuals and standard error of residuals support the good quality of the proposed model for solid fuels and liquid fuels. Here our predicted value of emission of  $CO_2$  form solid fuels in India in 2015 and 2020 are 442,877.5 and 518,160 ('000 MT) respectively and for liquid fuels in India in 2015 and 2020 are 90826.0325 and 100, 380.472 ('000 MT) respectively.

#### **IV. GASEOUS FUELS AND CEMENT INDUSTRY**

The differential equation for the emission of  $CO_2$  from gaseous fuel and cement industry are represented by

 $G(T) + \frac{dG(T)}{dT} = 6 X 10^{-7} X T^{3} - 39.54X 10^{-3} X T^{2} + 759.2089 X T - 1.3516 X 10^{6} - (5) and C(T) + \frac{dC(T)}{dT} = 0.000199 X T^{3} - 12.679 X T^{2} + 5.3419 X 10^{4} X T - 5.4503 X 10^{7} - (6) respectively.$ 

The solution of the equation (5) and (6) are given by

G (T) =  $6 \times 10^{-7} \times T^3 - 39.542 \times T^2 + 759.288 \times T - 1.3523 \times 10^6$  ------ (7) and C (T) =  $0.0002 \times T^3 - 12.68 \times T^2 + 53445 \times T - 54557441$ ------ (8) respectively. The graphical representation of the actual data and the solution of the differential equation for the emission of carbon dioxide from gaseous fuels and cement industry are given by Fig. 3 and Fig. 4 respectively.

# IOSR Journal of Applied Chemistry (IOSR-JAC) ISSN: 2278-5736, PP 06-10 www.iosrjournals.org





Figure 3 Emission of  $CO_2$  due to gaseous fuels The calculated values of  $R^2$ ,  $R^2$  adjusted and PRESS st cement industry model are given by Table 4 below. Table 4

| Gaseous fuel   |                         |                 | -              |                         |                 |  |
|----------------|-------------------------|-----------------|----------------|-------------------------|-----------------|--|
| $\mathbb{R}^2$ | R <sup>2</sup> adjusted | PRESS statistic | $\mathbb{R}^2$ | R <sup>2</sup> adjusted | PRESS statistic |  |
| 0.9022         | 0.8850                  | 35873032        | 0.8656         | 0.8418                  | 1934429.25      |  |

It is shown from the above values that an excellent correlation of  $R^2$  and adjusted  $R^2$  are obtained for gaseous fuel and cement industry. Reasonably here, PRESS statistic values of both the cases are considered that is the smallest of several models that we tested. Furthermore, the residual analysis we performed on the proposed differential equation of gaseous fuels and cement industry are given in Table 5 and Table 6 respectively below.

| Table 5 Residual analysis for emission of CO <sub>2</sub> from gaseous f | uels in India | ('000 MT) |
|--------------------------------------------------------------------------|---------------|-----------|
|--------------------------------------------------------------------------|---------------|-----------|

| Year | Real data | Model data | Residual     | Year | Real data | Model data | Residual |
|------|-----------|------------|--------------|------|-----------|------------|----------|
| 1980 | 740.28    | 635.26     | 105.02       | 1991 | 6303.85   | 7338.25    | -1034.40 |
| 1981 | 866.77    | 1244.98    | -378.21      | 1992 | 6423.15   | 7947.18    | -1524.03 |
| 1982 | 1332.13   | 1854.63    | -522.50      | 1993 | 6548.02   | 8556.04    | -2008.02 |
| 1983 | 1554.19   | 2464.21    | -910.02      | 1994 | 9376.08   | 9164.83    | 211.24   |
| 1984 | 1845.15   | 3073.72    | -1228.56     | 1995 | 10263.84  | 9773.54    | 490.29   |
| 1985 | 2124.87   | 3683.15    | -1558.28     | 1996 | 13906.35  | 10382.19   | 3524.16  |
| 1986 | 3048.83   | 4292.52    | -1243.68     | 1997 | 10113.36  | 10990.76   | -877.40  |
| 1987 | 3451.53   | 4901.81    | -1450.28     | 1998 | 13409.50  | 11599.26   | 1810.24  |
| 1988 | 3811.25   | 5511.02    | -1699.77     | 1999 | 12761.49  | 12207.69   | 553.79   |
| 1989 | 4526.13   | 6120.17    | -1594.04     | 2000 | 13678.09  | 12816.04   | 631.77   |
| 1990 | 5569.27   | 6729.25    | -1159.97     |      |           |            |          |
|      |           |            | Mean of rest |      | -469.65   |            |          |
|      |           |            | Standard de  |      | 1339.19   |            |          |
|      |           |            | Standard err |      | 292.23    |            |          |

Table 6 Residual analysis for emission of CO<sub>2</sub> from cement industry in India ('000)

| Year | Real data | Model data | Residual    | Year    | Real data | Model data | Residual |
|------|-----------|------------|-------------|---------|-----------|------------|----------|
| 1980 | 2611.57   | 500.69     | 2110.88     | 1991    | 7432.61   | 8501.94    | -1069.33 |
| 1981 | 3118.13   | 1366.75    | 1751.38     | 1992    | 7131.91   | 9062.83    | -1930.91 |
| 1982 | 3415.10   | 2205.19    | 1209.91     | 1993    | 7764.85   | 9595.99    | -1831.14 |
| 1983 | 3732.61   | 3015.71    | 716.89      | 1994    | 8142.38   | 10101.44   | -1959.06 |
| 1984 | 4314.21   | 3798.62    | 515.58      | 1995    | 8970.96   | 10579.08   | -1608.11 |
| 1985 | 4871.30   | 4553.71    | 317.58      | 1996    | 10353.43  | 11028.99   | -675.56  |
| 1986 | 5354.79   | 5281.09    | 73.70       | 1997    | 11208.25  | 11451.09   | -242.84  |
| 1987 | 5508.41   | 5980.75    | -472.34     | 1998    | 11859.96  | 11845.48   | 14.47    |
| 1988 | 6307.45   | 6652.70    | -345.25     | 1999    | 12336.10  | 12212.15   | 123.95   |
| 1989 | 6666.10   | 7296.83    | -630.72     | 2000    | 13876.80  | 12551.00   | 769.98   |
| 1990 | 7109.70   | 7913.25    | -803.54     |         |           |            |          |
|      |           |            | Mean of re  | -188.78 |           |            |          |
|      |           |            | Standard de | 1146.36 |           |            |          |
|      |           |            | Standard en | 250.15  |           |            |          |

International Conference on Advances in Engineering & Technology – 2014 (ICAET-2014) 9 / Page

## IOSR Journal of Applied Chemistry (IOSR-JAC) ISSN: 2278-5736, PP 06-10 www.iosrjournals.org

As seen from the tables, the residuals are small compared to the data and so are the standard errors. Here our predicted value of emission of  $CO_2$  form gaseous fuels in India in 2015 and 2020 are 21932.715 and 24968.028 ('000 MT) respectively and from cement industry in India in 2015 and 2020 are 14310.325 and 13505.4 ('000 MT) respectively.

#### V. CONCLUSION

We have developed differential equations based on the emission of carbon dioxide for each of the four main attributes using actual data from 1980 to 2000 for India. We have used three different statistical procedures, namely  $R^2$  ( $R^2$  adjusted), PRESS statistic and residual analysis to evaluate the quality of the proposed differential methods. The models are analyzed by using regression analysis method and it illustrates that the model matches well with the actual status of India's carbon dioxide emission from four main attributable variables. All these statistical procedures advocate to the quality of the proposed differential systems. Finally, we predict the short and medium term total carbon emissions trend in India by utilizing our model. Proper framing of emission strategies and policies are immediately required to restrain the rapid increasing of CO<sub>2</sub> emission. The information from our models provides a theoretical basis for the further study on the undesirable situation of carbon dioxide emissions in India and should be useful for intended planning and formulating policies to prevent the distressed situation of global warming.

#### REFERENCES

[1] Climate. Environmental Protection Agency (*yosemite.epa.gov/oar/globalwarming.nsf/content/Climate.html*).

[2] J. Parikh and S. Gokarn, Climate change and India's energy policy options, Global Environmental Change, 3(3), 1993.

[3] N. S. Murthy, M. Panda and J. Parikh, Economic Development, Poverty reduction and carbon emission in India, *Energy Economics*, 19(3), 1997a.

[4] N. S. Murthy, M. Panda and J. Parikh, Economic Growth, Energy demand and carbon dioxide emissions in India: 1990–2020. *Environment and Development Economics*, 2(2), 1997b.

[5] B. Nag and J. Parikh, Carbon emission coefficient of power consumption in India: Baseline determination from the demand side, *Energy Policy*, *33*(6), April 2005, 777–86.

[6] J. Parikh, M. Panda, K. A. Ganesh and V. Singh, CO<sub>2</sub> emissions structure of Indian economy, *Energy*, doi: 10.1016/j.energy.2009.02.014, 2009.

[7] T. Ghoshal and R. Bhattacharyya, State level carbon dioxide emissions of India, 1980-2000, *Contemporary Issues and Ideas in Social Sciences*, April, 2008.

[8] B. W. Rust, Carbon dioxide, global warming and Michael Crichton's "State of Fear", Computing Science and Statistics, 37, 2006.

[9] C. P. Tokos and Y. Xu, Modeling carbon dioxide emissions with a system of differential equations, Non linear Analysis: Theory, Methods and Applications, 71 (12), 2009, 1182-1197.

[10] R. Jin, L. Tian, J. Qian and Y. Liu, The Dynamic evolutionary analysis on carbon emissions in Yangtze delta., *International Journal of Nonlinear Science*, 10(3), 2010, 259-263.

[11] Thomas J. Goreau, Balancing atmospheric carbon dioxide, Ambio, 19 (5), August 1990, 230-236.

[12] B.S.Evernitt, Cambridge Dictionary of Statistics (2<sup>nd</sup> ed.), CUP, ISBN-0-521-81099-X, 2002.

[13] T. Tarpay, A note on the prediction sum of square for restricted least squares (The American statistician, 2000).

[14] Cook R. Dennis, Residuals and influence in regression (New York, Chapman and Hall, 1982), ISBN 041224280X.