Synthesis of New Class of (β-Lactam, Thiazolidinone) Derivatives

N.A.A. El-Kanzi*

*Chemistry Department, Aswan-Faculty of Science, South Valley University, Aswan-Egypt. *Chemistry Department, Faculty of Science, Al-Jouf University, sakaka, K.S.A.

Abstract: The reaction of some newly synthesised compound 2, 4-diamino-lH-benz[g]quinolino-5,l0-dione 3-ethyl carboxylate 1 and 2,4-diamino-1,2,3-trihydropiperpdino[2,3-b]benz[g]-1,2,3,4-tetrahydroquinolines-5,6,11-trione 3 ethylcarboxylate 2 with different aromatic aldehyde afforded the corresponding new Schiff bases derivatives **3a-c**, **4a-c**. The cycloaddition reaction of 3a-c, 4a-c with chloroacetyl chloride and thioglycolic acid give new isolated β -Lactams and thiazlidinone derivatives **5a-c**, **7a-c** and **6a-c**, **8a-c**. Compound 1, 2 undergo hydrolysis by NaOH to give carboxylic compound 9,10 which react with different aromatic aldehyde to give new Schiff bases **11a-c** and **12a-c**. The cycloaddition reaction of **11a-c**, **12a-c** with chloroacetylchloride and/or mercaptoacetic acid to give **13a-c**, **15a-c** and **14a-c**, **16a-c**.

Key words: Schiff bases, Isolated β -lactam, Isolated thiazolidinone.

I. INTRODUCTION

fungicides¹⁻³ Quinoline derivatives widely used and antibacterial are as agents⁴⁻⁶. The -lctam antibiotics continue to represent a major class of clinically very important and commercially valuable therapeutic agents⁷⁻⁹. It is also necessary to recognize that after the discovery of pencillin a variety of new class of β-Lactam antimicrobial agents were sequentially introduced on the other hand thiazolidinone compounds have been subject of extensive efforts in the recent past divers biological activities¹⁰ such as bactericidal filmgicidals, insecticidal, tuberoculostatic, be associated with thiazolidinone derivatives. Our of interest in preparing the newly classes of β-Lactam and thiazolidinone derivatives cams as a result to its importance as it was mentioned before. Thus, we have an efficient strategy for the synthesis new of β -Lactam and thiazolidinone derivatives and this is the main subject of our interest studies¹¹⁻¹⁷.

II. RESUL TS AND DISCUSSION

2,4-Diamino-lH-benz[g]quinoline-5,10-dione-3-ethylcarboxylate **1**was prepared by the cycloaddition reaction of equimolecular amount of urea and ethylcyanoacetate with 1,4-naphthoquinone in ethanol containing piperidine as catalyst. At first our theoretical conception of the obvious cycloaddition reaction led to the formation of; compound **l'** but the experimental evidence that depends on the different types of analysis to the reaction product proves that the cycloaddition reaction leads to the formation of compound **1** through the electronic cyclization according to the suggested mechanism (Scheme 1 illustrate the formation of compound $\mathbf{1}^{18}$.

The structure of the synthesised compound 1 was confirmed by their elemental analysis, IR which revealed carbonyl group of ester at 1745 cm⁻¹ and ¹H-NMR spectra which revealed the presence of NH group 11.02 δ and NH_2 group at at δ 6.82 and NH₂ group at δ 4.53 and triplet at δ 1.23 assigned for methyl group and quartet at δ 3.55 for CH₂ group, the mass spectrum showed the molecular ion peak $(M^+, C_{16}H_{15}O_4N_3)$ at mz 313. The intelligible bases of ¹H- NMR leads us to decide that the isolable structural formula which produce from the reaction of appropriate urea and malononitrile with 1,4-naphthoquinone is the structural formula of compound $\mathbf{1}^{18}$ because of the appearance of the signal peak at $\delta 3.21$ as a result of the fusion of 1,4-naphthoquinone with the unsaturated substituted piperidine ring. By using the same pathway we synthesis of new compound 2 by cycloaddition reaction of benz[g]-1,2,3,4-tetrahydroquinoline-4,5,10-trione which was prepared in our laboratory as it has been reported in an earlier publication¹⁹ with equimolar ratio of urea and ethylcyanoacetate in ethanol containing piperidine as catalyst. The structure of compound 2 was confirmed by their elemental analysis, IR and ¹H-NMR spectra which revealed the presence of NH group at δ

www.iosrjournals.org

11.99 and NH₂ group at δ 6.89, NH₂ group at δ 4.56, triplet at δ 1.22 for methyl group, quartet at δ 3.56 for CH₂ group, the mass spectrum showed the molecular ion peak (M⁺, C₁₉H₂₀O₅N₄) at m/z 384.

The activity of the amino. group at C_2 which due to its adjacent to the carbonyl group of ester group at C_3 with its inflamatory effect prompted us to explore the possibility of synthesis some new Schiff bases through the condensation of both compound 1 and or 2 with different aromatic aldehyde in the presence of piperidine catalyst afforded the corresponding Schiff bases compounds 3a-c, 4a-c. The structures of these compounds were confirmed by their elemental analysis, IR, ¹H-NMR and mass spectral data [c.f. Tables 1,2,3]. These newly synthesised Schiff bases compounds used for the synthesis of new isolated β -Lactam and isolated thiazolidinone derivatives. Thus compound **3a-c**, **4a-c** react with chloroacetylchloride and or mercaptoacetic acid in the presence of triethylamine to give isolated β -Lactams 5a-c, 7a-c and isolated thiazolidinone derivatives 6a-c, 8a-c respectively. The structure of these compounds were confirmed by elemental analysis, IR, ¹H-NMR and mass spectral data [c.f. Tables 1, 2, 3] Compounds 1,2 undergo basic hydrolysis by boiling with concentrated sodium hydroxide solution acidified by concentrated hydrochloric acid to give compound 9,10 which have carboxylic group. Thus, the synthesis of both carboxylic compounds 1H-benz[g]quinoline 5,10-dione-3-carboxlic acid and 2,4-diamino 9 2,4-diamino-1 .2.3trihydropiperidino[2,3-b]-benz[g]1,2,3,4-tetrahydroquinoline-5,6,11-trione-3-carboxylic acid 10 in isolated forms together with β -Lactam and thiazolidinone were undertaken.

Compounds 9,10 reacts with different aromatic aldehyde to give Schiff bases 11a-c, 12a-c, respectively which undergo cycloaddition reaction with chloroacetyl chloride and mercapto acetic acid in the presence of triethylamine to give 13a-c, 15a-c and 14a-c, 16a-c respectively. The structure of these compounds were confirmed by elemental analysis, IR, IH-NMR and mass spectral data [c.f. Tables 1,2,3].

III. EXPERIMENTAL SECTION

All melting points were uncorrected. The IR spectra were recorded on Perkin Elemer 11650 FT. IR spectrometer, ¹H-NMR spectra on EM. 39090 MHz NMR spectrometer and mass spectra on MS 5988. Analytical data were determined with CE 440 elemental analyzer. Automatic injector at Cairo University.

Synthesis of 2,4-diamino-IH-benz[g] quinoline-5, 10-dione-3-ethylcarboxylate 1 :

A solution of urea (0.60 g, 0.01 mole) and ethylcyanoacetate (1.13 g, 0.01 mole.) was prepared in citu in ethanol (20 ml) containing (0.5 ml) of piperidine catalyst was treated with 1,4-naphthoquinone (1.58 g, 0.01 mole). The reaction mixture was heated under reflux for 8-10 hr. The solvent was then evaporated under reduced pressure the residue pour on to ice/water acidified by HCl, the solid product so formed was collected by filtration and crystallized from ethanol.

Synthesis of 2,4-diamino-l,2,3-trihydropiperidino [2,3-b]-benz[g]-1,2,3,4-tetra-hydroquinoline-5,6,11-trione-3-ethylcarboxylate 2 :

A solution of urea (0.60 g, 0.01 mole) and ethylcyanoacetate (1.13 g, 0.01 mole) in ethanol (30 ml) containing (0.5 ml) of piperidine catalyst was treated with benz[g]-1,2,3,4tetrahydroquinoline (2.27 g, 0.01 mole). The reaction mixture was heated under reflux for 8-10 hr. (monitored by TLC.). The solvent was then evaporated under reduced pressure. The residue pour on to ice/water acidified by HCl, the solid product so formed was collected by filtration and crystallized from ethanol.

Synthesis of 4-amino-2-arylazamethine 1H-benz[g]quinoline-5,10-dione-3-ethyl-carboxylate 3a-c and 4-amino-2-arylazamethine-1,2,3-trihydropiperidino[2,3-b]-lH-benz[g]-1,2,3,4-tetrahydroquinoline-5,6,11-trione-3-ethylcarboxylate 4a-c:

A solution of 1 (3.13 g, 0.01 mole) and 2 (3.84 g, 0.01 mole) in ethano.1 (30 ml) was treated with different aromatic aldehydes (1.06 g, 1.12 g, 1.51 g, 0.01 mole) respectively in the presence of few drops of piperidine (0.5 ml) as catalyst. The reaction mixture was heated under reflux for 8-9 hr. (monitored by TLC). The solvent was then evaporated under reduced pressure and the residue was treated with ice/water. The solid product was collected and crystallized from the proper solvent (c.f. Table 1).

Synthesisof4-amino-2-[3-chloro-l-arylazetidin-2-on-4-yl]-1,2,3-trihydropiperi-dino[2,3-
b]benz[g]1,2,3,4-tetrahydroquinoline-5,6,11-trione-3-ethylcarboxylate7a-cand4-amino-2-[3-aryl-4-
thiazolidinon-2-yl]-1,2,3-trihydropiperidino[2,3-b]-benz[g]-1,2,3,4-tetrahydroquinoline-S,6,11-trione-
3-ethylcarboxylate8a-c:

A solution of **3a-c** (4.01 g, 4.17 g, 4.46 g, 0.01 mole) in dry DMF (30 ml) was treated with chloroacetyl chloride or mercaptoacetic acid in the presence of catalytic amount of triethylamine (0.01 ml). The reaction mixture was heated under reflux for 8-12 hr. (monitored by TLC). The solvent was then evaporated under reduced pressure and the residue treated with ice/water. The solid product was collected by filtration and crystallized from the proper solvent (c.f. Table 1).

Synthesis of 2,4-diamino-1H- benz [g] quinoline-S, 10-dione-3-carboxylic acid 9 and 2,4-diaminol,2,3..trihydropiperidino[2,3-b]benz[g]-1,2,3,4trihydroquinoline-5,6,11-trione-3-carboxylic acid 10:

A solution of 1 (3.13 g, 0.01 mole) and/or 2 (3.84 g, 0.01 mole) in alkaline sodium hydroxide solution (30 ml) was heated under reflux for 8-10 hr. The solvent was then evaporated under reduced pressure and the residue treated with concentrated hydrochloric acid, the solid product was collected by filtration and crystallized from ethanol.

Synthesis of 4-amino-2-arylazomethine-IH-benz[g]quinoline-5,10-dione-3-carbo-xylic acid 11a-c and 4-ainino-2-arylazomethine-l,2,3-trihydropiperidino [2,3-b]-1H-benz[g] quinoline-5,6, 11- trione-3-carboxylic acid 12a-c:

A solution of **9** (2.85 g, 0.01 mole) and/or **10** (3.56 g, 0.01 mole) in ethanol (30 ml) was treated with aromatic aldehyde (1.06 g, 0.01 mole, 1.12 g, 0.01 mole, 1.51 g, 0.01 mole) respectively in the presence of piperidine (0.5 ml) catalyst. The reaction mixture was heated under reflux for 12-15 hr. (monitored by TLC). The solvent was then evaporated under reduced pressure and the residue was treated with ice/water. The solid product was collected and crystallized horn the proper solvent (c.f. Table 1).

Synthesis of 4-amino-2-[3-chloro-l-arylazetidin-2-on-4-yl]-IH-benz[g]quinoline-5 10-dione-3-carboxylic acid 13a-c and 4-amino-2-[3-chloro-laryl-azetidin-2-on-4-yl]-1,2,3-trihydropiperidino [2,3-b] benz[gk 1,2,3,4-tetrahydroquinoline-5,6 11-trion-3-carboxylic acid 15a-c:

Asolution of **11a-c** (3.7 g, 3.91 g, 4.20 g, 0.01 mole) in dry DMF (30 ml) was treated with chloroacetyl chloride (1.12 g, 0.01 mole) or mercaptoacetic acid (0.92 g, 0.01 mole) in the presence of triethylamine (0.5 ml) as catalyst. The reaction mixture was heated under reflux for 18-20 hr. (monitored by TLC). The solvent was then evaporated under reduced pressure and the residue was treated with ice/water. The solid product was collected and crystallized from the proper solvent (c.f. Table 1).

Synthesis of 4-amino-2-[3-aryl-4-thiazolidinon-2-yl]-1H-benz[g]quinoline-5,10-dione-3-carboxylic acid 14a-c and 4-amino-2-[3-aryl-4-thiazolidinon-yl]-1,2,3-trihydropiperidino[2,3-b]-benz[g]-1,2,3,4-tetrahydroq uinoline-5,6,11-trione-3-carboxylic acid 16a-c:

A solution of **12a-c** (4.46 g, 4.62 g, 4.91 g, 0.01 mole) in dry DMF (30 ml) was treated with chloroacetyl chloride or mercaptoacetic acid in the presence of triethylamine (0.5 ml) as catalyst. The reaction mixture was heated under reflux for 15-17 hr. (monitored by TLC). The solvent was then evaporated under reduced pressure and the residue treated with ice/water. The solid product was collected and crystallized from the proper solvent (c.f. Table 1).

Comp.	mp. (°C)	Yield (%)	Solvent of Crystallization	Mol. Formula (Mol. wt.)	Ms (m/z)
1	>300	75	EtOH	C ₁₆ H ₁₅ O ₄ N ₃ (313.31)	313
2	>300	69	EtOH	C ₁₉ H ₁₇ O ₅ N ₄ (381.37)	381
3a	>300	79	EtOH/DMF	C ₂₃ H ₁₉ O ₄ N ₃ (401.42)	401
3b	>300	78	EtOH/DMF	C ₂₃ H ₁₉ O ₅ N ₃ (417.42)	417
3c	>300	76	EtOH/DMF	C ₂₃ H ₁₈ O ₆ N ₄ (446.42)	446
4a	>300	70	EtOH/DMF	C ₂₆ H ₂₁ O ₅ N ₄ (469.48)	469
4b	>300	73	EtOH/DMF	$C_{26}H_{21}O_6N_4$ (485.48)	485
4c	>300	75	EtOH/DMF	C ₂₆ H ₂₀ O ₇ N ₅ (514.48)	514
5a	>300	69	EtOH/DMF	C ₂₅ H ₂₀ O ₅ N ₃ Cl (477.91)	477
5b	>300	72	EtOH/DMF	C ₂₅ H20O6N ₃ Cl (493.91)	493
5c	>300	70	EtOH/DMF	C ₂₅ H ₁₉ O ₇ N ₄ Cl (522.91)	522
6a	>300	68	EtOH/DMF	$C_{25}H_{21}O_5N_3S$ (475.52)	475
6b	>300	69	EtOH/DMF	C ₂₅ H21O6N ₃ S (491.52)	491
6с	>300	71	EtOH/DMF	$C_{25}H_{20}O_7N_4S$ (520.52)	520
7a	>300	70	EtOH/DMF	C ₂₈ H ₂₁ O ₆ N ₄ Cl(544.96)	544
7b	>300	73	EtOH/DMF	C ₂₈ H ₂₁ O ₇ N ₄ Cl(560.96)	560
7c	>300	71	EtOH/DMF	C ₂₈ H ₂₀ O ₈ N ₅ Cl(589.96)	589
8a	>300	66	EtOH/DMF	C ₂₈ H ₂₃ O ₆ N ₄ S (543.57)	543
8b	>300	67	DMF	C ₂₈ H ₂₃ O ₇ N ₄ S (559.57)	559
8c	>300	69	DMF	C ₂₈ H ₂₂ O ₈ N ₅ S (588.57)	588
9	>300	75	EtOH	C ₁₄ H ₁₁ O ₄ N ₃ (285.26)	285
10	>300	77	EtOH	C ₁₇ H ₁₄ O ₅ N ₄ (354.32)	354
11 a	>300	73	DMF	C ₂₁ H ₁₅ O ₄ N ₃ (373.38)	373
11b	>300	71	DMF	C ₂₁ H ₁₅ O ₅ N ₃ (389.37)	389
11c	>300	74	DMF	$C_{21}H_{14}O_6N_4$ (418.37)	418
12a	>300	72	DMF	C ₂₄ H ₁₈ O ₅ N ₄ (442.43)	442
12b	>300	70	DMF	C ₂₄ H ₁₈ O ₆ N ₄ (458.43)	458
12c	>300	69	DMF	C ₂₄ H ₁₇ O ₇ N ₅ (487.43)	487

Table 1: Characterization of Compounds (1 – 16).

Table	1:	Cont.	

Comp.	mp. (°C)	Yield (%)	Solvent of Crystallization	Mol. Formula (Mol. wt.)	Ms (m/z)
13a	>300	68	EtOH/DMF	C ₂₃ H ₁₆ O ₅ N ₃ Cl (449.86)	449
13b	>300	70	EtOH/DMF	C ₂₃ H ₁₆ O ₆ N ₃ Cl (465.86)	465
13c	>300	71	EtOH/DMF	C ₂₃ H ₁₅ O ₇ N ₄ Cl (494.85)	494
14a	>300	67	EtOH/DMF	C ₂₃ H ₁₇ O ₅ N ₃ S (447.46)	447
14b	>300	69	EtOH/DMF	C ₂₃ H ₁₇ O ₆ N ₃ S (463.46)	463
14c	>300	66	EtOH/DMF	$C_{23}H_{16}O_7N_4S$ (492.46)	492
15a	>300	72	EtOH/DMF	C ₂₆ H ₁₉ O ₆ N ₄ Cl(518.92)	518
15b	>300	74	EtOH/DMF	C ₂₆ H ₁₉ O ₇ N ₄ Cl(534.92)	534
15c	>300	71	EtOH/DMF	C ₂₆ H ₁₈ O ₈ N ₅ Cl (563.92)	563
16a	>300	73	EtOH/DMF	$C_{26}H_{20}O_6N_4S(516.52)$	516
16b	>300	69	EtOH/DMF	$C_{26}H_{20}O_7N_4S$ (532.53)	532
16c	>300	70	EtOH/DMF	C ₂₆ H ₁₉ O ₈ N ₅ S (561.53)	561

Comp. No.	¹ H-NMR (DMSO-δ ₆)
1	δ 1.23(t, 3H, CH ₃), δ 3.55(q, 2H, CH ₂) δ 4.53(s, NH ₂), δ 6.82(s, NH ₂), δ 8.01-7.01(m, 5H, Ar-H ⁺ and heterocyclic-H ⁺), δ 11.02(brs, NH).
2	δ 1.22(t, 3H, CH ₃), $δ$ 3.56(q, 2H, CH2), $δ$ 4.56(s, NH ₂), $δ$ 6.89(s, NH ₂), 8.01-7.01(m, 7H, Ar-H ⁺ and heterocyclic-H ⁺), $δ$ 11.99(brs, NH).
3a	δ 1.25(t, 3H, CH ₃), $δ$ 2.65(q, 2H, CH ₂), $δ$ 5.7(s, 2H, NH ₂), 8.01-7.01(m, 11H, Ar-H ⁺ and heterocyclic-H ⁺), $δ$ 12.11(s, 1H, NH).
3b	δ 1.24(t, 3H, CH ₃), δ 2.66(q, 2H, CH ₂), δ 5.77(s, 2H, NH ₂), 9.2-7.01(m, 10H, OH, Ar-H ⁺ and heterocyclic-H ⁺), 12.24(s, 1H, NH).
3c	δ 1.26(t, 3H, CH ₃), δ 2.69(q, 2H, CH ₂), δ 5.81(s, 2H, NH ₂), 8.1-7.01(m, 10H, Ar-H ⁺ and heterocyclic-H ⁺), 12.26(s, 1H, NH).
4a	δ 1.29(t, 3H, CH ₃), δ 2.59(q, 2H, CH ₂), δ 5.79(s, 2H, NH ₂), 8.1-7.01(m, 13H, Ar-H ⁺ and heterocyclic-H ⁺), 12.22(s, 1H, NH).
4b	δ 1.31(t, 3H, CH ₃), δ 2.58(q, 2H, CH ₂), δ 5.80(s, 2H, NH ₂), 8.1-7.01(m, 12H, OH, Ar-H ⁺ and heterocyclic-H ⁺), δ 12.01(s, 1H, NH).
4c	δ 1.28(t, 3H, CH ₃), $δ$ 2.61(q, 2H, CH ₂), $δ$ 5.82(s, 2H, NH ₂), 8.1-7.01(m, 12H, Ar-H ⁺ and heterocyclic-H ⁺), $δ$ 12.31(s, 1H, NH).
5a	δ 1.22(t, 3H, CH ₃), $δ$ 2.63(q, 2H, CH ₂), $δ$ 5.89(s, 2H, NH ₂), 8.1-7.01(m, 12H, Ar-H ⁺ and heterocyclic-H ⁺), $δ$ 11.97(s, 1H, NH).
5b	δ 1.25(t, 3H, CH ₃), $δ$ 2.62(q, 2H, CH ₂), $δ$ 5.93(s, 2H, NH ₂), 8.1-7.01(m, 11H, OH, Ar-H ⁺ and heterocyclic-H ⁺), $δ$ 11.86(s, 1H, NH).
5c	δ 1.26(t, 3H, CH ₃), $δ$ 2.64(q, 2H, CH ₂), $δ$ 5.98(s, 2H, NH ₂), 8.1-7.01(m, 11H, Ar-H ⁺ and heterocyclic-H ⁺), $δ$ 11.89(s, 1H, NH).
6a	δ 1.27(t, 3H, CH ₃), $δ$ 2.51(s, 2H, CH ₂ of thiazolidinone), $δ$ 5.77(s, 2H, NH ₂), 2.63(q, 2H, CH ₂), 8.1-7.01(m, 11H, Ar-H ⁺ and heterocyclic-H ⁺), $δ$ 11.59(s, 1H, NH).
6b	δ 1.28(t, 3H, CH ₃), $δ$ 2.51(s, 2H, CH ₂ of thiazolidinone), $δ$ 2.65(q, 2H, CH ₂) $δ$ 5.79(s, 2H, NH ₂), 8.1-7.01(m, 10H, Ar-H ⁺ and heterocyclic-H ⁺), $δ$ 11.55(s, 1H, NH).
6с	δ 1.29(t, 3H, CH ₃), $δ$ 2.54(s, 2H, CH ₂ of thiazolidinone), $δ$ 2.69(q, 2H, CH ₂) $δ$ 5.82(s, 2H, NH ₂), 8.1-7.01(m, 10H, Ar-H ⁺ and heterocyclic-H ⁺), $δ$ 11.46(s, 1H, NH).
7a	δ 1.26(t, 3H, CH ₃), $δ$ 2.63(q, 2H, CH ₂), $δ$ 5.81(s, 2H, NH ₂), 8.1-7.01(m, 13H, Ar-H ⁺ and heterocyclic-H ⁺), $δ$ 11.45(s, 1H, NH).
7b	δ 1.25(t, 3H, CH ₃), δ 2.65(q, 2H, CH ₂), δ 5.83(s, 2H, NH ₂), 8.1-7.01(m, OH, 12H, Ar-H ⁺ and heterocyclic-H ⁺), δ 10.95(s, 1H, NH).
7c	δ 1.27(t, 3H, CH ₃), δ 2.69(q, 2H, CH ₂), δ 5.87(s, 2H, NH ₂), 8.1-7.01(m,1 2H, Ar-H ⁺ and heterocyclic-H ⁺), δ 10.85(s, 1H, NH).

Table 2: ¹H-NMR Spectral Data of Compounds (1 – 16).

Table 2: Cont.

Comp. No.	¹ H-NMR (DMSO-δ ₆)
8a	δ 1.23(t, 3H, CH ₃), $δ$ 2.5(s, 2H, CH ₂ of thiazolidinone), $δ$ 2.62(q, 2H, CH ₂) $δ$ 5.67(s, 2H, NH ₂), 8.1-7.01(m, 13H, Ar-H ⁺ and heterocyclic-H ⁺), $δ$ 10.99(s, 1H, NH).
8b	δ 1.24(t, 3H, CH ₃), δ 2.51(s, 2H, CH ₂ of thiazolidinone), δ 2.64(q, 2H, CH ₂) δ 5.68(s, 2H, NH ₂), 8.1-7.01(m, 12H, OH, Ar-H ⁺ and heterocyclic-H ⁺), δ 10.96(s, 1H, NH).
8c	δ 1.25(t, 3H, CH ₃), δ 2.53(s, 2H, CH ₂ of thiazolidinone), δ 2.68(q, 2H, CH ₂) δ 5.76(s, 2H, NH ₂), 8.1-7.01(m, 12H, Ar-H ⁺ and heterocyclic-H ⁺), δ 10.98(s, 1H, NH).
9	δ 5.75(s, 2H, CH ₂), 9.3-7.01(m, OH, NH ₂ ,5 Ar-H ⁺), $δ$ 10.5(brs, 1H, NH).
10	δ 5.78(s, 2H, CH ₂), 9.5-7.01(m, OH, NH ₂ , 10H, Ar-H ⁺), δ 10.65(brs, 1H, NH).
11a	δ 9.26-6.89(m, 11H, Ar-H ⁺ , OH, NH ₂ , heterocyclic-H ⁺), δ 12.26-11.47(brs, 1H, NH).
11b	δ 9.27-6.92(m, 11H, Ar-H ⁺ , OH, NH ₂ , heterocyclic-H ⁺), δ 12.28-11.45(brs, 1H, NH).
11c	δ 9.29-6.94(m, 10H, Ar-H ⁺ , OH, NH2, heterocyclic-H ⁺), δ 12.3-22.46(brs, 1H, NH).
12a	δ 9.32-6.95(m, 13H, Ar-H ⁺ , OH, NH, NH ₂ , heterocyclic-H ⁺), δ 12.25-11.03(brs, 1H, NH).
12b	δ 9.1-6.78(m, 13H, Ar-H ⁺ , OH, NH, NH ₂ , heterocyclic-H ⁺), δ 12.05-11.01(brs, 1H, NH).
12c	δ 9.12-6.75(m, 12H, Ar-H ⁺ , OH, NH, NH ₂ , heterocyclic-H ⁺), δ 12.03-11.02(brs, 1H, NH).
1 3 a	δ 7.98-6.7(m, 12H, Ar-H ⁺ , OH, NH ₂ , heterocyclic-H ⁺), δ 12.01-11.68(brs, 1H, NH).
13b	δ 7.99-6.79(m, 12H, Ar-H ⁺ , OH, NH ₂ , heterocyclic-H ⁺), δ 11.99-10.56(brs, 1H, NH).
13c	δ 8.01-6.7(m, 11H, Ar-H ⁺ , OH, NH ₂ , heterocyclic-H ⁺), δ 12.01-10.98(brs, 1H, NH).
14 a	δ 2.51(s, 2H, CH ₂ of thiazolidinone), δ 9.1-6.97(m, 11H, Ar-H ⁺ , OH, NH ₂ , heterocyclic-H ⁺), δ 12.25-11.35(brs, 1H, NH).
14b	δ 2.53(s, 2H, CH ₂ of thiazolidinone), δ 9.01-6.99(m, 11H, Ar-H ⁺ , OH, NH ₂ , heterocyclic-H ⁺), δ 12.27-11.26(brs, 1H, NH).
14c	δ 2.55(s, 2H, CH ₂ of thiazolidinone), δ 9.03-6.89(m, 10H, Ar-H ⁺ , OH, NH ₂ , heterocyclic-H ⁺), δ 12.24-11.28(brs, 1H, NH).

Tabl	e 2:	Cont.

Comp. No.	¹ H-NMR (DMSO- δ_6)					
15a	δ 9.1-6.78(m, 14H, Ar-H ⁺ , OH, NH, NH ₂ , heterocyclic-H ⁺), δ 12.28-11.05(brs, 1H, NH).					
15b	δ 9.12-6.75(m, 14H, Ar-H ⁺ , OH, NH, NH ₂ , heterocyclic-H ⁺), δ 12.31-11.25(brs, 1H, NH).					
15c	δ 9.15-6.79(m, 13H, Ar-H ⁺ , OH, NH, NH ₂ , heterocyclic-H ⁺), δ 12.35-11.23(brs, 1H, NH).					
16a	δ 2.5(s, 2H, CH ₂ of thiazolidinone), δ 9.02-6.93(m, 13H, Ar-H ⁺ , OH, NH, NH ₂ , heterocyclic-H ⁺), 12.22-11.56(brs, 1H, NH).					
16b	δ 2.52(s, 2H, CH ₂ of thiazolidinone), $δ$ 9.05-6.95(m, 13H, Ar-H ⁺ , OH, NH, NH ₂ , heterocyclic-H ⁺), 12.215-11.55(brs, 1H, NH).					
16c	δ 2.55(s, 2H, CH ₂ of thiazolidinone), $δ$ 9.03-6.98(m, 12H, Ar-H ⁺ , OH, NH, NH ₂ , heterocyclic-H ⁺), 12.26-11.58(brs, 1H, NH).					

Comp.	IR (v_{max}/cm^{-1})	Calcd. (Found)				
No.	()	С	Н	N	Cl	S
1	3400-3100(NH ₂ , NH), 1745	61.34	4.83	13.41	-	-
	(C=O ester) 1645 (C=O)	(61.30	(4.78)	(13.39)		
)				
2	3500-3150(NH ₂ , NH), 1729	59.84	4.49	14.69	-	-
	(C=O) 1720 (C=O)	(59.80	(4.29)	(14.56)		
)				
3a	3500-3100(NH ₂ , NH), 1730	68.82	4.77	10.47	-	-
	(C=O), 1715(C=O), 1593(C=N)	(68.76	(4.72)	(10.44)		
)		4.50		
3b	$3450-3100(OH, NH_2, NH),$	88.40	66.18	4.59	-	-
	10.07 (C=O), 1690 (C=O), 1690 (C=O),	(66.13	(4.55)	(10.02)		
2	1603(C=N).)	1.00	10.55		-
3C	$34/3-3098(NH_2, NH),$	01.88	4.06	12.55	-	-
	1/55(C=O), 1095(C=O), 1600(C=N)	(01.82	(4.01)	(12.49)		
40	1009(C-N).)	4.51	11.03		
+a	1725(C-0) 1668(C-0)	66 / 6	4.51	11.55	_	_
	1725(C=0),1000(C=0), 1600(C=N)	00.40	4.00	11.07		
4h	3400-3050(OH NH- NH)	64 33	4 36	11.54	_	
UF	1730(C=0) $1670(C=0)$	64 19	4 26	11.54	_	_
	1605(C=N)	04.17	4.20	11.40		
4c	3450-3100(NH ₂ , NH).	60.70	3.92	13.61	-	-
	1745(C=O), 1675(C=O),	60.01	3.88	13.56		
	1610(C=N).					
5a	3400-3100(NH ₂ , NH),	62.83	4.22	8.79	7.42	-
	1728(C=O), 1680(C=O).	(62.78	(4.17)	(8.73)	(7.38)	
)	. ,		, í	
5b	3390-3050(OH, NH ₂ , NH),	60.80	4.08	8.51	7.18	-
	1729(C=O), 1685(C=O).	(60.76	(4.05)	(8.46)	(7.12)	
)				
5c	3395-3050(NH ₂ , NH),	57.42	3.66	10.74	6.78	-
	1733(C=O), 1690(C=O).	(57.36	(3.62)	(10.68)	(6.73)	
)		0.04		6.5.4
6a	3400-3150(NH2, NH),	63.15	4.45	8.84	-	6.74
	1/25(C=O), 1690(C=O).	(63.09	(4.40)	(8.77)		(6.69)
Gh	2450 2100(OH NH NH))	4.21	0 55		6.52
UD	1730(C-O) $1603(C-O)$	(61.05	(4.31)	(8.00)	-	(6.32)
	1750(C=O), 1095(C=O).	(01.05	(4.20)	(8.00)		(0.48)
60	3400-3100(NH ₂ NH)	57.69	3 87	10.76	_	616
UC	1727(C=0), 1691(C=0).	(57.63	(3.84)	(10.72)		(6.12)
)	(0101)	(10112)		(0.12)
7a	3450-3100(NH ₂ , NH).	61.71	3.88	10.28	6.51	
	1720(C=O), 1688 (C=O).	61.69	3.82	10.23	6.48	
7b	3450-3100(OH, NH2, NH),	59.95	3.77	9.99	6.32	
	1725(C=O), 1685(C=O).	59.91	3.69	9.85	6.15	
7c	3400-3100(NH ₂ , NH),	57.01	3.12	11.87	6.02	
	1723(C=O), 1684(C=O).	56.96	3.09	11.80	5.96	
8a	3390-3050(NH ₂ , NH),	61.87	4.26	10.31	5.70	5.70
	1726(C=O), 1690(C=O).	61.81	4.19	10.27	5.65	5.68
8b	3450-3050(OH, NH ₂ , NH),	60.10	4.14	10.01		5.73
	1728(C=O), 1693.	59.98				
8c	3400.,3100(NH ₂ , NH),	57.14	3.77	11.90		5.45
	1732(C=O), 1695(C=O).	1			1	1

Table 3	3: IR	Spectral	and	Elemental	Analysis	Data.
---------	-------	----------	-----	-----------	----------	-------

www.iosrjournals.org

Comp.	IR (υ_{max}/cm^{-1})		Calcd. (Found)					
No.		С	Н	N	Cl	S		
9	3430(OH), 3400-31 00(NH ₂ ,	58.95	3.89	14.73	-	-		
	NH), 1570(C=O).	(58.89)	(3.86)	(14.68)				
10	3439(OH), 3400-3100(NH ₂ ,	57.63	3.98	15.81	-	-		
	NH), 1568(C=O).	57.59	3.93	15.77				
11a	3450-3100(OH, NH ₂ , NH),	67.56	4.05	11.25	-	-		
	1625(C=O), 1590(C=N).	(67.51)	(4.00)	(11.19)				
11b	3500-3060(OH, NH ₂ , NH),	64.78	3.88	10.79	-	-		
	1655(C=O), 1600(C=N).	64.71	3.83	10.71				
11c	3450-3150(OH, NH ₂ , NH),	60.29	3.37	13.39	-	-		
	1660(C=O), 1610(C=N).	60.19	3.31	14.32				
12a	3500-3150(OH, NH ₂ , NH),	65.15	4.1	12.66	-	-		
	1715(C=O), 1603(C=N).	65.08	3.97	12.62				
12b	3450-3100(OH, NH ₂ , NH),	62.88	3.96	12.22	-	-		
	1713(C=O), 1605(C=N).	62.81	3.92	12.09				
12c	3450-3150(OH, NH ₂ , NH),	59.14	3.52	14.37	-	-		
	1718(C=O), 1609(C=N).	59.07	3.47	14.29				
13a	3450-3050(OH, NH ₂ , NH),	61.41	3.58	9.34(9.29	7.88	-		
	1626(C=O).	(61.37)	(3.52))	(7.83)			
13b	3400-3100(OH, NH ₂ , NH),	59.30	3.46	9.02	7.61	-		
	1630(C=O).	59.27	3.41	8.98	7.57			
13c	3500-3100(OH, NH ₂ , NH),	55.83	3.06	11.32	7.17	-		
	1633(C=O).	55.79	3.01	11.29	7.08			
14a	3450-3100(OH, NH ₂ , NH),	61.74	3.83	9.39	-	7.16		
	1630(C=O).	(61.68)	(3.78)	(9.35)		(7.12)		
14b	3400-3050(OH, NH ₂ , NH),	59.61	3.70	9.07		6.92		
	1625(C=O).	59.56	3.67	8.99		6.88		
14c	3450-3100(OH, NH ₂ , NH),	56.10	3.27	11.38		6.51		
	1623(C=O)	55.48	3.03	11.27		6.48		
15a	3450-3050(OH, NH ₂ , NH),	60.18	3.69	10.80	6.83			
	1626(C=O).	60.01	3.62	10.76	6.79			
15b	3400-3100(OH, NH2, NH),	58.38	3.58	10.47	6.63			
	1630(C=O).	58.26	3.51	10.38	6.58			
15c	3450-3150(OH, NH ₂ , NH),	55.38	3.22	12.42	6.29			
	1635(C=O).	55.28	3.09	12.38	6.18			
16a	3500-3100(OH, NH ₂ , NH),	60.46	3.90	10.85		6.21		
	1640(C=O).	60.41	3.86	10.80		5.98		
16b	3500-3150(OH, NH ₂ , NH),	58.64	3.79	10.52		6.02		
	1645(C=O).	58.59	3.74	10.48		5.99		
16c	3450-3100(OH, NH ₂ , NH),	55.61	3.41	12.42		5.71		
	1650(C=O).	55.57	3.39	12.37		5.67		

Table 3: Cont

REFERENCES

- [1] Harinath B.B. and Subba R.N.N., Proc. Indian Acad. Sci., 67A, 31, 1968.
- [2] Wagner A., Beck W.; Diskus A., Austrain 220, 425, (26 March 1962); Chem. Abstr., 57, 3420f,1962
- [3] Tsizin Yu. S.; Rubtsov M.V.; Khirn. Geterotsikl. Soedin, 637, 1970.
- [4] Shellhammer C.W., Petersep S.; Dommagk G., Uspat. 3,084, 165 (2 April 1963); Chem. Abstr., 59, 13956, 1963.
- [5] Shellbammer C.W.; Peterson S.; Dommagk G., Ger. 1, 114, 194 (Appl. 21 May 1959); Chem. Abstr., 56,4740, 1959.

- [6] Liao, T.K ;.Nyberg, W.H.; Cheng, C.C.; Angew. Chem. (int. Edn.), 6, 82, 1967.
- [7] Georg G.I., Recent Advances in the chemistry and Biology of \Box -Lactam and \Box -Lactam Antibiotics, Bioorg = Med. Chem. Letters (Symposia in print No. (8), 3, 2159, 1993.
- [8] Durckeimer W., Blumbach J.; Lattrell R.; Scheunemann, Angew, Chem., Int. Ed. Engl., 24, 180, 1985.
- [9] Berko A.H., Tetrahedron, 52,331, 1996.
- [10] 10-Ren X.F., Konaklieva M.I., Shi H., Dickeys., Lim D.V.; Gonzalez J.; Turos E., J. Org. Chem.; 63, 8898, 1998.
- [11] 11-McDonald L.A.; Foster M.P.; Phillips D.R.; Ireland C.M.; Lee A.Y.; Clardy J.; J. Org. Chem.; 57, 4616, 1992.
- [12] 12-Foye W.O.; Principles of Medicinal Chemistry. 2nd, Lea and Febiger, Philadelphia, 1981.
- [13] 13-North M.; Partenden G.; Tetrahedron, 57,4616, 1990.
- [14] 14-Ireland C.M.; Dursojr. A.R.; Newman R,A.; Hacker M.P.; J. Org. Chem., 47, 1807, 1982.
- [15] 15-Pattenden G.; J. Heterocycl. Chem. 29, 607, 1992.
- [16] 16-Pirotte B.; Delarge J., Coyette J.; Frere JM.; J. Antibiot, 44, 844, 1991.
- [17] 17-Khalaffallah A.K.; Abd EI-Aal R.M.; EI-Kanzi N.A.A.; J. Chin. Chem. Soc. Vol. 49, No.3, 387 396, 2002.
- [18] 18-El-Kanzi N.A.A.; Khalafallah A.K.; Younis M.; Phosphotus, Sulfur, and Silicon and the Related Elements, Vol. 182, No. 5, 1163 – 1181, 2007.
- [19] 19-Loo Y.H.; Sylvester J.C., J. Bact, 50, 701,1945.

Synthesis of New Class of $(\beta$ -Lactam, Thiazolidinone) Derivatives

