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Abstract: The objective of this work is to investigate the Schrödinger equation, analyzing the mathematical 

concepts employed and relating them to other areas of knowledge. In quantum mechanics, the Schrödinger 

equation is a partial differential equation that describes how the quantum state of a physical system evolves 

over time. It was formulated in late 1925 and published in 1926 by the Austrian physicist Erwin Schrödinger. In 

quantum mechanics, the analogue of Newton's law is the Schrödinger equation for the quantum system (usually 

atoms, molecules, and subatomic particles are free, bound, or located). It is not a simple algebraic equation but, 

in general, a linear partial differential equation. The solutions to the Schrödinger equation describe not only 

molecular, atomic, and subatomic systems, but also macroscopic systems. 
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I. Introduction 
In the year 1925, Schrödinger began the work to obtain a wave equation in order to apply it to the 

hydrogen atom. According to FREIRE JR 
(1)

, the inspiration for this was De Broglie's doctoral thesis, and his 

idea was to establish stationary waves in three dimensions, analogous to sound waves in cavities. The 

Schrödinger equation is an equation used in wave mechanics for the wave function of a particle and allowed the 

creation of a complete model for the atom. From this point of view, one might think that Schrödinger's theory 

would be a mere development of De Broglie's theory. However the theory in question can be associated with 

cases in which De Broglie's theory cannot be applied, such as accelerated motion and rotation. In addition, the 

model proposed by Schrödinger reconciled the theoretical postulates of De Broglie and Heisenberg, as well as 

presented a three-dimensional orbital model for each of the energy sub-levels and enabled the determination of 

the molecular geometry of several chemical substances. 

The Schrödinger equation allows computing the associated wave function 𝜓 𝑟, 𝑡  to a particle moving 

within a force field described by a potential V(𝑟, 𝑡) (which may depend on the position 𝑟 and time 𝑡). The 

resolution of the Schrödinger equation 
(3)

 leads to a set of wave functions and to a set of energies corresponding 

to the electron states allowed in that atom, since only certain wave functions are allowed as solutions of the 

equation. As can be seen in the book by Alonso and Finn 
(5)

, the mathematical expressions of the wave functions 

allow us to determine the probability of finding an electron in the vicinity of a point near the nucleus. In the case 

of the electron of the hydrogen atom in the ground state, this probability depends only on the distance to the 

nucleus.   As it is known 
(5)

, quantum mechanics studies the movement of particles that form matter, that is, 

atoms, molecules and electrons. Microscopic particles, like electrons, do not move following the classical laws 

of motion, given by Newtonian mechanics. These particles, however, follow other laws that seem to be more 

appropriate for the propagation of a wave. Thus, a wave motion will be fully known if the spatial and temporal 

dependence of the wave function is known. 

According to ZEILMANN 
(2)

, it was from the article by Erwin Schrödinger (1887-1961), titled "An 

Undulatory Theory of the Mechanics of Atoms and Molecules", that interest arose in investigating the 

relationship between mathematics and quantum physics referred to in the aforementioned article. Thus, the 

objective of this work was to investigate the Schrödinger equation, analyzing the mathematical concepts 

employed and relating them to other areas of knowledge, such as physics and chemistry. 

 

II. Mathematical Development For The Stationary State 
According to KNIGTH 

(4)
 in the mechanics of oscillations a wave motion can be described by an equation of the 

type 

𝜓 𝑥, 𝑡 =  𝐴 𝑒𝑖(𝑘𝑥−𝜔𝑡 )    (1)  

𝑤ℎ𝑒𝑟𝑒  𝑘 =
2𝜋

𝜆    
             (2) 

            Considering the time independent equation first, we can write 
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𝜓 𝑥 =  𝐴 𝑒
𝑖2𝜋𝑥

𝜆                 (3) 
            Then, by making the first derivative of equation (3) with respect to x we have 

 
𝑑𝜓(𝑥)

𝑑𝑥
=  

2𝜋𝑖

𝜆
 𝐴  𝑒

2𝑖𝜋𝑥
𝜆       (4)  

 

           Now, by making the second derivative with respect to x, it comes 

 

𝑑2𝜓 𝑥 

𝑑𝑥2
=  −

4𝜋2

𝜆2
 𝐴 𝑒

2𝑖𝜋𝑥
𝜆       5         

 

             By substituting equation (3) into equation (5), we have the following condition 

 

𝑑2𝜓(𝑥)

𝑑𝑥2
=  −

4𝜋2

𝜆2
 𝜓 𝑥         (6)      

 

   Taking into account De Broglie's relationship we have 

 

𝜆 =  
ℎ

𝑚𝑣
          and       𝜆2 =  

ℎ2

𝑚2𝑣2                 (7) 

 

   Substituting (7) into (6) yields the equation 

 

𝑑2𝜓(𝑥)

𝑑𝑥2
=  −

4𝜋2𝑚2𝑣2

ℎ2
 𝜓 𝑥                       (8) 

     

  Regrouping the terms of equation (8) 

 

𝑚2𝑣2

2𝑚
=  −  

ℎ2

8𝜋2𝑚
 

1

𝜓 𝑥 
 
𝑑2𝜓 𝑥 

𝑑𝑥2
              9  

 

             On the other hand, we know that the kinetic energy, T, is given by 

 

𝑇 =
1

2
 𝑚 𝑣2 =  

𝑚2𝑣2

2𝑚
                            (10) 

 

   Substituting equation (9) into equation (10) 

 

𝑇 =  −  
ℎ2

8𝜋2𝑚 
 

1

𝜓 𝑥 
 
𝑑2𝜓 𝑥 

𝑑𝑥2
               (11) 

 

    Recalling that E = T + V it results 

 

𝐸 =  −  
ℎ2

8𝜋2𝑚

1

𝜓 𝑥 

𝑑2𝜓(𝑥)

𝑑𝑥 2 + 𝑉         (12) 

 

               Rearranging the terms of equation (12) 

 

𝑑2𝜓(𝑥)

𝑑𝑥2
  +   

8𝜋2𝑚

ℎ2
  𝐸 − 𝑉 𝜓 𝑥 = 0        (13) 

 

               For the three-dimensional case we have 

 

𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
+ 

𝜕2𝜓

𝜕𝑧2
+ 

8𝜋2𝑚

ℎ2
  𝐸 − 𝑉 𝜓 = 0               14  
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 Finally the time-independent Schrödinger equation as a function of the reduced mass (μ) and by 

considering that ħ = h/2π 

 
−ℏ2

2𝜇
∇2  𝜓 𝑥, 𝑦, 𝑧 + 𝑉 𝜓 𝑥, 𝑦, 𝑧 = 𝐸 𝜓(𝑥, 𝑦, 𝑧)            (15) 

   

   This is the stationary Schrödinger equation for non-relativistic free particles, independent of time, mass 

µ and energy E. In order to incorporate the time variable, we must consider equation (1) in its complete form, 

that is, 

 

𝜓 𝑥, 𝑡 =  𝐴 𝑒𝑖(𝑘𝑥−𝜔𝑡 ) 
 

By taking the derivative of ψ (x, t) with respect to time, we will have 

 
𝜕𝜓

𝜕𝑡
=  −𝑖𝜔 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡 )  or     

𝜕𝜓

𝜕𝑡
=  −𝑖𝜔 𝜓 𝑥, 𝑡  

 

On the other hand, we must derive ψ (x, t) twice with respect to x. Thus, the first derivative provides 
𝜕𝜓

𝜕𝑥
=  𝑖𝑘 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡 ) 

 

Meanwhile, the second derivative is given by 

 

𝜕2𝜓

𝜕𝑥2
=  −𝑘2  𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡 ) = −𝑘2 𝜓 𝑥, 𝑡  

         At this point, it is worth recalling some important relations 

 

𝑘 =
2𝜋

𝜆
 ; 𝜔 = 2𝜋𝑓;  𝜆 =  

ℎ

𝑝
 ; 𝑣 = 𝜆 𝑓; 𝐸 = ℎ 𝑓;   ℏ =

ℎ

2𝜋
 

 

   Hence we can write  

 

𝜕𝜓

𝜕𝑡
=  

𝑖ℏ

2𝑚

𝜕2𝜓

𝜕𝑥2
 

 

              This can be rearranged in 

 

𝑖ℏ
𝜕𝜓

𝜕𝑡
=  

−ℏ2

2𝑚

𝜕2𝜓

𝜕𝑥2
 

 

    For the three-dimensional case 

 

𝑖ℏ
𝜕𝜓

𝜕𝑡
=  

−ℏ2

2𝑚
∇2𝜓 

 
 

              By making the appropriate substitutions, rearranging the terms and, by introducing the reduced mass 

(μ) into the equation, we can arrive at 

 
−ℏ2

2𝜇
 
𝜕2𝜓 𝑥 ,𝑦 ,𝑧 ,𝑡 

𝜕𝑥2 +
𝜕2𝜓 𝑥 ,𝑦 ,𝑧 ,𝑡 

𝜕𝑦2 + 
𝜕2𝜓 𝑥 ,𝑦 ,𝑧 ,𝑡 

𝜕𝑧2  +  𝑉 𝑥, 𝑦, 𝑧 𝜓 𝑥, 𝑦, 𝑧, 𝑡 = 𝑖ℏ
𝜕𝜓 (𝑥 ,𝑦 ,𝑧 ,𝑡)

𝜕𝑡
    (16) 

       

            Schrödinger published the paper with the deduction of this equation in 1926 and won the Nobel Prize for 

this work in 1933, just six years after publication. It is observed that the wave function equation explicitly 

includes complex numbers that lead to complex wave functions and this is an important fact in quantum 

mechanics. Complex functions can not represent physical quantities whose measures are real numbers. Even so, 

complex functions and variables have been used to facilitate algebra and in the end select only the real parts of 



Review Of The Schrödinger Wave Equation  

    

DOI: 10.9790/5736-1104010107                                      www.iosrjournals.org                                           4 |Page 

the obtained variables. It is not the case for the wave function of quantum mechanics, since it is intrinsically a 

complex function. However any complex number multiplied by its conjugate complex (𝜓 𝜓∗) is a real and 

positive number.     

  

III. Meaning Of The Wave Function 
After years of discussion about the significance of the wave function involving disputes between 

Einstein, Bohr, Schrödinger, Heisenberg and others, the Copenhagen interpretation was achieved. The wave 

function of a system is nothing more than an abstract mathematical representation of the state of the system. It 

only has meaning in the context of quantum theory. So, what is this function for? 

The interpretation that is now accepted for the wave function was formulated by the German physicist 

Max Born in 1926, who considered it as an amplitude of probability. Max Born interpreted the wave function, 

considering the square of the absolute value of 𝜓, | 𝜓 |
2
, as the probability density of finding the electron in a 

given position around the nucleus. If 𝜓(x, t) represents a single particle, then | 𝜓(x, t) |
2
 dx is the probability of 

finding it in the interval (x, x + dx) at time t. So, the term | 𝜓 |
2
 is called the probability density, while 𝜓 is the 

amplitude of the probability. 

The wave function is a complex quantity, it cannot be measured directly by any physical instrument. 

That means there is no immediate physical sense to this function! Therefore, let us make it well established that, 

in fact, the wave function of a system is nothing more than an abstract mathematical representation of the state 

of the system. It only has meaning in the context of quantum theory. So, what is this function for? Can we use it 

in any way to describe the physical world? 

By this interpretation the product  𝜓 𝑥, 𝑡 𝜓∗(𝑥, 𝑡), a real and positive number, represents the 

probability density function to find the particle at position x at time t. In this interpretation the electron would be 

dispersed by space with a charge density given by 𝜌 𝑥, 𝑡 = −𝑒 𝜓 𝑥, 𝑡 𝜓∗ 𝑥, 𝑡 .This interpretation also requires 

that 𝜓 𝑥, 𝑡 𝜓∗(𝑥, 𝑡)  be continuous. 

 

IV. Stationary States 
A quantum system can remain stationary in certain states in which the energy has a precise value E. In 

these stationary states, the wave function assumes a particular simplified form because the wave function does 

not depend on time. Stationary states are the eigenfunctions of the energy operator or, simply, energy 

eigenfunctions. The solutions for the stationary state of the wave function can be separated into two functions, 

one that depends only on spatial coordinates and another that depends only on time. Hence, we will have 

something of the type 𝜓(x,y,z,t) = 𝜓(x,y,z) ϕ (t). A typical case of this behavior is when the wave function takes 

the form given by 𝜓(x,y,z,t) = 𝜓(x,y,z) exp(-iEt/ℏ). From what it is perceived that every dependence of ϕ in 

time is associated with the complex factor exp(-iEt/ℏ), whose modulus is unitary. In view of this, we can say 

that in so-called stationary states the density of probability depends only on position, being independent of time, 

that is, 
                                   𝜓 (x, y, z, t)  2 =  𝜓 (x, y, z) 2                                         (17) 

 

Stationary states are extremely important in the quantum description of nature, not only because they 

represent states that have definite energy, but also because the set of Hamiltonian eigenstates, which are 

stationary states, is complete. This means that any state can be represented as a linear combination of stationary 

states. 

 

V. Application For The Hydrogen Atom 
The mathematical problem to find the wave functions of the hydrogen atom was to solve the Schrödinger 

equation with Coulomb potential in the three dimensions 

 

−ℏ2

2𝜇
 
𝜕2𝜓 𝑥, 𝑦, 𝑧 

𝜕𝑥2
+

𝜕2𝜓 𝑥, 𝑦, 𝑧 

𝜕𝑦2
+  

𝜕2𝜓 𝑥, 𝑦, 𝑧 

𝜕𝑧2
 −  

𝑒2

4𝜋𝜀

𝜓 𝑥, 𝑦, 𝑧 

 𝑥2 + 𝑦2 + 𝑧2
= 𝐸 𝜓 𝑥, 𝑦, 𝑧  

                                                                                                                           (18) 

This problem has an analytic solution, but requires a completely out-of-context mathematics. However, we will 

only present the main results. 

As Schrödinger did, let's begin by transforming the wave equation expressed in Cartesian coordinates into an 

equivalent equation in polar coordinates. In this new coordinate system it is possible to separate variables, which 

means that the function 𝜓(r, θ, ϕ) can be decomposed into a product of three functions R(r)ϴ(θ)Φ(ϕ). 
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The resolution of the radial part of the wave function has solutions that identify with the Laguerre polynomials 

whose normalization contains the term (n-l-1)! which implies that n>l. Curiously, in the absence of magnetic 

fields (internal or external), energy depends only on the quantum number n, which is why it is called the 

principal. 

𝐸 = 𝑅𝐻  
1

𝑛2
 

            The resolution of the azimuth component of the wave function leads to the expression 

 

                                Φ 𝜙 = 𝑒(±𝑖𝑚𝜙 )                                                               (19) 

 

 The parameter m is limited to the set of integers, being known by magnetic quantum number because the 

energy only depends on it when magnetic fields are considered. 

   The integer 𝑚 is associated with another integer, 𝑙, in determining the acceptable solutions 

 

𝑚𝑙 =  −𝑙, −𝑙 + 1, … , 0, . . . , 𝑙 − 1, 𝑙 
 According Eisberg and Resnick 

(6)
, we can deduce what comes next. Assuming electron can be described by a 

wave function of form 𝜓=𝜓(x,y,z,t), the Schrödinger equation can be written 

 

−ℏ2

2𝜇
 
𝜕2𝜓 𝑥, 𝑦, 𝑧, 𝑡 

𝜕𝑥2
+

𝜕2𝜓 𝑥, 𝑦, 𝑧, 𝑡 

𝜕𝑦2
+  

𝜕2𝜓 𝑥, 𝑦, 𝑧, 𝑡 

𝜕𝑧2
 +  𝑉 𝑥, 𝑦, 𝑧 𝜓 𝑥, 𝑦, 𝑧, 𝑡 = 𝑖ℏ

𝜕𝜓(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
 

 

or 

 

                                    
−ℏ2

2𝜇
∇2𝜓 + 𝑉𝜓 = 𝑖ℏ

𝜕𝜓

𝜕𝑡
                                                  (20) 

  

  Since V(x,y,z) does not depend on time, 𝜓 𝑥, 𝑦, 𝑧, 𝑡 = 𝜓(𝑥, 𝑦, 𝑧)𝑒
−𝑖𝐸𝑡

ℏ  is a solution to the Schrödinger equation 

and the eigenfunction  𝜓(𝑥, 𝑦, 𝑧) is a solution of the time-independent Schrödinger equation 

 

−ℏ2

2𝜇
∇2𝜓(𝑥, 𝑦, 𝑧) + 𝑉𝜓(𝑥, 𝑦, 𝑧) = 𝐸 𝜓(𝑥, 𝑦, 𝑧) 

               It’s convenient to use spherical polar coordinates 

 

−ℏ2

2𝜇
∇2𝜓 𝑟, 𝜃, 𝜙 + 𝑉 𝑟  𝜓 𝑟, 𝜃, 𝜙 = 𝐸 𝜓 𝑟, 𝜃, 𝜙 , 𝑤ℎ𝑒𝑟𝑒 

 

∇2=
1

𝑟2

𝜕

𝜕𝑟
 𝑟2

𝜕

𝜕𝑟
 +

1

𝑟2𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
 𝑠𝑖𝑛𝜃 

𝜕

𝜕𝜃
 +

1

𝑟2𝑠𝑖𝑛2𝜃

𝜕2

𝜕𝜙2
 

 

We can now use separation of variables to split the partial differential equation into set of ordinary differential 

equations. Then, assuming that the eigenfunction is separable in this form  𝜓 𝑟, 𝜃, 𝜙 = R(r)ϴ(θ)Φ(ϕ), we can 

write 

 

−ℏ2

2𝜇
 

1

𝑟2

𝜕

𝜕𝑟
 𝑟2

𝜕(𝑅ΘΦ)

𝜕𝑟
 +

1

𝑟2𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
 𝑠𝑖𝑛𝜃 

𝜕(𝑅ΘΦ)

𝜕𝜃
 +

1

𝑟2𝑠𝑖𝑛2𝜃

𝜕2(𝑅ΘΦ)

𝜕𝜙2
 + 𝑉 𝑟 (𝑅ΘΦ) = E(𝑅ΘΦ) 

                                                                                                                              (21) 
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            By making the differentiation we conclude that 

 

−ℏ2

2𝜇
 

ΘΦ

𝑟2

𝑑

𝑑𝑟
 𝑟2

𝑑𝑅)

𝑑𝑟
 +

𝑅Φ

𝑟2𝑠𝑖𝑛𝜃

𝑑

𝑑𝜃
 𝑠𝑖𝑛𝜃 

𝑑Θ

𝑑𝜃
 +

𝑅Θ

𝑟2𝑠𝑖𝑛2𝜃

𝑑2Φ)

𝑑𝜙2
 + 𝑉 𝑟 (𝑅ΘΦ) = E(𝑅ΘΦ) 

 

            Now multiplying by the term    
−2𝜇𝑟2𝑠𝑖𝑛 2𝜃

𝑅ΘΦℏ2   and taking into account the transpose it comes that 

 

1

Φ

𝑑2Φ

𝑑𝜙2
= −

sin2θ

𝑅

𝑑

𝑑𝑟
 𝑟2

𝑑𝑅

𝑑𝑟
 −

𝑠𝑖𝑛𝜃

Θ

𝑑

𝑑𝜃
 𝑠𝑖𝑛𝜃 

𝑑Θ

𝑑𝜃
 −

2μ

ℏ2
r2sin2θ(E − V r ) 

 

              By making some physical considerations we can replace the original Schrodinger equation in two other 

equations, namely 

 

𝑑2Φ

𝑑𝜙2
= −𝑚𝑙

2Φ 

1

𝑅

𝑑

𝑑𝑟
 𝑟2

𝑑𝑅

𝑑𝑟
 +

2μr2

ℏ2
 E − V r  =

𝑚𝑙
2

sin2θ
−

1

Θ 𝑠𝑖𝑛𝜃

𝑑

𝑑𝜃
 𝑠𝑖𝑛𝜃 

𝑑Θ

𝑑𝜃
  

 

           To be concordant both sides in this last equality must be equal to a constant that, for convenience is 

chosen as  l(l+1). This leads to 

 

−
1

 𝑠𝑖𝑛𝜃

𝑑

𝑑𝜃
 𝑠𝑖𝑛𝜃 

𝑑Θ

𝑑𝜃
 +

𝑚 𝑙
2Θ

sin 2θ
= l(l + 1)Θ                                     (22) 

 

 
1

𝑟2

𝑑

𝑑𝑟
 𝑟2 𝑑𝑅

𝑑𝑟
 +

2μ

ℏ2  E − V r  R = l(l + 1)
R

r2                                  (23) 

 

            We have now separated the time-independent Schrödinger equation into three    ordinary differential 

equations, which each only associated to Φ, ϴ  and R. Then we will have as particular solutions the following 

equations  

 

Φ 𝜙 = 𝑒 𝑖𝑚 𝑙𝜙   𝑤ℎ𝑒𝑟𝑒  𝑚𝑙 = 0, ±1, ±2, …  
 

            In spectroscopy 𝑚𝑙   is called the magnetic quantum number. 

By making change of variable z = r cos Ɵ the equation (22) can be transformed into an associated 

Legendre equation 

 

𝑑

𝑑𝑧
 (1 − 𝑧2) 

𝑑Θ

𝑑𝑧
 +  l(l + 1)

𝑚𝑙
2

1 − 𝑧2
 Θ = 0, 

 

whose solution is of the type 

 

Θ𝑙 , 𝑚 𝑙  
 𝜃 = 𝑠𝑖𝑛 𝑚 𝑙  𝜃 F𝑙 , 𝑚 𝑙  

 cos 𝜃 , 

 

where F𝑙 , 𝑚 𝑙  
 cos 𝜃   represents associated Legendre polynomial functions being 

 

𝑚𝑙 =  −𝑙, −𝑙 + 1, … , 0, . . . , 𝑙 − 1, 𝑙 
 

            On the other hand, assuming that the ground state is associated to n = 1 and 𝑙 = 0,  the equation (23) can 

be written 

 

1

𝑟2

𝑑

𝑑𝑟
 𝑟2

𝑑𝑅

𝑑𝑟
 +

2μ

ℏ2
 E +

e2

4πεr
 R = 0 
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             In this equation, by making the derivative with respect to the parameter R, it follows that 

 

                            
𝑑2𝑅

𝑑𝑟2 +
2

𝑟

𝑑𝑅

𝑑𝑟
+

2μ

ℏ2  E +
e2

4πεr
 R = 0                                    (24) 

 

             Replacing the solution 𝑅 = 𝐴 𝑒
−𝑟

𝑎0   into equation (24), where  𝐴  and  𝑎0 are constants 

 

                                                 
1

𝑎0
2 +

2𝜇

ℏ2  𝐸 +  
2𝜇𝑒2

4𝜋𝜀ℏ2 −
2

𝑎0
  

1

𝑟
= 0                                           (25) 

 

             In order to satisfy this equation (25) for any r, both expressions in parentheses must be equal zero, 

which implies 

 

𝑎0 =
4𝜋𝜀ℏ2

𝜇𝑒2
  𝑎𝑛𝑑  𝐸 = −

ℏ2

2𝜇𝑎0
2

= −13.6  𝑒𝑉 

 

         It is noticed that the result is in agreement with the results obtained by Bohr. Generalizing this last result 

we have  

 

𝐸𝑛 = −
13.6 

𝑛2  𝑒𝑉, 

 

where 𝑛 represents the principal quantum number, defined by 𝑛 = 𝑙 +1, 𝑙 +2, 𝑙 +3, … 

 

VI. Final Considerations 
  The Schrödinger equation is nothing more than a second-order differential equation, which can be 

applied to a system such as the hydrogen atom, and thus calculate the corresponding energy levels. The 

Schrödinger equation is easy to use for the hydrogen atom, but when the atomic number is increased, the 

numerical methods are more effective and facilitate the resolution of the problem. This equation has limitations 

because it only applies to particles with low velocities. The Schrödinger wave equation can be deduced from De 

Broglie results, at the classical limit. However, the Schrödinger theory is not a mere application or development 

of the De Broglie results, since it can be applied to cases in which De Broglie theory cannot be applied, such as 

accelerated motion and rotation. 
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