Fe (III) complexes with hetero cyclic and cycloketones synthesis by mannich reaction it's Growth, crystal structure, spectral, thermal, antibacterial and antifungal activity studies.

V.Puvanadevi, P.R. Sivakumar*
*PG \& Research Department of Chemistry, Government Arts College (Autonomous), Coimbatore, TN, India.

Abstract

A novel single crystal of piperidin-4-ones, pyrimidines, pyrans and cyclohexanones were successfully grown by slow evaporation solution growth technique at constant temperature (303 K) with dimension $40 \times 5 \times 3$ mm^{3} in a period of 3 weeks. Powder X rays (XRD) and Fourier transform infrared transmission (FTIR) have confirmed the formation of the new crystal. IR spectra analyses were used to elucidate the functional group present in the compounds. UV-spectral studies indicates that the grown crystals was transparent in the entire visible region with a lower cutoff wavelength of 505 nm . Thermal properties of the crystal have been investigated using thermo gravimetric analysis (TC) and differential thermal analysis (DTA). The mechanical strength of the crystal was estimated by vicker's hardness method. The bacterial activity against the pathogenic microorganisms, E.coli (gram positive) and Staphylococcusaureus (gram negative) and antifungal activity against Aspergillusniger, were carried out for all synthesized compounds.

Keywords: Piperidin-4-ones,pyrimidines, XRD, FT-IR, antifungal, antibacterial.

I. Introduction

A regular and orderly arrangement was always beautiful. Orderly arranged atoms,ions or molecules in crystalline solids provide the external beauty by their shiningappearance and colours. Crystals are still more attractive. The art of growing crystalsartificially had always been a fascinating job to human kind from time immemorial.Crystalline solids were widely used in our daily life. Today we are living in an electronicera. In the modern world, crystalline solids find tremendous applications in differentfields. Crystals of good quality, suitable size and perfection are required intechnological important in industries like electronic industries, computer technology, fiberoptic communications, semiconductors, solid state lasers and ferroelectric materials.Rapid advances in microelectronics, communication technologies and medicalinstrumentation, energy and space technologies are possible simply because of theremarkable progress in the fabrication of large and rather perfect crystals. High-efficiencylight emitting diodes for energy saving illumination and photovoltaic devices fortransforming solar and other radiation energy into electric power with high yield dependon significant advances in crystal growth.

Potassium dihydrogen phosphate (KDP), potassium titanyl phosphate(KTP), niobates of lithium and potassium ($\mathrm{LiNbO}_{3}, \mathrm{KNbOa}$) and L -arginine phosphate(LAP) exhibiting non-linear properties. The main use of Ga As is in thefield of microwave devices, high speed digital integrated circuits and as substrate forepitaxial layer growth to fabricate photonic and electronic devices. There is an increasingdemand for semi-insulating Ga As in mobile communication and digital telephony.Indium phosphide (InP) is used as the base material for optoelectronic components inlong distance fiber optic telecommunications. Oxide single crystals are used as the activecomponent in laser systems, substrates for GaN , silicon epitaxy, optical components andsubstrates for magnetic bubble devices. The halogenides are the most widely usedscintillation materials.The synthesis, structural determination and properties of many newmaterials would pave the way for various device applications in the modem world. Thepotential of 'crystal engineering' makes it possible to design new materials forapplications in different fields.But in other case iron complexes of biologically important ligands are sometimes less effective than free ligands. Since iron (III) ion is very flexible in adopting various coordination geometries in its complexes. The majority of known iron complexes have a central atom with a tetra, penta, and hexa coordination environment, leading to distorted tetrahetral, square planer, square pyramidal or octahetral geometries. This paper describes the synthesis and results of structural, thermal, spectroscopic studies and biological activity of eight new iron complexes: $\left[\mathrm{Fe}(\mathrm{DP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, $\quad[\mathrm{Fe}$ (DMP) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Fe}(\mathrm{DEP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Fe}(\mathrm{MDDP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ and $[\mathrm{Fe}(\mathrm{M}$ OTTP $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Fe}(\mathrm{MDTTP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Fe}(\right.$ DPTTP $\left.) \quad\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Fe}(\mathrm{DBCH})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ we focused our attention on the studies of the coordinative ability of heterocyclic N , O donor ligands such as (piperidin-4-ones,2, 6- diphenyl-3-methyl piperidin-3-methyl piperidin-

4-one,2, 6-diphenyl-3-ethyl piperidin-4-one, N-methyl-2,6-diphenyl-3,5-Dimethyl piperidin-4-one, 2-thioxo-6-Methyl-tetrahydro pyrimindin-4(1H)-one, 3-methyl-2,6-diphenyl-tetra hydro thiopyran-4-one, 2, 2^{1}-dimethyl-6phenyl tetrahydro thiopyran-4-one, Dibenzlidenecyclohexanone) and to investigate the influence of the obtained iron complexes on their antibacterial and antifungal activity.

II. Experimental Work

2.1 Material and Physical measurements

All chemicals were of reagents grade, purchased from commercial sources and used without further purification $(\mathrm{BDH}$ or Merck) was used. Molar conductance of the complexes were measured at room temperature ($30 \pm 2^{\circ} \mathrm{C}$) in DMF solvent ($\sim 10^{-3} \mathrm{M}$ solution). Magnetic moment of the complexes were recorded using VSM instrument. IR spectra of the complexes were recorded in the region 400-4000 cm^{-1} using a double beam Perkin Elmer FT-IR spectrometer employing KBr disc technique. The electronic spectra were recorded in DMSO solvent using Hitachi UV-Visible spectrophotometer in the range $200-1200 \mathrm{~nm}$. TGA and DTA studies were carried out with a shimandzu STA - 1500 instrument (heating rate $20^{\circ} \mathrm{C} /$ minute) in nitrogen atmosphere. Cyclic Voltammetry was carried out with an EG and G instrument model 270/250 research electrochemistry hardware and software using Tetrabutylammonium perchlorate as the supporting electrolyte. XRD measurements were carried out with a Jeol JDX 8030 X-ray diffractometer using CuK α radiation $(\lambda=1.54 \AA)$ instrument.

2.2 Preparation of ligands

2.2.1 Preparation ofpiperidin-4-ones (1)

The compound (1) was prepared by adopting the following procedure ${ }^{1-2}$. A mixture of acetone $(14.5 \mathrm{~g}$, 0.25 mol), benzaldehyde ($53 \mathrm{~g}, 0.5 \mathrm{~mol}$), ethanol (20 ml) and anhydrous ammonium acetate ($19.3 \mathrm{~g}, 0.25 \mathrm{~mol}$) were heated on a waterbath with constant shaking till the content became pale orange in colour. The flask was then cooled; ether $(125 \mathrm{ml})$ was added to the cold mixture and filtered. Addition of concentrated hydrochloric acid (13 ml) to the clear filterate afforded the hydrochloride of piperidone (m.pt $214-216^{\circ} \mathrm{C}$) (lit $216-217^{\circ} \mathrm{C}$), which was collected after washing several times with ethanol - ether (1:5).The base was liberated by suspending the hydrochloride in acetone and adding ammonia (1:1) till the hydrochloride dissolved and the free base (1) was generated by diluting with water, which was crystallized from ethanol. Yield: 90%, M.pt: $104-105^{\circ} \mathrm{C}$ (Lit $104-105^{\circ} \mathrm{C}$). (Anal. calc. \%) for ligand: C-81.2, H-6.77, N-4.9 Molecular weight 249.2. Found C-80.9, H-6.77, $\mathrm{N}-5.88$, Molecular weight 251. IR (cm^{-1}) : 3305(s), 3062(s), 2975(s), 1724(s), 1637(s), 1458(sd), 1078(b), 1002(s), 933(b), 821(b), 754(w), 698(b), 663(b), 611(s), 522(l).

2.2.2 Preparation of 2, 6- diphenyl-3-methyl piperidin-3-methyl piperidin-4-one (2)

To a solution of dry ammonium acetate $(9.2 \mathrm{~g}, 0.12 \mathrm{~mol})$ in glacial acetic acid $(12.5 \mathrm{~g}, 0.21 \mathrm{~mol})$, a mixture of benzaldehyde $(29 \mathrm{~g}, 0.25 \mathrm{~mol})$ and n -butanone $(9 \mathrm{~g}, 0.125 \mathrm{~mol})$ was added, then it was heated to boiling and allowed to stand at room temperature to overnight. Concentrated hydrochloric acid (13 ml) was added. The precipitated hydrochloride was collected and washed with ethanol-ether mixture (1:5). Crystallization of the pure hydrochloride, 16 g (40%) was done in ethanol-ether. M.Pt. 223-225 ${ }^{\circ} \mathrm{C}$ (Lit 224$226^{\circ} \mathrm{C}$). A suspension of the hydrochloride in acetone was treated with ammonia (1:1) and the free base was obtained by dilution with large quantity of water. The pure form of piperidin-4-one ${ }^{3-7}$ was crystallized from ethanol. M.pt $96^{\circ} \mathrm{C}$ (Lit $96-97^{\circ} \mathrm{C}$). (Anal. calc. \%) for ligand: C-81.48, H-7.12, N-5.27 Molecular weight 263. Found C-81.51, H-7.17, N-5.28, Molecular weight 265. IR (cm^{-1}) : 3294(s), 3032(s), 2960(s), 1701(s), 1607(s), 1497(sd), 1110(b), 1090(s), 930(b), 822(b), 750(w), 694(b), 663(b), 600(s), 524(l).

2.2.3 Preparation of 2,6-diphenyl-3-ethyl piperidin-4-one (3)

Condensation of 2-pentanone ($10.8 \mathrm{~g}, 0.125 \mathrm{~mol}$) with benzaldehyde $(29 \mathrm{~g}, 0.25 \mathrm{~mol})$ in the presence of dry ammonium acetate ($31 \mathrm{~g}, 0.4 \mathrm{~mol}$) in ethanol $(80 \mathrm{ml})$ was carried out by heating the mixture to boiling and cooled to overnight. The product was separated as a crystalline solid, washed and recrystalised. The free base was converted into hydrochloride by the addition of concentrated hydrochloric acid (50 ml) and washed with ethanol-ether mixture (1:5). The crystallized hydrochloride was then generated into free base by addition of (1:1) aqueous ammonia in an alcoholic solution and by dilution with water. The product was allowed to recrystallise from petroleum ether ${ }^{8-20}$.. Yield: 88%, M.Pt $94-95^{\circ} \mathrm{C}$ (Lit $92-93^{\circ} \mathrm{C}$).(Anal. calc. \%) for ligand: C80.7, H-7.47, N-4.98 Molecular weight 269.5. Found C-81.7, H-7.53, N-5.02, Molecular weight 279. IR (cm^{-1}) : 3199(s), 3028(s), 2974(s), 1706(s), 1629(s), 1460(sd), 1209(b), 1085(s), 954(b), 825(b), 757(w), 700(b), 638(b), 511(s), 2100(r).

Fe (III) complexes with hetero cyclic and cycloketones synthesis by mannich reaction it's Growth, ..

2.2.4 Preparation of N -methyl-2,6-diphenyl-3,5-Dimethyl piperidin-4-one (4)

To a solution of ammonium acetate ($11.5 \mathrm{~g}, 0.15 \mathrm{~mol}$) in ethanol (80 ml), a mixture of benzaldehyde $(20.2 \mathrm{~g}, 0.2 \mathrm{~mol})$ and diethyl ketone $(8.6 \mathrm{~g}, 0.1 \mathrm{~mol})$ were added. The mixture was heated to boiling and allowed to stand at room temperature. The product 3,5-dimethyl-2,6-diphenyl piperidin-4-one formed was filtered M.Pt: $131-133^{\circ} \mathrm{C}$ (lit: $131-133^{\circ} \mathrm{C}$). The corresponding 3,5 -dimethyl-2,6-diphenyl piperidin-4-one (0.04 mol) was dissolved in acetone (1.38 mol). To this solution, anhydrous potassium carbonate (0.02 mol) and methyl iodide (0.08 mol) were added. The mixture was refluxed over a water bath for about 3 hrs and most of the acetone was removed by distillation. 2,6-diphenyl-3,5,N-trimethyl piperidin-4-one was obtained by dilution with water and followed by treatment with aqueous ammonia (1:1). The product formed was filtered, washed with water, dried and crystallized from ethanol M.pt: 131-133 ${ }^{\circ} \mathrm{C}$.(Anal. calc. \%) for ligand: C-80.91, H-7.77, N-4.79 Molecular weight 291. Found C-81.91, H-4.85, N-4.78, Molecular weight 293. IR (cm^{-1}) : 3024(s), 2970(s), 1713(s), 1600(s), 1452(s), 1130(s), 1108(sd), 1070(b), 1027(s), 941(b), 836(b), 748(w), 698(b), 642(b), 619(s), 516(l).

2.2.5 General Preparation of 2-thioxo-6-Methyl-tetrahydro pyrimindin-4(1H)-one (5).

A solution of phenyl ethyl ammine $(1.21 \mathrm{~g})$, t-Butyl acetoacetate $(1.58 \mathrm{~g})$ was heated in the presence of O-xylene (5 ml) for 1 hr . Then the reaction mixture was poured over crushed ice and separated. The product 3-oxo-N(1)-phenyl butamide was filtered and recrystalized from ethanol. The product (1.025 g), Benzaldehyde $(0.1 \mathrm{~g})$, thiourea $(0.38 \mathrm{~g})$ dissolved in acetonitrile were reflexed in the presence of $\mathrm{CeCl}_{3} .7 \mathrm{H}_{2} \mathrm{O}(0.931 \mathrm{~g})$ as catalyzed for 6 hrs. The reaction mixture was poured over crushed ice and separated. The product was filtered and recrystalized from ethanol. Yield 50% melting $144^{\circ}-147^{\circ} \mathrm{C}$. (Anal. calc. \%) for ligand: C-41.6, $\mathrm{H}-5.50, \mathrm{~N}-$ 19.39 Molecular weight 143 . Found C-41.6, H-5.56, N-19.44, Molecular weight 144. IR (cm^{-1}) : 3114(s), 3085(s), 2931(s), 1701(s), 1635(s), 1483(sd), 1419(b), 1240(s), 1166(b), 1039(b), 748(w), 696(b), 669(b), 655(s), 511(l).

2.2.6 Preparation of 3-methyl-2,6-diphenyl-tetra hydro thiopyran-4-one (6).

Gaseous $\mathrm{H}_{2} \mathrm{~S}$ was passed into a boiling mixture of 1,4-pentadiene-3-one ($40 \mathrm{~g}, 0.29 \mathrm{~mol}$) and $\mathrm{CH}_{3} \mathrm{COONa} .3 \mathrm{H}_{2} \mathrm{O}(40 \mathrm{~g}, 0.29 \mathrm{~mol})$ in 400 ml of ethanol for 15 hrs . The reaction mixture was cooled to room temperature and kept at $0^{\circ} \mathrm{C}$ for 2 hrs . The residue was filtered and the alcoholic solution refridgenerated for three days. The white solid that formed was filtered, recrystallised from petroleum ether ($60-80^{\circ} \mathrm{C}$). Yield: 11 g (25%), M.Pt ($123-125^{\circ} \mathrm{C}$).(Anal. calc. \%) for ligand: C-76.57, H-6.37, S-10.35 Molecular weight 279. Found C76.69, H-6.38, S-11.35, Molecular weight 282. IR $\left(\mathrm{cm}^{-1}\right): 3158(\mathrm{~s}), 3052(\mathrm{~s}), 2925(\mathrm{~s}), 1701(\mathrm{~s}), 1629(\mathrm{~s}), 1492(\mathrm{sd})$, 1448(b), 1226(s), 1101(s), 1078(s), 1000(s), 933(b), 811(b), 740(w), 586(b), 516(b).

2.2.7 Preparation of 2, $\mathbf{2}^{1}$-dimethyl-6-phenyl tetrahydro thiopyran-4-one (7).

Into a boiling solution of sodium acetate trihydrate $(40 \mathrm{~g}, 0.29 \mathrm{~mol})$, 1-phenyl-5-methyl-1,4-hexadien-3one (1,4 - pentadien-3-one- $50 \mathrm{~g}, 0.268 \mathrm{~mol}$) and ethanol (300 ml) was added. Then $\mathrm{H}_{2} \mathrm{~S}$ gas was passed for 8 hrs . The reaction mixture was then poured into water $(100 \mathrm{ml})$, extracted with ether $(3 \times 200 \mathrm{ml})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solution was filtered and concentrated and the residue was distilled to yield $48.2 \mathrm{~g}(81.5 \%)$ of (7) ${ }^{21-30}$. The light yellow viscous oil solidified upon standing was recrystallised from petroleum ether $\left(60-80^{\circ} \mathrm{C}\right)$. Yield; 81.5% M.Pt: $45-46^{\circ} \mathrm{C}$ (Lit $42^{\circ} \mathrm{C}$).(Anal. calc. \%) for ligand: C-70.85, H-7.22, S-14.0 Molecular weight 217. Found C-70.91, H-7.27, S-14.55, Molecular weight 220. IR (cm ${ }^{-1}$) : 3025(s), 2960(s), 1708(s), 1600(s), 1494(sd), 1448(b), 1220(s), 1141(s), 1070(s), 1029(s), 931(b), 808(b), 761(w), 597(b), 533(b).

2.2.8 Preparation of Dibenzlidenecyclohexanone (8)

To the solution of cyclohexane, benzaldhyde $(53 \mathrm{~g}, 0.5 \mathrm{~m})$ was added. The reaction was catalysed by potassium fluoride supported on alumina. The solution mixture was stirred for 2 hrs . the solid formed was collected by filtration and crystallized from ethanol. Yield; 55%, M.Pt: $113-115^{\circ} \mathrm{C}$ (Lit $114^{\circ} \mathrm{C}$).(Anal. calc. \%) for ligand: C-88.71, H-6.62, Molecular weight 261. Found C-88.89, H-6.67, Molecular weight 270. IR (cm^{-1}) : 3058(s), 2931(s), 1660(s), 1606(s), 1433(sd), 1203(b), 1072(s), 1029(s), 939(b), 838(b), 771(w), 615(b), 518(l).

2.2.9 Preparation of Fe (III) Complexes with compounds (1-8).

The corresponding compounds (1-8) (0.004 mol) and ferric Nitrate $(0.002 \mathrm{~mol})$ was dissolved in ethanol separately, mixed the solutions and refluxed on a water bath for two hours at $35-40^{\circ} \mathrm{C}$. A colour change was observed indicating the complex formation; the complexes were separated out by evaporating the solvent, filtered, washed with ethanol, then with ether and dried in vacucum ${ }^{31}$.

III. Results and Discussion

Iron (III) complexes with ligands (1-8): All the Fe (III) complexes of ligands (1-8) were non-hygroscopic in nature and brown in colour. They are insoluble in benzene, carbontetrachloride, chloroform etc., but moderately soluble in methanol, DMF and DMSO. The analytical data and composition of the complexes are presented in Table 1.The molar mass of the complexes were determined by Rast method and are presented in Table 1. The values obtained were in good agreement with those calculated values (given in bracket) from the suggested formula of the complexes.

Table 1 Analytical Data of Fe (III) complexes with various Ligands (1-8)

Complex	Carbon \% Found (Cal)	Hydrogen \% Found (Cal)	Nitrogen \% Found (Cal)	Sulphur \% Found (Cal)	Metal Ion \% Found (Cal)	Nitrate Ion \% Found (Cal)	M.Wt Found (Cal)	$\begin{gathered} \mathrm{M} \cdot \mathrm{Pt} \\ { }^{\circ} \mathrm{C} \end{gathered}$
$\left.\left[\mathrm{Fe}(\mathrm{DP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right] \mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} 36.12 \\ (35.00) \end{gathered}$	$\begin{aligned} & 4.67 \\ & (4.63) \end{aligned}$	$\begin{aligned} & 9.97 \\ & (9.61) \end{aligned}$	-	$\begin{aligned} & 10.09 \\ & (9.58) \end{aligned}$	$\begin{gathered} 14.80 \\ (15.17) \end{gathered}$	$\begin{gathered} 591.91 \\ (582.84) \end{gathered}$	200-203
[$\left.\mathrm{Fe}(\mathrm{DMP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} 36.94 \\ (36.19) \end{gathered}$	$\begin{gathered} \hline 5.08 \\ (4.86) \end{gathered}$	$\begin{aligned} & \hline 10.11 \\ & (9.38) \end{aligned}$	-	$\begin{aligned} & 10.01 \\ & (9.36) \end{aligned}$	$\begin{gathered} \hline 14.42 \\ (14.73) \end{gathered}$	$\begin{array}{c\|} \hline 597.81 \\ (596.84) \end{array}$	190.192
[$\left.\mathrm{Fe}(\mathrm{DEP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} 37.91 \\ (37.33) \end{gathered}$	$\begin{gathered} 5.86 \\ (5.07) \end{gathered}$	$\begin{gathered} \hline 9.55 \\ (9.17) \end{gathered}$	-	$\begin{gathered} 9.47 \\ (9.14) \end{gathered}$	$\begin{gathered} \hline 13.92 \\ (14.31) \end{gathered}$	$\begin{aligned} & \hline 611.84 \\ & (610.84) \end{aligned}$	d230
[$\left.\mathrm{Fe}(\mathrm{MDDP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} 38.69 \\ (38.41) \end{gathered}$	$\begin{gathered} 5.35 \\ (5.28) \end{gathered}$	$\begin{gathered} 8.99 \\ (8.96) \end{gathered}$	-	$\begin{gathered} 9.19 \\ (8.94) \end{gathered}$	$\begin{gathered} \hline 13.86 \\ (14.31) \end{gathered}$	$\begin{gathered} 624.89 \\ (624.84) \end{gathered}$	d230
[$\left.\mathrm{Fe}(\mathrm{MOTTP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} 12.77 \\ (12.61) \end{gathered}$	$\begin{gathered} 3.84 \\ (3.78) \end{gathered}$	$\begin{gathered} 14.91 \\ (14.71) \end{gathered}$	$\begin{aligned} & 6.90 \\ & (6.72) \end{aligned}$	$\begin{gathered} 11.88 \\ (11.74) \end{gathered}$	$\begin{gathered} \hline 14.20 \\ (14.71) \end{gathered}$	$\begin{aligned} & 476.01 \\ & (475.84) \end{aligned}$	304
[$\left.\mathrm{Fe}(\mathrm{MDTTP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} 35.27 \\ (35.19) \end{gathered}$	$\begin{gathered} 4.99 \\ (4.56) \end{gathered}$	$\begin{gathered} 6.93 \\ (6.84) \end{gathered}$	$\begin{aligned} & 5.50 \\ & (5.2) \end{aligned}$	$\begin{gathered} 9.51 \\ (9.10) \end{gathered}$	$\begin{gathered} \hline 14.12 \\ (14.73) \end{gathered}$	$\begin{gathered} 614.06 \\ (613.84) \end{gathered}$	251-253
[$\left.\mathrm{Fe}(\mathrm{DPTTP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & \hline 28.31 \\ & (28.27) \end{aligned}$	$\begin{gathered} 4.87 \\ (4.71) \end{gathered}$	$\begin{gathered} 7.92 \\ (7.61) \end{gathered}$	$\begin{gathered} 5.99 \\ (5.80) \end{gathered}$	$\begin{gathered} 10.45 \\ (10.12) \end{gathered}$	$\begin{gathered} \hline 14.23 \\ (14.31) \end{gathered}$	$\begin{gathered} 552.07 \\ (551.84) \end{gathered}$	146-147
[$\left.\mathrm{Fe}(\mathrm{DBCH})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} 39.82 \\ (39.61) \end{gathered}$	$\begin{aligned} & 4.75 \\ & (4.62) \end{aligned}$	$\begin{aligned} & 7.15 \\ & (6.93) \end{aligned}$	-	$\begin{aligned} & \hline 9.44 \\ & (9.22) \end{aligned}$	$\begin{gathered} \hline 13.22 \\ (13.92) \end{gathered}$	$\begin{aligned} & \hline 606.01 \\ & (605.84) \end{aligned}$	215.216

3.1 Electrical Conductance

Molar conductance values of different Iron (III) complexes ($10^{-3} \mathrm{M}$) in DMF were given in Table 2 and these were in the range of $143-197 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. The values obtained were compared with standard values.

Table 2 Molar Conductance of Fe (III) Complexes with Ligands (1-8) ($\mathbf{o h m}^{-1} \mathbf{c m}^{-2} \mathrm{~mol}^{-1}$)

Complex	Molar conductance
$\left[\mathrm{Fe}\left(\mathrm{DP} \mathbf{m}^{-1} \mathbf{c m}^{2} \mathbf{~ m o l}^{-1}\right)\right.$	
$\left.\left[\mathrm{H} \mathrm{H}_{2}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	167
$\left[\mathrm{Fe}(\right.$ DMP $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	159
$\left[\mathrm{Fe}(\right.$ DEP $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	160
$\left[\mathrm{Fe}(\right.$ MDDP $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	192
$\left[\mathrm{Fe}(\right.$ MOTTP $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	143
$\left[\mathrm{Fe}(\right.$ MDTTP $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	197
$\left[\mathrm{Fe}\left(\right.\right.$ DPTTP $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	181
$\left[\mathrm{Fe}(\right.$ DBCH $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	159

3.2 Magnetic Behaviour

Magnetic moment values of different Iron (III) complexes with various alkyl substituted 2,6-diphenyl piperidin-4-ones, pyrans, pyrimidines and cyclohexanones as ligands were given in the Table 3. These values were very useful in establishing the geometry of the complexes. In high spin complexes, the magnetic moments were always very close to the spin only value of 5.9 BM because the ground state has no orbital angular momentum and there was no effective mechanism for introducing any substituents by coupling with excited states ${ }^{35-50}$. The low spin complexes, which usually have considerable orbital contributions to their moment at above room temperature, exhibit the values of $\sim 2.3 \mathrm{BM}$. The magnetic moment values of Fe (III) complexes of the ligands were found to be in the range 5.94 to 6.04 BM . These values were in good agreement with values reported for high spin octahedral $\mathrm{Fe}(\mathrm{III})$ complexes and they are diamagnetic in nature.

The magnetic moment values of Fe (III) complexes of the ligands were found to be in the range 5.6 5.9 BM which corresponds to five unpaired electrons as expected for Fe (III) complexes having no metal -

Fe (III) complexes with hetero cyclic and cycloketones synthesis by mannich reaction it's Growth, ..
metal interaction. These values were in good agreement with values reported for high spin octahedral complexes ${ }^{51-70}$ and this fact confirms an octahedral geometry for Fe (III) complexes.

Table 3Magnetic Moment of Fe (III) Complexes with Ligands (1-8)

Complex	Molar conductance (μ eff $)$
$\left[\mathrm{Fe}(\mathrm{DP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	5.8 BM
$\left[\mathrm{Fe}(\mathrm{DMP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	5.9 BM
$\left[\mathrm{Fe}(\right.$ DEP $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	5.8 BM
$\left[\mathrm{Fe}(\right.$ MDDP $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	5.6 BM
$\left[\mathrm{Fe}(\right.$ MOTTP $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	5.7 BM
$\left[\mathrm{Fe}(\right.$ MDTTP $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	5.9 BM
$\left[\mathrm{Fe}(\right.$ DPTTP $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	5.8 BM
$\left[\mathrm{Fe}(\right.$ DBCH $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	5.7 BM

3.3 Electronic Spectra

The electronic spectra of all the complexes were recorded in solid state. Since the colour of all the complexes were the same, the spectra of all were found to be the same in nature. The absorption frequencies were presented in Table 4. The electronic spectra of all the complexes exhibit three bands, all in visible region. These absorption frequencies were in accordance with those expected for an octahedral geometry. The absorption bands at the ranges 10141-13333, 16424-22727 and $25641-28571 \mathrm{~cm}^{-1}$ were assigned to the transitions of ${ }^{6} \mathrm{~A}_{1 \mathrm{~g}} \rightarrow{ }^{4} \mathrm{~T}_{1 \mathrm{~g}}(\mathrm{G})$, and ${ }^{6} \mathrm{~A}_{1 \mathrm{~g}} \rightarrow{ }^{4} \mathrm{~T}_{2 \mathrm{~g}}(\mathrm{G}),{ }^{6} \mathrm{~A}_{1 \mathrm{~g}} \rightarrow{ }^{4} \mathrm{~A}_{1 \mathrm{~g}}$ (G) respectively.

Table 4 Electronic spectra of Fe (III) complexes with ligands (1-8)

Complex	${ }^{\mathbf{6}} \mathbf{A}_{\mathbf{1 g}}(\mathbf{S}) \rightarrow{ }^{4} \mathbf{T}_{\mathbf{1 g}}\left(\mathbf{c m}^{\mathbf{- 1}}\right)$	${ }^{\mathbf{6}} \mathbf{A}_{\mathbf{1 g}}(\mathbf{S}) \rightarrow{ }^{4} \mathbf{T}_{\mathbf{2 g}}\left(\mathbf{c m}^{\mathbf{- 1}}\right)$	${ }^{\mathbf{6}} \mathbf{A}_{\mathbf{1 g}}(\mathbf{S}) \rightarrow{ }^{\mathbf{4}} \mathbf{A}_{\mathbf{1 g}}\left(\mathbf{c m}^{\mathbf{- 1}}\right)$	$\mathbf{C . T} \quad\left(\mathbf{c m}^{\mathbf{- 1}}\right)$
$\left[\mathrm{Fe}(\mathrm{DP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	10141	16474	26723	37174
$\left[\mathrm{Fe}(\mathrm{DMP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	10752	20000	25641	37123
$\left[\mathrm{Fe}(\mathrm{DEP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	11037	17829	25764	30769
$\left[\mathrm{Fe}(\mathrm{MDDP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	13333	22727	28320	37231
$\left[\mathrm{Fe}(\mathrm{MOTTP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	12345	17234	28571	35209
$\left[\mathrm{Fe}\left(\mathrm{MDTTP}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right.$	11652	17474	25723	37323
$\left[\mathrm{Fe}(\mathrm{DPTTP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	123323	17434	28571	37241
$\left[\mathrm{Fe}(\mathrm{DBCH})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	12223	16424	27777	37593

3.4 Infrared Spectra

IR spectral bands of the ligands and the corresponding Fe (III) complexes with their probable assignments were listed in Table 5and are shown in Fig1. The moderately strong bands around $3300 \mathrm{~cm}^{-1}$ for free ligands (1-5) were attributed to the stretching mode of $\mathrm{N}-\mathrm{H}$ vibration ${ }^{71-100}$. But in the complexes (Fig. 2), these bands exhibit a considerable downward shift of $30-50 \mathrm{~cm}^{-1}$. This spectral observation suggests that the coordination of the ligands to the metal ion takes place through the lone pair of secondary amine nitrogen atoms and sulphur of the ligands moiety. The observed decreasing trend of $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{S}$ stretching frequencies in accordance with ligands and its complexes confirms the coordination involvement of lone pair of electrons present in the tertiary amine nitrogen atom and sulphur atom of the ligands ${ }^{101-107}$. The existence of slightly increased or decreased absorption bands in the range $860-836 \mathrm{~cm}^{-1}$ in those complexes confirmed the noninvolvement of carbonyl oxygen in coordination. In the case of 2,6-dibenzylidene cyclohexanone ligand, the decrease in carbonyl stretching frequency from the normal frequency of $1720 \mathrm{~cm}^{-1}$ to $1660 \mathrm{~cm}^{-1}$ confirmed the coordination of carbonyl group along with benzylidene groups moiety which occurs due to conjugation effect. IR has been proved to be a valuable tool in the analysis of the stereochemistry of hetereocyclic compounds, pyrimidine, thianones and cycloheranone on the basis of a series of bands in the region $2850-2700 \mathrm{~cm}^{-1}$ called Bohlmann bonds. These bands have also been used in the assessment of conformational equilibria in piperidinesystems • It has been pointed out that the Bohlmann hands arise because of the interaction of ' P ' electrons of nitrogen with the antiperiplanar C-H bonds. Piperidin-4-ones, pyrimidine, thianones and cyclohexanones exhibit these bands in the same region indicating that the hydrogen of C-2 and C-6 carbon atoms were antiperiplanar with respect to the lone pair of electrons in nitrogen. The involvement of nitrogen in coordination was further confirmed by presence of new band in region $445-416 \mathrm{~cm}^{-1}$ due to $v(M-N)$.A broad IR band in the region $3452-3398 \mathrm{~cm}^{-1}$ and medium intensity band in the region $1625-1616 \mathrm{~cm}^{-1}$ which were attributed to $\mathrm{O}-\mathrm{H}$ stretching and $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bending vibrations respectively in all complexes of the ligand (1-8) confirmed the coordination of water molecules to the metal ion. The appearance of a new band in the region $546-515 \mathrm{~cm}^{-1}$ due to M-O bonding ${ }^{108}$ can also be considered as a supporting evidence for the coordination of water molecules to the metal ion.

Fig. 1 IR spectrum of Iron complex with ligands (1-8)
Table5Important IR Bands (in cm^{-1}) of Fe (III) complexes with ligands (1-8)

CPD	$\begin{aligned} & \gamma \mathrm{C}=\mathrm{O} \\ & \left(\mathbf{c m}^{-1}\right) \end{aligned}$	$\gamma^{*} \mathrm{C}=\mathrm{O}$ $\mathbf{c m}^{-1}$)	$\begin{aligned} & \gamma \mathrm{N}- \\ & \mathrm{H}\left(\mathbf{c m}^{-}\right. \\ & \mathrm{l}) \end{aligned}$	$\begin{aligned} & \gamma * \mathrm{~N}- \\ & \mathrm{H}\left(\mathbf{c m}^{-1}\right) \end{aligned}$	$\begin{aligned} & \gamma \mathrm{C}-\mathrm{S}- \\ & \mathrm{C}\left(\mathbf{c m}^{-1}\right) \end{aligned}$		$\gamma^{*} \mathrm{M}-$ $\mathrm{N}\left(\mathrm{cm}^{-1}\right)$	$\gamma^{*} \mathrm{M}-$ $\mathrm{O}\left(\mathrm{cm}^{-1}\right)$	$\begin{gathered} \gamma^{*} \mathrm{O}- \\ \mathrm{H}\left(\mathbf{c m}^{-1}\right) \end{gathered}$		$\gamma^{*} \mathrm{H}-\mathrm{O}-$ $\mathrm{H}\left(\mathrm{cm}^{-1}\right)$
1	1724	1726	3305	3568	-	-	823	503	3143	1199	1637
2	1703	1724	3298	3110	-	-	823	505	3124	1126	1606
3	1706	1713	3287	3189	-	-	824	554	3319	1145	1670
4	1722	1722	3346	3319	-	-	811	518	3145	1141	1637
5	1701	1722	3287	3250	-	-	844	546	3440	1133	1620
6	1701	1736	-	-	669	657	839	567	3384	-	1608
7	1708	1731	-	-	663	663	845	531	3336	-	1649
8	1718	1703	-	-	-	-	831	540	3442	-	1616

$\gamma=$ Ligand Frequency, γ^{*} - Complexes frequency

3.5 Thermal Analysis

TGA \& DTA curves of $\mathrm{Fe}(\mathrm{III})$ complexes were given in Fig.2-3. TGA and DTA data of $\left[\mathrm{Fe}(\mathrm{DP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Fe}(\mathrm{DMP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ were presented in the Table 6 and were treated as representative model for all Fe (III) ion complexes of ligands (1-8) to characterize the complexes and to study their thermal stability. The TGA and DTA of Fe(III) - DP complex (Fig. 2) and Fe(III) - DMP complex (Fig. 3) depict four decomposition steps in the range of $125-533^{\circ} \mathrm{C}$ and $118-531^{\circ} \mathrm{C}$ respectively with two endothermic and two exothermic changes.

Fig.3simultaneous TGA \& DTA of Iron complex $\left[\mathrm{Fe}(\mathrm{DP})\left(\mathrm{H}_{2} \mathrm{O}\right){ }_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

Fig. 3 simultaneous TGA \& DTA of Iron complex $\left[\mathrm{Fe}(\mathrm{DMP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

$\left[\mathrm{Fe}(\mathrm{DP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathbf{H}_{2} \mathrm{O}$

The first decomposition zone attributes to slow decomposition at $125-165^{\circ} \mathrm{C}$ with the corresponding weight loss of 9.06% (theoretical value 9.58) which was due to loss of one coordinated water molecule. The second decomposition with weight loss of 31.61 (theoretical value 32.60) at $165-445^{\circ} \mathrm{C}$ represents loss of the two nitrate ions. The thermal curve exhibits endothermic DTA peaks at $162^{\circ} \mathrm{C}$ and $593^{\circ} \mathrm{C}$ indicating the dehydration of the complex. The loss of mass at the temperature range $120^{\circ} \mathrm{C}-445^{\circ} \mathrm{C}$ corresponds to the stepwise loss of water molecules which were in coordination sphere. Since the dehydration takes place at above $100^{\circ} \mathrm{C}$, it was assumed that the water molecules were coordinated to the $\mathrm{Fe}(\mathrm{III})$ ion. Further decomposition occurs in the range $445^{\circ} \mathrm{C}-533^{\circ} \mathrm{C}$ with the elimination of one DP ligand with mass loss of 36.17% (theoretical value 36.40). Thereafter, a continuous mass loss was observed in the range of $533-603^{\circ} \mathrm{C}$ and the organic part of the complex was completely eliminated leading to the formation of metal oxide $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ with a mass loss of 76.95% (theoretical value 76.64). Sharp exothermic peaks were observed at $432^{\circ} \mathrm{C}$ and $513^{\circ} \mathrm{C}$ for the third and
the fourth stages of decomposition in DTA curve. The various processes occurring in the thermal changes of $\left[\mathrm{Fe}(\mathrm{DP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right] \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ were represented in the following sequence of reactions

$$
\begin{aligned}
& {\left[\mathrm{Fe}(\mathrm{DP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right] \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O} \quad 125-165^{\circ} \mathrm{C} \xrightarrow{\left[\mathrm{Fe}(\mathrm{DP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2}}}
\end{aligned}
$$

$\left[\mathrm{Fe}(\mathrm{DMP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

In this case $134^{\circ}-228^{\circ} \mathrm{C}, 228^{\circ}-325^{\circ} \mathrm{C}, 325-404^{\circ} \mathrm{C}$ and $404^{\circ}-519^{\circ} \mathrm{C}$, were the decomposition temperature ranges with four endothermic DTA peaks at $149^{\circ} \mathrm{C}, 228^{\circ} \mathrm{C}, 418^{\circ} \mathrm{C}$ and $561^{\circ} \mathrm{C}$ and two exothermic peaks at $166^{\circ} \mathrm{C}$ and $509^{\circ} \mathrm{C}$. The various decomposition processes occurring in the thermal changes of [$\left.\mathrm{Fe}(\mathrm{DMP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ were represented in the following sequence of reactions.

Considering the temperature at which the dehydration processes takes place and the way they proceed, one can determine whether water molecule was coordinated or not. ${ }^{110}$ According to Nicolaevet al. ${ }^{111}$ two coordinated water molecules were eliminated around the temperature range $161-197^{\circ} \mathrm{C}$ while the remaining one water molecule along with three nitrate ions was eliminated above $254^{\circ} \mathrm{C}$ for this complex.

The first and the second arrests in TG curves of these complexes show a mass loss corresponding to three water molecules. The DTA curve of Iron (III) complexes shows two sharp endothermic peaks at $199^{\circ} \mathrm{C}$ and $259^{\circ} \mathrm{C}$. Thus the thermal studies confirmed the presence of coordinated water molecules in Iron (III) complexes of DP and DMP ligands.

Table 6 Thermal Analysis of $\mathbf{F e}$ (III) Complexes

Complex	DTA Peak $\operatorname{Temp}\left({ }^{\circ} \mathrm{C}\right)$	Thermogravimetry		
		Temperature Range (${ }^{\circ} \mathrm{C}$)	Mass Loss \%	
			Observed	Calculated
[Fe (DP) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	162 (+)	125-165	9.06	9.58
	593 (+)	165-445	31.61	32.60
	200 (-)	445-533	36.17	36.40
	432 (-)	533-603	76.95	76.64
	513 (-)		96.37	96.91
[$\left.\mathrm{Fe}(\mathrm{DMP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	172 (+)	118-174	15.80	9.36
	252 (+)		23.72	19.74
	353 (+)	174-235	61.09	64.14
	576 (+)		77.63	76.21
	196 (-)		95.81	96.98
	287 (-)	235-348		
	513 (-)	348-531		

3.6 Cyclic Voltammeteric Studies

The cyclic voltammogram of the Iron complex comparises two reduction peaks at 0.16 and -0.88 V , which were shown in the Table 7 . The peak at 0.16 V probably corresponds to the reduction of Fe (III) -Fe (II) ${ }^{112}$. All the complexes were electro active only with respect to the metal center. In these redox couples, electrons were gained or lost from the $\mathrm{d} \pi$ level orbital of the coordinated metalcomplexes showed redox couples with peak to peak. Separation values $\left(\Delta \mathrm{E}_{\mathrm{P}}\right)$ ranging from 1.1 to 1.22 V revealing that this process was at best quasi-reversible. This was attributed to slow electron transfer and adsorption of the complexes onto the

Fe (III) complexes with hetero cyclic and cycloketones synthesis by mannich reaction it's Growth, ..
electrode surface. The first oxidation and followed by reduction was attributed to the oxidation and reduction of one of the Fe (III) centers to the corresponding mixed valence complex. Hence it was inferred from the electrochemical data that the present ligand system was ideally suitable for stabilizing the higher oxidation state of Fe (III). It has been observed that there was not much variation in the redox potentials due to the replacement of ligands and the nature of bridging ligand present in the complex.

Table 7 Cyclic voltammetric data of ligands (1-8) and Iron (III) Complex

Compounds	$\mathbf{E}_{\mathbf{P C}}(\mathbf{V})$	$\mathbf{E}_{\mathbf{P a}}(\mathbf{V})$	$\Delta \mathbf{E}_{\mathbf{P}}(\mathbf{V})$
DP	1.70	-8.27	1.1
DMP	1.66	-8.13	2.7
DEP	1.64	-7.81	2.4
MDDP	1.58	-8.11	1.5
MOTTP	1.62	-8.16	2.9
MDTTP	1.57	-7.85	2.8
DPTTP	2.00	-8.60	3.4
DBCH	1.96	-8.39	2.9
Iron (III) Complex	0.16	-0.88	1.22

3.7 X-ray (Powder) Diffraction Study

The X-ray (powder) diffraction photograph was recorded for the iron complex with ligands (1-8). For example $\left[\mathrm{Fe}(\mathrm{DP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ photograph reveals 21 reflextions with maximum reflection at 10.45 (20) with the spacing of $4.35 \AA$. All the lines in the powder photograph were indexed based on Ito's method. The Fe (III) complexes crystalises in a triclinic lattice. The agreement between observed and computed $\mathrm{Q}_{\mathrm{hkl}}$ (within 1%) was displayed in Tables 8-13. The direct cell dimensions calculated from the reciprocal cell dimensions were collected in Table 14 and Fig.4. The molecule is non-centro symmetric and it was a neutral monomer in which Fe(III) was octahedrally coordinated by two each of crystallographically independent N coordinated and NCS ligands.

The $-\mathrm{NH},-\mathrm{NCH}_{3}$ groups were quasilinear with 172.1° and 177.7° bonded to the Fe (III) ion through an angle of 168.33° and 167.85° respectively. Interestingly the respective N atoms of ligands were Cis- located whereas the same were trans-positioned in the reported Fe (III) complexes. The complex crystallizes in an orthorhombic type of lattice dimensions as, $\mathrm{a}=17.87, \mathrm{~b}=15.01$ and $\mathrm{C}=13.60$. On the basis of above studies, an octahedral geometry for complexes of (1-8) ligands have been proposed.

Table 8X-ray (Powder) Diffraction data for complex $\left[\mathrm{Fe}(\mathrm{DP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

\mathbf{D}	$\mathbf{2 \theta}$	$\mathbf{Q}_{\text {obs }}=\mathbf{1 / \mathbf { d } ^ { \mathbf { 2 } }}$	$\mathbf{d - s p a c i n g}[\mathbf{A}]$	Rel. Int. [\%]	$\mathbf{Q}_{\text {cal }}$	Index $(\mathbf{h} \mathbf{k ~ I})$
10.4577	4.35	0.8029	8.45934	1.34	0.004275	Q_{100}
14.2312	107.61	0.2007	6.22366	33.24	0.005692	Q_{010}
15.2115	169.61	0.1338	5.82472	52.39	0.006290	Q_{001}
18.7535	92.47	0.2676	4.73183	28.56	0.007271	Q_{101}
19.3590	323.66	0.1506	4.58519	99.98	0.010919	Q_{111}
20.2240	89.09	0.3346	4.39099	27.52	0.015486	Q_{101}
20.5831	53.15	0.1673	4.31517	16.42	0.019662	Q_{102}
21.1287	18.91	0.2676	4.20496	5.84	0.031702	Q_{301}
22.7838	25.00	0.2676	3.90310	7.72	0.031592	Q_{122}
24.2408	234.85	0.1673	3.67171	72.54	0.030193	Q_{310}
25.3024	32.06	0.1840	3.52001	9.90	0.034153	Q_{122}
25.7276	240.59	0.2175	3.46280	74.32	0.038131	Q_{310}
26.4881	323.74	0.3011	3.36507	100.00	0.040385	Q_{122}
28.9476	74.06	0.1673	3.08452	22.88	0.052834	Q_{130}
31.7033	46.08	0.2676	2.82242	14.23	0.056877	Q_{230}
32.5839	31.51	0.2676	2.74813	9.73	0.06248	Q_{132}
33.5926	44.70	0.1673	2.66788	13.81	0.07864	Q_{112}
34.4296	24.80	0.2007	2.60491	7.66	0.08148	Q_{130}
39.2928	36.60	0.1673	2.29299	11.31	0.08123	Q_{202}
40.1147	15.70	0.3346	2.24789	4.85	0.08815	Q_{240}
41.6153	21.23	0.4015	2.17023	6.56	0.08858	Q_{204}
43.9759	45.43	0.2856	2.05736	14.03	0.09574	Q_{040}

Fe (III) complexes with hetero cyclic and cycloketones synthesis by mannich reaction it's Growth, ..
Table 9X-ray (Powder) Diffraction data for complex $\left[\mathrm{Fe}(\mathrm{DMP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

\mathbf{D}	$\mathbf{2 \theta}$	$\mathbf{Q}_{\text {obs }}=\mathbf{1 / d}^{\mathbf{2}}$	$\mathbf{d - s p a c i n g}[\mathbf{A}]$	Rel. Int. [\%]	$\mathbf{Q}_{\text {cal }}$	Index $(\mathbf{h ~ k ~ l) ~}$
14.5545	118.37	0.1840	6.08616	84.50	0.004455	Q_{100}
15.7005	24.90	0.3346	5.64439	17.77	0.005092	Q_{010}
16.0934	60.75	0.1673	5.50746	43.37	0.006230	Q_{001}
17.5839	30.56	0.2676	5.04384	21.81	0.007201	Q_{101}
18.5014	140.08	0.2007	4.79572	100.00	0.010829	Q_{111}
19.7847	61.75	0.2676	4.48747	44.08	0.015436	Q_{101}
21.4257	55.23	0.2676	4.14733	39.43	0.019662	Q_{102}
22.4537	56.61	0.5353	3.95974	40.41	0.031752	Q_{301}
23.6823	39.01	0.2676	3.75702	27.85	0.031542	Q_{122}
24.6533	13.81	0.2676	3.61120	9.86	0.033193	Q_{310}
25.3129	23.49	0.2676	3.51858	16.77	0.035183	Q_{122}
26.6513	41.32	0.2007	3.34484	29.49	0.038171	Q_{310}
27.6298	9.88	0.2007	3.22857	7.05	0.039115	Q_{122}
28.1870	13.40	0.2007	3.16600	9.57	0.052284	Q_{130}
29.3753	18.46	0.2007	3.04058	13.18	0.051577	Q_{230}
30.3763	16.03	0.3011	2.94262	11.44	0.062448	Q_{132}

Table 10X-ray (Powder) Diffraction data for complex $\left[\mathrm{Fe}(\mathrm{DEP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

\mathbf{D}	$\mathbf{2 \theta}$	$\mathbf{Q}_{\text {obs }}=\mathbf{1 / \mathbf { d } ^ { \mathbf { 2 } }}$	$\mathbf{d - s p a c i n g}[\mathbf{A}]$	Rel. Int. [\%]	$\mathbf{Q}_{\text {cal }}$	Index $(\mathbf{h ~ k ~ l) ~}$
16.7965	19.10	0.8160	5.27413	1.67	0.040385	Q_{100}
19.4589	207.57	0.1632	4.55809	18.20	0.052834	Q_{010}
21.4102	581.44	0.0816	4.14687	50.98	0.056877	Q_{001}
22.1630	377.11	0.1632	4.00769	33.07	0.06248	Q_{101}
22.7726	1140.49	0.0816	3.90177	100.00	0.07864	Q_{111}
23.7371	71.99	0.6528	3.74538	6.31	0.08148	Q_{101}
25.8859	11.62	0.9792	3.43913	1.02	0.08123	Q_{102}
32.6860	515.89	0.0816	2.73750	45.23	0.08815	Q_{301}
58.1748	318.03	0.0816	1.58451	27.89	0.08858	Q_{122}
68.4318	179.94	0.1020	1.36988	15.78	0.09574	Q_{310}

Table 11 X-ray Diffraction data for complex $\left[\mathrm{Fe}(\mathrm{MDDP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

\mathbf{D}	$\mathbf{2 \theta}$	$\mathbf{Q}_{\text {obs }}=\mathbf{1 / \mathbf { d } ^ { \mathbf { 2 } }}$	$\mathbf{d - s p a c i n g}[\mathbf{A}]$	Rel. Int. $[\mathbf{\%}]$	$\mathbf{Q}_{\text {cal }}$	Index $(\mathbf{h} \mathbf{~ k ~ I})$
10.0926	322.09	0.0612	8.75727	100.00	0.004945	Q_{100}
10.2337	297.64	0.1632	8.63688	92.41	0.005147	Q_{010}
14.1925	96.67	0.1836	6.23541	30.01	0.006010	Q_{001}
14.7278	44.67	0.1428	6.00996	13.87	0.007211	Q_{101}
20.0838	34.02	0.1428	4.41766	10.56	0.010809	Q_{111}
20.5553	20.32	0.2040	4.31737	6.31	0.015486	Q_{101}
22.0776	98.86	0.1836	4.02301	30.69	0.019664	Q_{102}
22.5911	59.77	0.1428	3.93271	18.56	0.031707	Q_{301}
23.2688	62.39	0.2244	3.81968	19.37	0.031591	Q_{122}
25.7090	13.55	0.1224	3.46239	4.21	0.033194	Q_{310}
26.0507	27.41	0.1224	3.41775	8.51	0.035853	Q_{122}
29.6676	22.64	0.1836	3.00879	7.03	0.029131	Q_{310}
30.5415	12.43	0.4896	2.92466	3.86	0.039385	Q_{122}
36.6541	16.30	0.1224	2.44974	5.06	0.052834	Q_{130}
37.2178	47.91	0.1428	2.41393	14.87	0.056877	Q_{230}

Table 12X-ray (Powder) Diffraction data for complex [Fe(MDTTP)($\left.\left.\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

\mathbf{D}	$\mathbf{2 \theta}$	$\mathbf{Q}_{\text {obs }}=\mathbf{1 / \mathbf { d } ^ { \mathbf { 2 } }}$	\mathbf{d}-spacing [£]	Rel. Int. [\%]	$\mathbf{Q}_{\text {cal }}$	Index $(\mathbf{h ~ k ~ I})$
17.2666	18.33	0.2007	5.13581	16.71	0.034475	Q_{100}
21.0477	89.97	0.1171	4.22097	81.99	0.015092	Q_{010}
22.8303	8.41	0.4015	3.89526	7.67	0.006270	Q_{001}
25.5553	70.55	0.1338	3.48575	64.29	0.067211	Q_{101}
26.3127	109.74	0.1506	3.38711	100.00	0.010810	Q_{111}
28.4717	11.02	0.3346	3.13498	10.05	0.015486	Q_{101}
34.3290	37.80	0.1338	2.61232	34.45	0.020662	Q_{102}
48.5141	52.10	0.2040	1.87498	47.48	0.031540	Q_{301}

Fe (III) complexes with hetero cyclic and cycloketones synthesis by mannich reaction it's Growth, ..
Table 13 X-ray (P) Diffraction data for complex $\left[\mathrm{Fe}(\mathrm{DBCH})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

\mathbf{D}	$\mathbf{2 \theta}$	$\mathbf{Q}_{\text {obs }}=\mathbf{1 / d}^{\mathbf{2}}$	$\mathbf{d - s p a c i n g}[\mathbf{\AA}]$	Rel. Int. [\%]	$\mathbf{Q}_{\text {cal }}$	Index $(\mathbf{h ~ k ~ l)}$
10.3198	94.80	0.2448	8.56499	3.81	0.003474	Q_{100}
14.1945	530.90	0.0816	6.23450	21.35	0.005122	Q_{010}
17.9111	166.83	0.2448	4.94835	6.71	0.005270	Q_{001}
19.3148	2486.19	0.1224	4.59177	100.00	0.007211	Q_{101}
20.6503	205.98	0.1632	4.29773	8.29	0.011809	Q_{111}
20.9849	139.88	0.1632	4.22995	5.63	0.005486	Q_{101}
22.0499	70.94	0.3264	4.02800	2.85	0.019662	Q_{102}
23.6491	533.49	0.0816	3.75910	21.46	0.021702	Q_{301}
26.4230	605.09	0.0816	3.37043	24.34	0.029582	Q_{122}
29.1142	80.02	0.1020	3.06471	3.22	0.033193	Q_{310}
39.3588	108.94	0.1632	2.28741	4.38	0.034153	Q_{122}

Table 14 Crystal Parameters of $\left[\mathrm{Fe}(\mathrm{DP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

Cell length (\AA)	Angular parameters $\left({ }^{\circ}\right)$	Cell Volume $\left(\AA \mathbf{A}^{\mathbf{8}}{ }^{\mathbf{3}}\right.$
$\mathrm{a}=17.87$	$\alpha=112.1$	2975.57
$\mathrm{~b}=15.01$	$\beta=147.7$	
$\mathrm{c}=13.60$	$\gamma=188.0$	

Fig. 5 XRD (Powder) Crystallography with Fe(III) complexes with ligand (1-8)

3.8 Antibacterial and antifungal study

In this work and many previous reports, the coordination of ligands to metal improves Antibacterial and antifungal activity. The overtones concept and tweedys chelation theory were used for explanation of increased activity of the complexes respect to parent ligands. As mentioned earlier, the in-built spiro carbocyclic or heterocylic systems in a ring increases the biological potency, with the systems having smaller rings. On this basis, the synthesized compounds were evaluated for their in-vitro antibacterial and antifungal activities.

The evaluations were carried out using "paper disc diffusion method" for antibacterial activity and the "Turbidity method" for antifungal activity. All the synthesized compounds (1-8) were evaluated for their invitro antibacterial activity against the pathogenic micro-organisms, Escherichia coli (gram-positive) and Staphylococcus aureus (gram-negative) using paper disc diffusion method.Sterilized 10 mm whatman No. 1 paper discs were taken, impregnated with 0.1 ml of the sample solutions ($200 \mu \mathrm{~g}$ in DMF) and placed in the petridish containing $25-30 \mathrm{ml}$ of nutrient agar inoculated with 18-24hrs test culture. Incubation was carried out at $37^{\circ} \mathrm{C}$ for 24 hrs and the zone of inhibition was measured in mm . All the experiments were done in triplicate. Phenol was taken as standard.

Antifungal activity of the compounds were determined in-vitro against Aspergillus Niger adopting the turbidity method. In this method, 0.1 ml of the sample solutions ($200 \mu \mathrm{~g}$ in DMF) in 5 ml sterilized fungi medium were treated with 3-4 drops of 48 hrs old culture in a test tube. The test tubes were then shaken well and incubated for 48 hrs at $37^{\circ} \mathrm{C}$. The extent of inhibition was determined by measuring the decrease in turbidity interms of $\%$ transmission at 660μ. Salicyclic acid was taken as standard. Antibacterial and antifungal activities of all the compounds in-vitro against the pathogenic micro-organisms Escherichia coli (gram activity) with solvent control: DMF (positive), staphylococcus aureus (gram-negative) and Asperigillus Niger fungal are given in Table 15.

Fe (III) complexes with hetero cyclic and cycloketones synthesis by mannich reaction it's Growth, ..
Table 15Result of the Antibacterial and Antifungal activities with various alkyl substituted 2,6-diphenyl piperidin-4-ones, pyrimidine, thianones and cyclohexanone

Compounds	Antibacterial Activity		Antifungal Activity
	E.C	S.A	A.N
1	-	-	+
2	+	+	++
3	+	+	++
4	+	+	++
5	+	+	++
6	+	+	++
7	+	+	++
8	-	-	+

IV. Conclusion

The Fe(III) complexes were non-hygroscopic in nature and brown in colour. They were moderately soluble in methanol, DMF and DMSO. The general formula assigned to the complexes were $\left[\mathrm{Fe}(\mathrm{L})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{NO}_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$. The conductance values $143-197 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ indicate that these complexes were 1:2 electrolytes. The molecular mass determined by Rast method also support the $1: 2$ electrolyte behavior of the complexes. A comparison of IR spectra of the ligands and the corresponding complexes confirm the involvement of lone pair of electrons in ring nitrogen / sulphur atom (1-7) and the benzylidene carbonyl moiety (8) in cooridnation and monodentate nature of the ligands.The thermal curves (TGA and DTA) of the complexes indicate the presence of four water molecules and one nitrate ion along with a ligand in coordination sphere and one nitrate ion and one water molecule in outersphere of the complexes. The magnetic moment values of the complexes ($5.6-5.9 \mathrm{BM}$) indicate that the metal ion contains five unpaired electrons with no metal-metal bonding. The appearance of three strong absorption bands in visible region in electronic spectra reveals that the complexes were in octahedral geometry. Cyclic voltammetric studies show that the metal ion of the complexes were in easy reversibility. XRD shows that all the complexes were in triclinic lattice arrangement.

References

[^0][38]. A. Mahoui, J. Lappasset, D. G. Sannikov, J. Morret, P. Saint Gregoire, Zeitschriftfuer PhysikB: Condensed Matter, 99(4), 543-549 (1996).
[39]. A. U. Sheleg and A. JA. Yachkouski, Ferroelectrics, 285, 163-166 (2003).
[40]. K. Gesi, J. Phys. Soc. Jprn 51, No. 1, 203-207 (1982).
[41]. K. Hasabe, H. Mashiyama, S. Tanisaki and K. Gesi, J. Phys. Soc. Jpn. 51, No. 41045-1046 (1982).
[42]. M. Wada, M. Suzuki, A. Sawada, Y. Ishibashi and K.Gesi, J. Phys. Soc. Jpn. 50, No. 6, 1813-1814(1981).
[43]. Y. Uesu, S. Suzuki and A. Sawada, Ferroelectrics, 137,145-151 (1992).
[44]. R. P. Rathore, T. Chakraborty and A.L. Verma, Phase Trans. 42,155-167 (1993).
[45]. J. Etxebarria, T. Breezewski, J. M. Ezpeleta and A. R. Amaiz, Phase Trans. 29,115-122(1990).
[46]. A. Mahoui, J. Lapasset, J. Moret and P.S. Gregoire, ActaCryst. C52, 2671-2674 (1996).
[47]. M. Iwata and Y. Ishibashi, J. Phys. Soc. Jpn. 60, No. 10, 3245-3248 (1991).
[48]. J. T. Shia, L. H. Lin, Y. J. Tsu, Chinese Journal ofphys.39(4), 344-348 (2001)
[49]. O. Caetano, M. Lopez, A. Mahoui J. Lapasset, J. Moret, T. Assih andP. Saint-Gregoire, Ferroelectric Letters, 19, 69-74 (1995).
[50]. M. Kahrizi and M. O. Steinitz, Solid State Commun. 70, No. 6, 599-603 (1989).
[51]. S. Dacko and Z. Czapla, Ferroelectrics, 140,277-280 (1993).
[52]. M. Couzi, A. Daoud and R. Perret, Proc. ofthe International Conf. on LatticeDynamics, 714-717(1978).
[53]. R. Blinc, Physical Rev. B 17, No. 8, 3409-3420 (1978).
[54]. Ruiz Larrea, A. Lopez Echarri and M. J. Tello, J. Phys. C 14, No. 22, 3171-3176(1981).
[55]. J. L. Burris, L. Tereshchenko, P. Kabos, H. D. Hochheiner, Y. Luspin,C. R. Evenson, P. K. Dorhout, J.Phys. Chem. Solids, 61(5), 719-726 (2000).
[56]. H. Nakayama, N. Nakamura and H. Chihara, Bull. Chem. Soc. Jpn. 60, 99-103 (1987).58. Etxebarria, J. M. Perez-Mato and G. Madariaga, Phys. Rev. B 46, 2764-2774 (1992).
[57]. R. Puget, M. Jannin, R. Perret, L. Godeffoy and G. Godefroy, Ferroelectrics, 107,229-234 (1990).
[58]. N. Narsimlu and K. Sivakumar, Crys. Res. Technol. 37, No. 9,945-949 (2002).
[59]. A. P. Roy, V. C. Sahni, M. L. Bansal, Proc. Int. Conf. Raman Spectrosc. 376-377 (1978).
[60]. A. P. Roy, V. C. Sahni, M. L. Bansal, J. Phys. and Chem. of Solids 40(4),289-292 (1979).
[61]. S. N. Bhakay- Tamhane, A. Sequeira, R. Chidambaram, ActaCryst. B36(12), 2925-2929(1980).
[62]. D. Roger, R. Marcus, W. G. Haije, 0. P. M. Soonieus, W. J. A. Maaskant, Inorg.Chem. 27(4), 614-620 (1988).
[63]. K. Gesi, Ferroelectrics, 159, 43-48 (1994).
[64]. T. Asahi, K. Hasebe and K. Gesi, ActaCryst. C46 (11), 2252-2253 (1990).
[65]. J. M. Igartua, G. Zamalloa, I. Larrea, M. Couzi, A. Echarri and T. Breczewski,J. Thermal Analysis, 41(6), 1211-1215 (1994).
[66]. T. Asahi, K. Hasebe and K. Gesi, ActaCryst. C47, 1208-1210 (1991).
[67]. K. Gesi, J. Phys. Soc. Jpn. 59,432-434 (1990).
[68]. K. Gesi, Phase Trans. 56,211-216 (1996).
[69]. M. N. Braud, M. Couzi, N. B. Chanh, A. Meresse, C. Hauw and A. GomezCuevas, Ferroelectrics, 104,367-372 (1990).
[70]. K. Gesi, Ferroelectrics, 137(1-4), 209-223 (1992).
[71]. G. Zamalloa, V. Rodriguez, M. Couzi, F. Sayetat, P. Fertey, J.Phys. Condens.Matter, 9(4), 937-949 (1997).
[72]. S. Osman, D. Michel, I. Czapla and W. D. Hoffmann, J.Phys. Condens.Matter, 10(11), 2465-2476 (1998).
[73]. Peral, G. Madariaga, A. Etzebarria and T. Breczewski, ActaCryst. B56 (2),215-225 (2000).
[74]. J. Hernandez, G. Zamalloa, A. Echarri, I. Larrea, T. Breczewski and M. J. Tello,J. Phys. Condens. Matter, 9, No. 16, 3399-3415 (1997).
[75]. V. I. Vaidanich, V. I. Mokrii, 1.1. Polovinko, V. B. Kapustyanik andS.A. Sveleba, Ukrains 'kiiFizichniiZhurnal40(11-12), 11891192 (1995).
[76]. T. Breczewski, I. Peral and G. Madariaga, European Physical Journal B -Condens. Matter Phys. 19(2), 171-176 (2001).
[77]. K. Gesi, J. Phys. Soc. Jpn. 65(5), 1297-1301 (1996).
[78]. A. Ben Salah, J. W. Bats, R. Kalus, H. Fuess and A. Daoud, Z. anorg. allg.Chem.493, 178-186 (1982).
[79]. H. Fuess, M. Korfer, H. Arend and R. Kind, Solid State Commun. 56, No. 1,137-139(1985).
[80]. A. Ben Salah, A. Daoud, J. Miane and J. Ravez, Revue de ChimieMinerale21(1), 34- 44(1984).
[81]. Y. Kawamura, H. Mashiyama and K. Hasebe, J. Phys. Soc. Jpn. 71,No. 7,1694- 1697(2002).
[82]. K. Morishita, N. Nakano, T. Kato, K. Iio and T. Mitsui, Ferroelectrics,217(1-4), 207-215 (1998).
[83]. A. Kojima, Y. Nishibori, Y. Maeda, N, Inoue, Y. Yoshimura, N. Tokunaga,H. Iwasaki and K. Tozaki, Ferroelectrics, 284, 113-120 (2003).
[84]. Z. Brosset, Z. anorg. allg. Chem. 235,139 (1937).
[85]. H. Z. Cummins, Phys. Reports, 185,211 (1990).
[86]. J. A. Desilva, F. E. O. Melo, J. M. Filho, F. F. Germano, J. E. Horeira, J.Phys. C, 19, 3797 (1986).
[87]. T. Matsuo, M. Tatsumi, H. Suga and S. Seki, Solid State Commun. 13, 1829 (1973).
[88]. S. Banerjee, D. K. Nath and B. K. Chaudhuri, Phys. Rev. B. 25, 1883 (1982).
[89]. B. K. Chaudhuri, Solid State Commun. 16,767 (1975).
[90]. K. Chaudhuri and B. K. Chaudhuri, J. Mag. Mat. 31, 1127 (1983).
[91]. K. Okada, Phys. Rev. 164, 683 (1967).
[92]. N. G. Personage and L. A. K. Staveley, 'Disorder in Crystals’, ClarendonPress, Oxford
[93]. S. AsathBahadur, V. Ramakrishnan and R. K. Rajaram, Bull. Mater. Sci. 13,161 (1990).
[94]. K. Byrappa, M. A. Kandhaswamy and V. Srinivasan, Ind. J. Phys. 72 A, 259 (1998).97. H. H. Levy, ActaCryst. B 34, 2290 (1978).
[95]. J. A. Desilva, F. A. Melo, J. Mendes, F. A. Germano and J. E. Moriera, J. Phys. C,19, 3797 (1986).
[96]. V. K. Wadhawan, Current Sci. 47, 334 (1978).
[97]. V. K. Wadhawan, Phase Trans. 3, 3 (1982).
[98]. G. Banerjee, A. K. Ghosh, P. K. Dey and B. K. Chaudhuri, Phase Tran. 42,231- 240(1993).
[99]. S. AsathBahadur, V. Ramakrishnan and R. K. Rajaram, Bull. Mater. Sci. 13,No. 3,161- 164(1990).
[100]. K. Byrappa, M. A. Kandhaswamy and V. Srinivasan, Cryst. Res. Technol. 34, 843 (1999).

[^0]: [1]. A. J. Wolthuis, W. J. Huiskamp, L. J. De Jongh and R. L. Carlin, Phys
 [2]. M. Iwata and Y. Ishibashi, J. Phys. Soc. Jpn. 60, 3245-3248 (1991).
 [3]. Z. Czapla and S. Dacko, Ferroelectrics, 125, 17-22 (1992).
 [4]. M. Kahrizi and M. O. Steinitz, Solid State Commun. 74, 333-335 (1990).
 [5]. K. Gesi, Ferroelectrics, 159, 49 -54 (1994).
 [6]. D. Axe, M. Iizumi and G. Shrane, Incommensurate Phases in Dielectrics 2. Materials1-48 (1986).
 [7]. Y. Ishibashi, Incommensurate Phases in Dielectrics 2. Materials, 49-69 (1986).
 [8]. Y.Chen and M. B. Walker, Phys. Rev. B 43, 5634 (1991).
 [9]. G. Madariaga, F. J. Zuniga, J. M. Perez-Mato and M. J. Tello, ActaCryst. Sec. B: 43, 356- 368 (1987).
 [10]. D. Young Kim, S. Kwun and J. Gul Yoon Physical Review B, 57, No. 18,11173-11177(1998).11. E. Makovicky and B. G. Hyde, Structure and bonding 46, 101 (1981).
 [11]. V. Heine and J. D. McConnel, J. Phys. C. 17, 1199 (1984).
 [12]. H. I. Cummins, Physics Reports, 185,211 (1990).
 [13]. H. Kasano, M. Takesada and H. Mashiyama, J. Phys. Soc. Jpn. 61, No. 5,1580- 1584(1992).
 [14]. K. Gesi, J. Phys. Soc. Jpn. 53, 3850 (1984).
 [15]. F. Sumuzu and M.Takashige, J. Phys. Soc. Jpn. 67, No. 7, 2555-2556 (1998).
 [16]. K. Hasebe, T. Asahi, H. Kasano, H. Mashiyama and S. Kishimoto, J. Phys. Soc.Jpn. 63, No.9, 3340-3343(1994).
 [17]. M. Takesada and H. Mashiyama, J. Phys. Soc. Jpn. 63, No.
 7, 2618-2626 (1993).
 [18]. V. Rodriguez, M. Couzi, A. Gomez-Cuevas and J. P. Chaminade, Phase Trans.31,75- 91,(1991).
 [19]. V. Dvorak and R. Kind, Phys. Status Solidi(b), 107, K109 (1981).
 [20]. K. Hasabe, H. Mashiyama and S. Tansaki, J. Phys. Soc.Jpn. 51, 2049 (1982).
 [21]. M. Fukui, R. Abe and T. Tsuchda, J. Phys. Soc. Jpn. 52, 4369 (1983).
 [22]. K. Gesi, J. Phys. Soc. Jpn. 51,203 (1982).
 [23]. S. Ganguly, K. J. Rao, and C. N. R. Rao, SpectrochimicaActa, 41A, No. 12,307- 314(1985).
 [24]. V. Kapustianik, S. Sveleba, S. Dacko, V. Vaidanych and V. Mokryi, PhaseTrans. 54,131-136(1995).
 [25]. S. Sawada, Y. Shiroishi, A. Yamamoto, M. Takashige and M. Mantsuo, Phys.Lett. 67A, 56 (1978).
 [26]. H. Mashiyama, K. Hasebe and S. Tanisaki, J. Phys. Soc. Jpn. 49, Suppl. B. 92 (1980).
 [27]. K. Hasebe, H. Mashiyama and S. Tanisaki, J. Phys. Soc. Jpn. 51, 2049 (1982).
 [28]. S. Sawada, T. Yamaguchi, H. Suzuki and F. Shimizu, J. Phys. Soc. Jpn. 54, No. 8,3136- 3142(1985).
 [29]. K. Horiuchi, physica status solidi(A), 201, No. 4 723-726 (2004).
 [30]. T. Asahi, K. Hasebe and K. Gesi, J. Phys. Soc. Jpn. 61, No. 5,1590-1597 (1992).
 [31]. K. Tanaka, T. Shimada, Y. Nishihata and A. Sawada, J. Phys. Soc. Jpn. 64,No.l, 146- 154(1995).
 [32]. S. Sawada, T. Yamaguchi, H. Suzuki and F. Shimizu, J. Phys. Soc. Jpn. 54,No. 8,3129- 3135 (1985).
 [33]. A. Sawada, J. Sugiyama, M. Wada and Y. Ishibashi, J. Phys. Soc. Jpn. 48, No. 5,1773- 1776 (1980).
 [34]. J. S. Park, H. Y. Ahn, S. E. Park, Y. C. Cho and Se-Young Jeong, Ferroelectrics,240, 125- 132 (2000).
 [35]. K. Gesi, J. Phys. Soc. Jpn. 65, No. 7, 1963-1966 (1996).
 [36]. B. Martin, J. M. Pastor, F. Rull and J. A De Saja, Solid State Commun. 44,No. 7, 1047- 1048(1982).
 [37]. K. Gesi, Ferroelectrics, 285,139-150 (2003).

