The Declining Middle Zone Aquifer of the Southwestern Chad Basin in the last Millenium.

¹A. K. Yusuf, I. B. Goni², M. Hassan³

1Centre For Arid Zone Studies, University of Maiduguri. ²Department of Geology, University of Maiduguri ³Department of Physics, University of Maiduguri

Abstract: The Middle zone aquifer is the most extensive and most widely exploited of the three well known aquifers of the Chad Formation. This aquifer is confined by variable thickness of argillaceous deposits of 100 – 150 m thick. This led to the variable heads in boreholes drilled to this zone. Boreholes drilled from 1960 to 2010 shows a drastic decline in piezometric heads. The piezometric heads of over 20 m above ground level (agl) observed in 1960 to 1.2 m agl in 2010 have declined over the last half century. In the present work the heads at 0.2 m/ year giving the present piezometric head at an average of 0.5 m agl. The lower heads in old boreholes are attributed due to siltation, encrustation and ageing of borehole. Furthermore, lack of present day recharge and poor borehole construction methods play a vital role in determining the piezometric head. **Keywords:** Aquifer, Declined, Piezometric head, Borehole, Encrustation.

I. Introduction

Groundwater in the Southwestern Chad Basin occurs in the Quaternary Chad Formation. Hydrogeologically it is the most prolific stratigraphic unit in the Basin. Groundwater in this deposit occurs under both confined and unconfined conditions. Three aquiferous zones have been clearly demarcated and named by Barber ad Jones (1960), as the Upper, Middle and Lower aquifers. The Upper aquifer generally unconfined and semi – confined, while the Middle and Lower Aquifers are confined. The Middle zone aquifer is the most extensive and most exploited of the zones. Because of thick clay (in some places over 100m), boreholes drilled to this zone yield artesian flow with piezometic head as high as 20m above ground level. This positive head has significantly decline over the past half a century. The reason for this has been due to over abstraction largely due to the uncontrolled discharge from artesian wells and lack of replenishments. Several authors attempt to estimate the rate of decline in the piezometric head of the Middle zone aquifer for different periods of time. (Offodile, 1972, Adefila, 1975; Oteze and Fayose, 1988, Ndubisi, 1990, Oluboye, 1995, Goni et al; 2000 etc) estimated the rate of decline in piezometric head of the Middle zone aquifer boreholes and also the variability in head observed in boreholes drilled to the Middle zone aquifer, is the focus of this paper.

Previous work.

In 1934, Raeburn and Jones published an account of the Geology and Hydrogeology of the Nigerian part of the basin. Then followed by Barber and Jones (1960) who, in their study of the Geology and Hydrology of Maiduguri, recognized three zones of aquifers named the Upper, Middle and Lower zones. Miller, Johnson, Olowu and Uzoma (1966) published an account of the availability of groundwater in the Chad Basin of Bornu and Dikwa Emirates. In 1968, Miller and others published the result of further studies on the groundwater hydrology of the Chad Basin in the Emirates.

II. Hydrogeology

The Middle aquifer is confined by a clay layer up to 100m thick in some places, with pressure sufficient to cause artesian flow. It is arenaceous in nature and stores water and termed Middle zone aquifer (Barber and Jones, 1960). Because of the heterogeneity of the aquifer materials, there is variability in hydraulic properties. Miller et al (1968) gave the following hydraulic parameters: Hydraulic conductivity range from 0.0000428 - 0.000179 m/sec (90 - 380 gpd per square foot); transmissivity 0.000818 - 0.1141m²/sec (520 - 72,500 gpd per foot; storage coefficient 0.000014 - 0.00018. They further subdivide the aquifer into six based on water yielding capability.

1.7 SCOPE OF STUDY

The study area is the Middle zone aquifer of the Nigerian sector of the Chad Basin. The area falls within latitude $11^{\circ}30$ 'N and $13^{\circ}30$ ' N and longitude $12^{\circ}00$ 'E and $14^{\circ}30$ 'E.

Fig.1: Map of the study area with Middle zone aquifer boreholes sampling sites.

Furthermore, Recharge Estimation (qualitatively) was carried out where the Middle aquifer is suspected to have outcropped or merged with the Upper aquifer, boreholes in that area was monitored for a period of 12 months using groundwater level fluctuation method. This method is chosen because a water level rise is the clearest indicator of recharge if all abstraction remains unchanged and atmospheric pressure effects can be ruled out.

The static water level (SWL) of seventy one Middle zone aquifer boreholes were monitored from February, 2010 to January, 2011 by the use of water level indicator as earlier used by researcher across the study area. These boreholes were drilled in 1960's - 2010's were analysed to determine the rate of decline over the last half century. The SWL of each borehole is measured once in a month.

The Middle zone aquifer is the most extensive and widely exploited of all the zones, extending to Republics of Niger, Cameroon and Chad. Because of the thick clay Formation (in some places over 100m), boreholes drilled to this zone yield artesian flow with piezometric head as high as 20m agl. This positive head has significantly decline over the past half century. The reason for this has been due to over abstraction largely due to the uncontrolled discharge from the artesian wells and lack of or little replenishments (Adefila, 1975, BRGM, 1993).

The pressure heads are falling drastically due to indiscriminate and uncontrolled exploitation of the aquifer. There is still a noticeable decline in pressure surface of the free- flowing artesian wells in the Nigerian sector of the Chad Basin and consequently a shift in the limit of artesian flow in the pressure water of the Middle zone aquifer of the Chad Basin area eastward towards the lake with about 23 km for the last half a century (fig.2).

Fig.2. Piezometric Head Declines from 1960 – 2010.

3.5 cm = 100 km (scale) Shift = 0.8 cm 1 cm = 100/3.5 = 29km **0.8 cm (Shift) = 0.8/1 x 29 = 23 km NE towards the Lake Chad.**

The increase in social and economic development in the area has brought about a sharp increase in groundwater exploitation resulting in the decline of the piezometric head of the Middle zone aquifer (Oteze and Fayose, 1988).

The boreholes drilled to the Middle zone in the 1960 yield artesian flow in Maiduguri with a piezometric head of over 8 m agl while in the 2010 boreholes piezometric head of 34 m bgl was recorded in Maiduguri. Furthermore, the artesian wells are now mostly found in the north of Maiduguri towards the Lake Chad. The closest artesian well to Maiduguri is in Zuntur village in Nganzai local government area of Borno State which is about 27 Km northeast of Maiduguri (by road). However, from the above calculations an estimated shift of 23 Km northeast towards the Lake is made for the past half a century.

The pressure heads are falling drastically due to indiscriminate and uncontrolled exploitation of the aquifer. There is still a noticeable decline in pressure surface of the free- flowing artesian wells in the Nigerian sector of the Chad Basin and consequently a shift in the limit of artesian flow in the pressure water of the Middle zone aquifer of the Chad Basin area eastward towards the lake with about 23 km for the last half a century (Fig.2.).

The water demand has dramatically increased over the last few decades, due to population growth and changes in life style of the people occasioned by modernization. This has brought about a sharp increase in groundwater exploitation resulting in the decline of the piezometric head of the Middle zone aquifer (Goni et al, 2000).

Year	Completion SWL	Completion Yield	SWL in 2010	Yield in 2010
1960	11.2	12.8	+ 1.2	0.7
1970	10.1	8.6	+ 1.0	1.3
1980	6.7	4.9	+ 0.8	1.1
1990	4.7	4.8	+ 0.6	1.1
2000	1.8	2.8	+ 0.5	0.6
2010	0.1	1.4	- 0.5	0.4

Table 1: The Decline of Piezometric Head of Middle Zone Aquifer Boreholes from 1960 to 2010.

The average static water levels of 1960s, 1970s and 1980s boreholes were determined to be 11.2, 10.1 and 6.7 m above ground level (agl) at their times of completion while the 1990s, 2000s and 2010s boreholes had piezometric heads 4.7,1.8 and 0.1m agl at their completion times.

In evaluating the rates of decline both completion static water level and 2010 static water level of 1960s – 2010s boreholes and their present head are considered.

The piezometric head was gradually decreasing from 11.20m agl in 1960s to 0.1m agl in 2010. The high piezometric head decline in 1960s – 1970s was from 11.2 m agl to 10.1 m agl, yielding a decline of 1.1 m. From 1970s – 1980s the head dropped from 10.1 to 6.7 m agl, yielding a decline of 3.4 m agl. Furthermore, from 1980s to 1990s the decline was 5.4 m agl; from 10.1 m agl to 9.7 m agl whereas from 1990s - 2000s it was 2.9m agl, from 4.7 m agl to 1.8 m agl, and in 2010 the decline was 1.3m agl from 1.8 m agl to – 0.5 m agl. There is gradual decline in the piezometric head and rates from 1990 to 2000, the declined and rate of decline are from 1.3 m to 0.13 m/year respectively. Population increase in the region and the conversion of many artesian wells to cement wells are believed to be responsible for these change. Furthermore the intervention by the local and state government in drilling boreholes for rural water supply is also a contributing factor. The decline is 1.7m while the rate is 0.2m/year, for 2000 to 2010 boreholes, this is because there is less borehole drilling programme due to high cost of drilling .The head of 1960, 1970 and 1980 boreholes in 2010 are +1.2, +1.0 and + 0.8 m agl respectively, while the heads of 1990, 2000 and 2010 boreholes are + 0.6, + 0.5 and - 0.5 respectively. It is calculated that the pressure head decline in the Middle zone aquifer is at the rate of 0.2 m / year for the past half a century based on piezometric heads of boreholes drilled from 1960 to 2010 tapping the Middle zone aquifer.

That their yields are also decreasing gradually from 1960 (12.8 l/s) to 2010 (1.4 l/s) is explained by the increase in the rate of exploitation, borehole construction method, borehole age among other factors. The boreholes locations used for the analysis of the decline in the piezometric head in the area over half a century is shown in fig.1.

The decline in the Pressure head of the Middle zone aquifer boreholes is caused principally by three (3) parameters. These are: The Percentage Screen, Yield and development period of boreholes.

In the 1960's boreholes, percentage screening does not follow the trend of 50-70% screening increases the yield of borehole. It is obvious that screening boreholes up to 50-70%; increases yield than does screened <

50-70%. In this case some boreholes have high yield corresponding to the % screen while others have the reverse showing the haphazard methods of screening of boreholes in the Nigerian sectors of the Chad Basin, hence, showing scatter points without definite trend/relationship between the yield against the percentage screened of boreholes in 1960's (fig.3.).

The piezometric head of the Middle zone aquifer boreholes has declined over the past 30 years. The main reason for the declined has been the over abstraction and lack of replenishment. However factors such as the deterioration of the boreholes, boreholes interference and differences in borehole construction methods may also contribute to the observed declined.

The differences in the borehole construction methods, percentage of aquifer thickness screened and development hour's results in differences in the yield of boreholes drilled to the same depth, place and time. The three parameters of percentage screened, well diameter, and development hours have been analysed for boreholes from 1960 -2010.

Fig. 3: Indicates the relationships between Percentage Screened and Yields against Borehole Size of 1960's boreholes. The plots does not show any cluster/ relationships hence show scattering of points.

Fig.4: Graph of well diameter against static water level of 1970's boreholes. They are independent parameters that are not proportional to each other. The result shows no particular trend depicting scattering.

Fig.5: Is a plot of Percentage Screened and Yields against Borehole Size of 1980's boreholes. The three parameters are independent from each other. The result shows complete scattering of points indicating no relationships between the plotted parameters.

Fig.6: Shows the plots relationship of Development Hours and Yields against Percentage Screened of 1990's boreholes. The development hours and percentage screened does not control the yield of a borehole but rather it is controlled geologically (porosity, permeability, availability of water in the aquifer etc). The three parameters show no relationship hence showing scattering of points.

Fig.8: Depicts the relationship of Percentage Screened, Yields and Borehole size of 2010's boreholes. Yield is geologically controlled and not by borehole construction method. The plot does not show any particular trend hence depicts scattering of points.

The pressure heads are falling drastically due to indiscriminate and uncontrolled exploitation of the aquifer. There is still a noticeable decline in pressure surface of the free- flowing artesian wells in the Nigerian sector of the Chad Basin and consequently a shift in the limit of artesian flow in the pressure water of the Middle zone aquifer of the Chad Basin area eastward towards the lake with about 23 km for the last half a century (fig.2).

The water demand has dramatically increased over the last few decades, due to population growth and changes in life style. Not only has the demand increased due to the population growth, but there has also been a change in the life style of the people occasioned by modernization. This brought about a sharp increase in

groundwater exploitation resulting in the decline of the piezometic head of the Middle zone aquifer (Oteze and Fayose, 1988).

III. Conclusion

The pressure head in the Middle zone aquifer is declining at the rate of 0.2 m / year for the past half a century. Their yields are also decreasing gradually from 1960 (12.8 l/s) to 2010 (1.4 l/s). This is explained by the increase in the rate of exploitation, borehole construction method, borehole age among other factors. Furthermore, lack of present day recharge to the Middle zone aquifer, heterogeneity and variable thickness of clay layer confining the zone play important role in the piezometic head declines of the Middle zone aquifer.

Acknowledgement

We thank the University of Maiduguri for providing the research grant and also the management of Alkal Consultant, Borno State Water Board, Chad Basin Development Authority and Conrad Nigeria limited for providing the required data for the paper.

Referrences

- Adefila, S.F. (1975): Decline in the Pressure of the Middle Aquifer of the Chad Formation in Parts of the South Eastern Niger and North Eastern Nigeria. J. Mining and Geology, 12: 23-26.
- [2]. Barber, (1965) W. and Jones, D.G. (1960): The Geology and Hydrology of Maiduguri, Bornu Province (Unpublished Records) Geological survey of Nigeria.
- BRGM Consulting Company (1993): Monitoring and Management of Groundwater Resources in the Lake Chad Basin.Study Report for Lake Chad Basin Commission.47p
- [4]. Carter, J.D., Barber, W., Tait, E.A., Jones, D.G. (1963): The Geology of Parts of Adamawa, Bauchi and Borno Provinces, Northeatern Nigeria: Bulletin of Geological Survey of Nigeria, No.30.
- [5]. Dar Al-Handasah. (1983): Maidugrui Water Supply; Feasibility Study Final Report. Dar Al-Handasah (Shair and Partners): Maiduguri.
- [6]. Goni, I.B.,M. Kachalla and M.M.Aji (2000):Another look at the Piezometic Head Declines in Middle Zone Aquifer of the Chad Formation in the South Western Chad Basin.Borno Jour. of Geology.Vol.2.No.2: 51-64.
- [7]. Miller, R.E., Johnson, R.H., Olowu J.A.I. and Uzeoma J.U., (1968): Groundwater Hydrology of the Chad Basin in Borno and Dikwa Emirates; North-Eastern Nieria with Special Emphases on the Flows Life of the Artesian System. Hydrology of Africa and the Mediterranean Regions. USGS Water Supply Report, 1. 1757p.
- [8]. Ndubisi, O.L., (1990): Managing GroundwaterbResources of the Lake Chad Basin in Nigeria. Proc.Nat.Hydrol.Symp.Maiduguri.Pp 429 – 436.
- [9]. Offodile, M.E. (1972): Groundwater Level Fluctuation in the East Chad Basin of Nigeria. Min. Geol. Vol. 7. No. 1&2: 19-34.
- [10]. Olugboye, M.O., (1995): Groundwater Monitoring Network as an aid to averting some Ecological Disaster, the Case for Chad Basin Area. Water Resources, Vol. 6 No.1&2: 57-60.
- [11]. Oteze, G.E. and Fayose, S.A. (1988): Regional Development in the Hydrogeology of Raeburn, C. and Jones, B., (1934): The Chad Basin Geology and Water Supply Bulletin of Geological Survey of Nigeria.No.15. 62p.

Appendix 2: Boreholes Parameters of 1960's Boreholes.

				r r													•					
SNo	Loc	LGA	Lat	Long	Elex(m)	Sed 2010	Pop	Cat.	pН	£C.	EC	736 15	TDC	Ag.Ess.	Şçr. Pos.	% Scc	Dev Hr	Cpi SWL	677N	Cong. X1d	Scr.thk	Aq.th
1	Verena x	Monguna	12°40.153'	13°36.401'	297	0.7	500	320	7.32	38.3	394	0.4	374	000 070	349 -	=/		= 0		12.4	24	90
2	New M	Marte	1215.09	1308.09	277	0.8	1000	1200	7.85	40.5	680	0.5	310	333 - 372	276 -			0.9		12.4	21	39
3	15Q Mogole	Mafa	1314.781	1202.892	296	0.7	380	2600	7.2	37.7	1224	0.4	299	116 - 305	304 245 -	15	108	10.8		N.D	28	189
4	Femari	Mafa	1310 206	1210 284	298	-15	300	800	72	37.6	960	Promo	308	244 - 299	290 261 -	82	98	13.6		1.3	45	55
	10	24.4	1200.007	1000.01	204					20.1				260 - 278	277	89	83	15.2		1.5	16	18
2	96000	DEATA	1520.087	1200.01	290	-10.2	510	/00	0.9	39.1	820	0.8	515	277 - 313	279 - 299	89	56	10		1.2	20	36
6	Mana.	Mafa	1320.694	1155.542	295	-24.8	2500		7.1	38.2	1126	2	283	256 - 283	268 - 274	22		N.D		0.01	6	27
7	Miligine.	Mafa	1348.262	1207.864	291	0.8	520	700	6.86	36.4	1026	0.2	268	263 - 268	256 -	60		14.2		19	4	5
8	Ease	Ngala	1408.642	1215.489	286	0.4	260	700	7.82	36.8	908	0.3	290	200 - 200	274 -			14.2		1.4		
9	Magawaji	Ngala	1408.364	1226.867	277	0.6	820	2500	7.6	37.4	840	0.4	315	262 - 290	280 289 -	21		14.6		1.7	6	28
10	Gabio	Gabio	1252 329	1230 126	298	-11	1500	2000	74	38.2	472	6	325	286 - 315	296 317 -	24		15.8			7	29
	44006	40006										Č.		307 - 325	323	33		6.1		1.3	6	18
11	Actimical.	Gabie	1215.826	1228.943	308	N.A.	320		7.2	36.8	408	2	333	286 - 333	318 - 324	13		-0.9	22		6	47
12	Gurona	Marte	1342.629	1212.457	290	1.4	1200	10,000	7.1	37.3	1005	0.4	280	265 - 280	271 - 274	22		13.9		1.3	3	14
13	Masaki	Mobbas	1216.894	1256.464	298	0.7	280	950	7.05	38.2	366	0.5	312	000 010	297 -						-	~
14	Masa	Magazzeri	1324.067	1212.052	291	-5.1	250	2000	6.8	40	882	1.2	353	292 - 012	314 -	30		0.2		1	0	20
15	Kesa Ngala	Magumeri	1208.362	1320.087	295	-5.15	560	20,000	6.8	38.6	846	2	352	312 - 351	344 311 -	77	94	12.12		35.4	30	39
16	C	Victoria	1222.261	1225 402	290	1.96	400	1200	6.54	14.0	1170	0.6	244	310 350	341	75	88	12.12		34.7	30	40
10		OUWAXE	1322.201	1525.492	200	1.20	100	1200	0.34	30.8	1170	0.0		318 - 344	332	23	72	20		4	6	26
17	Kanessa	Robance	1316.334	1312.551	283	1.1	560	3000	6.4	36.8	1080	0.8	369	334 - 368	350 - 356	18		20.3		4	6	34
18	Bostata.	Mobbar	1241.671	1307.924	298	-22.5	740	1400	7.12	36.6	940	2	332	281 - 902	281 -	20	144	20		0.2	6	21
19	Pala	Gabie	1247.891	1252.416	296	0.3	180	250	7.2	36.4	870	0.3	312	201 - 002	292 -						ž	
20	Chingtona.	Gubie	1250.861	1238.654	294	1.04	420	2500	7.3	37.7	485	0.4	361	285 - 312	296 345 -	22		7.4		25	6	27
21	Bagam	Gabin	1253 629	1238 891	295	04	460	1200	74	35.5	842	0.4	318	304 - 361	351 292 -	11		8.2		3.3	6	57
														287 - 318	296	20		4.6		1	6	31
Total										107.3											_	

			Appendix 3: 1970's Boreh Decementar																				
SNo	Loc	LGA	Lat	Long	<mark>Elex(</mark> m)	Sed 2010	Pop	Cat	рН	1:C	EC	YM YM Is	Year	TDC	da Ess	Şçç Pos.	% Sc	Dev Hr	Cpi Stati	exu	Cong. XX4	Scr.thk	Aq.ttik
1	Excam 1	Magameri	1215.78	1247.946	311	-24.6	380	800	7.6	32.5	894	well	1976	340	283 -	283 -331	68	71	-9.05	8.5		40	48
2 3	Gullucu Lacaba Kos	Bacsaci Koskatera	1238.25 1220.63	1141.667 1337.032	352 298	-47.6 N.A.	300 580	100	7.6 6.5	33.8 34.3	395 825	l well	1976 1977	246 354	0 - 232 320 - 346	127 - 230 321 - 343	9 85	82	-26.85 15.16	13.7	22.7	16 22	232 26
4	Kara	Gabie	1243.8	1230.862	293	N.A.	220	400	7.2	39.2	892	5	1977	325	300 -	306 - 315	36		5.8		0.6	9	25
5	Kilakam	Mobbar	1254.29	1215.694	300	N.A.	340	800	7.32	37.6	362	2	1977	298	274 -	289 - 295	25		0.6		0.1	6	24
6	Bintuntul	Gabie	1325.47	1246.291	298	-12.4	420	800	7.2	28.6	960	well	1977	319	292 -	300 - 306	40		3.6		0.9	6	15
7	Zaimolo	Gabie	1325.63	1248.123	299	-12.8	330					well	1977	326	298 -	318 - 324	21		28		1.2	6	28
8	Lai	Gabie	1325.93	1254.21	297	-21.6	1200	3000	7.8	34.8	860	6	1977	321	300 -	303 - 306	15		3.9		0.1	3	21
9	Zaci	Mobbar	1148.76	1312.257	319	13	420	1500	6,06	42.6	1382	1	1977	323	286 -	288 - 318	81	111	8.39		36.8	30	37
10	Tanunguna	Mobbar	1312.16	1258.056	293	1.23	120	160	6.46	39.8	862	0.8	1977	318	323 296 -	297 - 316	96	76	10.91		6.1	19	22
11	Shehn Balt	Mobbar	1320.49	1256.068	295	0.6	100	150	6.3	38.7	977	0.6	1977	326	318 304 -	304 - 310	27		11.8		1.5	6	22
12	Gasbagar	Mobbar	1322.17	11247.806	300	1	5200	6000	6.33	40	844	2	1977	381	326 299 -	298 - 316	89	88	8.5		15	17	19
13	Bol Méiri	Monguna	1218.73	1324.467	298	3.6	450	800	7.4	33.4	462	1.4	1977	366	300 -	327 - 345	35	34	5		4	18	51
14	Maiba.	Ngangai	1220.25	1310.125	310	0.7	300	650	7.4	36.8	720	0.4	1977	383	315 -	342 - 375	46	26	7		6.5	28	61
15	Regiona L	Katawa	1327.26	1256.354	296	0.5	450	1000	6.8	34.2	682	0.3	1977	386	338 -	339 - 369	94	60	10.1		5.5	30	32
16	Ladi Isa	Magameri	1211.67	1219.512	342	-26.3	600	1250	6.2	38.6	394	well	1977	231	219 -	218 - 227	75	72	36.4		7	9	12
17	DA/6 DTR	Damatura	1144.53	1157.767	362	-53.8	1000		7.4	35.5	380	2	1977	280	231 90 - 151	85 - 147	60	162	-46.7	12.2		37	67
18	DA/9 DTR	Damatura	1147.32	1158.211	363	-56.2	700		7.3	38.6	410	2	1977	303	139 -	156 - 202	27	89	-38.6	2		22	79
Avera Total	Pe				-2.6						1.25 125				200			10.1		8.6			

											App	endix 3	: 1970	s Borel	holes								
SNo	Loc	LGA	Lat	Long	Elex(m)	\$ 6 1	Pop	Cat	pН	T.C	EC	ueters ¥₩	Year	TDC	Ag.Eps	Şec.	%	Dev Hr	Opt	e.xxa	Çeşe,	Sce.thk	Aq.thk
1	Europa 1	Мадиресі	1215.78	1247.946	311	2010	380	800	7.6	32.5	894	is well	1976	340	283 -	Pos. 283 -	Sc 68	71	\$#1 -9.05	8.5	234	40	48
2	Gallaca	Bucaci	1238.25	1141.667	352	24.6	300	100	7.6	33.8	395	1	1976	246	323 0 - 232	331 127 -	9	82		13.7		16	232
3	Laraba Kor	Kukama	1220.63	1337.032	298	47.6 N.A.	580		6.5	34.3	825	well	1977	354	320 -	230 321 -	85		26.85 15.16		22.7	22	26
4	Kara	Gubio	1243.8	1230.862	293	N.A.	220	400	7.2	39.2	892	5	1977	325	346 300 -	343 306 -	36	•	5.8		0.6	9	25
5	Kilakum	Mobbac	1254.29	1215.694	300	N.A.	340	800	7.32	37.6	362	2	1977	298	325 274 -	315 289 -	25		0.6		0.1	6	24
6	Bintuntul	Gubie	1325.47	1246.291	298		420	800	7.2	28.6	960	well	1977	319	298 292 -	295 300 -	40		3.6		0.9	6	15
7	Zaimolo	Gabie	1325.63	1248.123	299	12.4	330					well	1977	326	307 298 -	306 318 -	21		28		1.2	6	28
8	Lai	Gubie	1325.93	1254.21	297	12.8	1200	3000	7.8	34.8	860	6	1977	321	326 300 -	324 303 -	15		3.9		0.1	3	21
9	Zaci	Mabbac	1148.76	1312.257	319	21.6 1.3	420	1500	6,06	42.6	1382	1	1977	323	321 286 -	306 288 -	81	111	8.39		36.8	30	37
10	Tannaguna	Mobber	1312.16	1258.056	293	1.23	120	160	6.46	39.8	862	0.8	1977	318	323 296 -	318 297 -	96	76	10.91		6.1	19	22
11	Shehu Bult.	Mabbac	1320.49	1256.068	295	0.6	100	150	6.3	38.7	977	0.6	1977	326	318 304 -	316 304 -	27		11.8		1.5	6	22
12	Gasbagac	Mabbar	1322.17	11247.806	300	1	5200	6000	6.33	40	844	2	1977	381	326 299 -	310 298 -	89	88	8.5		15	17	19
13	Bul Mitiri	Monguno.	1218.73	1324.467	298	3.6	450	800	7.4	33.4	462	1.4	1977	366	318 300 -	316 327 -	35	34	5		4	18	51
14	Maiba.	Ngangai	1220.25	1310.125	310	0.7	300	650	7.4	36.8	720	0.4	1977	383	351 315 -	345 342 -	46	26	7		6.5	28	61
15	Foguera L	Kukawa	1327.26	1256.354	296	0.5	450	1000	6.8	34.2	682	0.3	1977	386	376 338 -	375 339 -	94	60	10.1		5.5	30	32
16	Ladi Isa	Magameri	1211.67	1219.512	342		600	1250	6.2	38.6	394	well	1977	231	370 219 -	369 218 -	75	72	36.4		7	9	12
17	DA/6 DTR	Damatucu	1144.53	1157.767	362	26.3	1000		7.4	35.5	380	2	1977	280	231 90 -	227 85 -	60	162	-46.7	12.2		37	67
18	DA/9 DTR	Damaturu	1147.32	1158.211	363	53.8	700	•	7.3	38.6	410	2	1977	303	151 139 -	147 156 -	27	89	-38.6	2		22	79
Avera Total	2e				-2.6	56.2		•			1.25 125				200	202		10.1		8.6			

SNo	Loc	LGA	Lat	Long	Ęlex(m)	SWL, 2010	Pop	Cat	рH	1. C	EC	X16 Is	TDC	AQ.Eos	Şçr. Pos.	% Screen	Dev Hrs	Congl SWL	Pump X1d	Cong. Yild	Sectick	Aq.Thick
1	Maiwa Mat	Mafa	1152°.93-	13*27.11	299	-13	230	1000	6.5	33.6	970	D	258	226 -	228 -	70		10.6				20
2	Ngacaccam	Mafa	1152.93	1334.55	292	-1	150	780	6.8	32.4	964	rump	362	312 -	314-	/0	24	12.5		1	41	20
,	Mate Wash	M-6	1152.02	1006.76	100		2500			20.4	041	Pump	077	358	335	46	46	10.3		8.7	21	46
÷	ONAVA IN COL	NNN	1132.93	1333.73	470	-W.T	2300		0.7	20.0	301	Pump	411	277	276	88	78	8.5		10.6	15	17
4	Airi	Mata	1152.93	1342.5	300	-0.5	780	500	6.5	35.7	950		312	287 -	288 -							
5	Tarialari	Mafa	1158.82	1359.11	272	0.2	160	300	6.8	32	970	Pump	361	310 320 -	309 325 -	91	43	9.8		7.2	21	25
,			11/0.26	1204.01			2.000				200	Pump	2.62	358	350	66	16	9.4		9.7	25	38
•	2000351	Masouguri	1148.50	1304.91	334	20.7	2000		0.2		290	Pump	302	351	342	17	12	-26.1	1		21	125
7	Newsoni	Maiduguri	1149.87	1304.82	336	22.4	4000		7.2		388	. '	342	304 -	310 -							
8	Dr. Ngumaci	Jere	1149.5	1308.87	338	20.6	3900		7.4		394	Pump	368	334 312 -	334 326 -	80	24	-21.0	3		24	30
	B.S			1202.00				•				Pump		364	350	46	48	-19.6	2.5		24	52
ÿ	DOMARCHIM	Maiouguri	1105.02	1508.92	528	21.5	6000		1.2		391	Pump	308	268 - 302	282 - 300	53	12	-20.6	3		18	34
10	Monguno E	MOREVER	1241.03	1336.5	305	0.5	1200		7.3		430	0.3	381	342 -	333 -				-			
11	Gubio	Gubio	1229.89	1249.99	294	-5.4	2500	4000	7.2		458	Pump	377	378 336 -	348 351 -	42	•	4		ш	10	30
	Cestr	****												375	372	54		-1.2	1.6		21	39
12	Gaba Cross	Gabae	1229.58	1247.17	299	-0	1200	1300	7.1		4870	Pump	384	346 - 383	357 -	65	12	1		13	24	37
13	Yale	Kondoga	1145.314	1343.712	316	-33.2	1200		6.8	32	845	Pump	374	223 -	360 -			·				
								•						381	372	9		-31.8	1.6		12	153
Aver	age					- 0.5												4.7		4.	8	
Tota	1											70.8										

Appendix 5: 1990's Boreholes Data.

SNo	Loc	LGA	Lat	Long	Elex(m)	\$ 61	Pop	Cat	pН	T:C	EC	314	TDC	Aq.Ess.	Screen	%	Dev Hr	Cpl	P	Cp1	Scr.th	Ag.Tb
1	Garadai	Marte	12-14.127	13*52.134	260	0.5	500	•	6.9	34	877	well	296	273-	Pos. 275-287	63	36	0.6	336	336	12	19
2	Balais	Mafa	1148.46	1328.53	242	0.9	500	850	6.9	37	920	2	309	280 -	278 - 290	81	12	0.6		0.5	9	11
3	Mai Maja	Dilosa	1210.55	1352.23	281	0.6	1100	540	6.6	36	800	0.4	275	229 -	230 - 242	44	12	0.8		0.6	12	27
4	Kilangilawa	Kala Balge	1226.66	1348.23	322	-1.3	425	460	6.9	36	900	-	322	230 246 - 322	308 - 320	16	36	-1.3	2		12	76
5	Gana	Mafa	1136.79	1334.54	294	0.8	1220	900	6.9	33	920	0.6	240	215 -	220 - 235	65	6	-1.2	3		15	23
6	Zona	Gabie	1256.94	1215.86	375	1.9	950	#	7.3	40	850	1.3	375	330 -	362 - 374	27	2	1.9		0.3	12	45
7	Wulaci 3	Maiduguri	1147.11	1313.21	326	-24.5			7.4	39	392	-	274	235 -	236 - 260	62	36	-21.6	N.A		24	39
8	CEN Qtra	Maiduguri	1132.69	1307.44	338	N.A.	-		-	-	-	Dead	248	216 -	220 - 238	56		-22.8	6.2		18	32
9	Unimaid S.1	Maiduguri	1144.34	1311.35	333	-25	1000		6.8	33	386	Pump	282	255 -	261 - 282	78	48	-24.3	5.6		21	27
10	Met Klos	Maiduguri	12-55.431	13*33.604	267	1.2	200	100	8.3	39	468	0.2	489	413 -	454 - 483	43	10	1.1		9.4	29	67
11	Kingerma.	Guzamala	1248.18	1321.15	312	0.6	580	250	7.1	39	755	0.6	375	319 -	346 - 360	33	6	1.3		5	14	42
12	Kaseta	Mobbac	1307.41	1313.32	352	-1.2	1160	-	7.2	40	410		301	284 -	284 - 298	82	12	-1.5		-	14	17
13	Gambora	Ngala	1221.27	1408.81	248	-2.8		-	6.8	37	850		354	282 -	309 - 333	44	16	-1.2	2.5		24	54
14	AR Ngomani LC	lese	1159.45	1308.62	344	N.A.			7.2	37	380	Pump	324	252 -	275 - 305	97	48	-25.6	4.8		30	31
15	Mote Aisi	lese	1354.36	1305.66	321	-22.2	1000	500	7.1	40	540	Pump	268	231 -	247 - 268	57	36	-20.6	2.4		21	37
16	Jiddaci	lese	1157.46	1307.72	333	-26.5			7.2	37	390	Pump	258	208	244 - 258	41	120	-25.2	8.4		14	34
17	Magameri	Мадириссі	1208.67	1243.37	345	-28.2	1000	500	6.5	40	906	Pump	333	279 -	285 - 309	65	32	-26.4	5.7		24	37
18	S.Dikwa	Dilcon	12*02.650	13*55.267	287	0.8	980		7	36	810	0.5	270	240 -	256 - 268	40	8	0.4		0.3	24	30
19	Ali Turaumi	lere	1202.49	1303.36	292	-1.2	280	-	6.9	31	668		299	258 -	280 - 292	34	4	-4.2	2		12	35
20	Toogule.	Ngala	1400.58	1216.04	312	0.8	620	140	38	38	900	0.7	312	293 246 -	283 - 298	25		0.8		0.4	15	60
														306								
1	verage				- 0.2												1.8		2.8			
1	otal										114.4											

Appendix 6 : 2000's Borehole Data

114.4

SNo	Loc	LGA	Lat	Long	<mark>Ęįę</mark> χ(m)	Sed. 2010	Рор	Cat	pН	T.C.	EC	¥14 15	Year	TDC	Aq.Eos.	Şçç Pos.	% Sc	Dev Hr	Cp1 Sp1	exu	Cong. Y	Sc.th	Ag.Th
1	Dilova	Dilova	1000.65	1266.02				-		261	***	D	2010	454	241 -	246 -							.,
2	Damasak	Mobbac	1202.00	1555.27	288	-1.8	830	_	0.0	30.1	811	rump	2010	111	420 -	429 -	п	30	-4	1.5		24	51
	-		1308.54	1234.02	354	-6.2	1000	-	7.4	35.3	428	Pump	2010	446	446	444	58	48	-7.3	2.5		15	26
2	0050	000000	1305.71	1349.22	267	-0.7	1300	-	7.3	33.3	418	Pump	2010	420	393 - 420	399 - 417	72	10	0.5		0.3	18	25
4	Gambora	Ngala	1001.00					-							322 -	332 -							
5	Kainowa	Mobbar	1221.27	1408.81	2/1	-412	800		0.5	32	839	Pump	2010	308	305 354 -	330 372 -	28	8	0.4		0.5	18	51
,	Manual	Manual	1216.22	1340.39	346	0.2	250	-	7.4	34.1	764	Pump	2010	382	382	378	21	•	0.3		0.2	6	28
•	002000	POE SOCO	1207.41	1244.31	322	-27.5	420	-	6.9	35.8	394	Pump	2010	298	296	293	35		-24.5	2		12	34
7	Abadam	Abadam	1010.40	1224.60	204		1400	-			021		2010		281 -	365 -	-						102
8	Showaci	Mafa	1018.40	1000.08	734	-0.5	1000	_	0.5	3/	9/1	rump	2010	200	224 -	250 -	20		-0.5	4		4	107
٥	Carbona	Matter	1324.66	1156.39	308	-30.2	200	-	6.8	35.2	958	Pump	2010	265	265	262	21	48	•	1.5	•	12	58
,	44900501	000000	1322.17	1247.81	301	0.4	300	1800	6.4	38.9	851	Pump	2010	306	306	302	18	24	1.4		0.6	12	66
10	0000	Mobbac	1220.14	1227.00	101	,	160	200	60		1100		2010	400	303 -	343 -	26		,		0.7	14	**
11	Garunda	Mobbac	1520.10	1007.89	282		130	/00	0.9	21.8	1162	0.7	2010	700	299 -	208	20	•			0.7	10	28
			1304.63	1306.29	290	0.5	250	400	6.6	40	898	0.4	2010	321	321	306 318	55	10	1.6		0.6	12	22
Avers	e.				- 1.0													0.1		1.4			
Total											15.8												

Appendix 7: 2010's Boreholes Parameters.