Two Neighbouring Strike Slip Faults and Their Interaction

Papiya Debnath¹, Sanjay Sen²

¹ Corresponding author, Department of Basic Science and Humanities, Techno India College of Technology, Rajarhat, Newtown, Kolkata-700156, India,
²Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Calcutta-

700009, India,

Abstract: Seismically active regions are usually associated with fault-systems comprising of a number of neighbouring faults. A movement across any one of them influences the nature of stress accumulation near the others. There may be regions of stress accumulation and/or stress release due to a movement across a fault. This interaction depends upon the relative position of the faults with respect to one another and also on the inclinations of the faults. Analytical expressions for the displacements, stresses and strains are computed using Green's function technique and correspondence principle. Numerical computation have been carried out to find out the interactions among such faults.

Keywords: Aseismic state, Correspondence Principle, Mantle convection, Seismically active regions, Strike slip fault, Viscoelastic material

I. Introduction

In many seismically active regions there are fault-systems consisting of a number of neighbouring faults. For example, in the western part of north America near the San Andreas fault there are a number of neighbouring faults such as Calaveras, Garlock, Hayward, San Jacinto etc. A fault movement across any one of them is likely to influence the nature of stress accumulation near the other faults. In the present paper we have considered two buried long strike slip faults situated in a half space of linear viscoelastic solid having the properties of both Maxwell and Kelvin(Voigt) type materials. Tectonic forces due to mantle convection has been assumed to be given by a slowly increasing time dependent function. These features have not been considered earlier.

II. Formulation

We consider two long and buried strike-slip faults F_1 and F_2 situated in a viscoelastic half space of linear viscoelastic solid material having the properties of both Maxwell and Kelvin(Voigt) type materials.

Let d_1 and d_2 are the depths of the upper edges of the faults below the free surface and D is the distance measured horizontally between the upper edges of the faults. θ_1 and θ_2 are the inclinations of the faults with the horizontal. D_1 and D_2 are the lengths of the faults F_1 and F_2 respectively.

A set of Cartesian coordinate axes (y_1, y_2, y_3) have been chosen as in Fig. 1 with the plane free surface $y_3 = 0$. For convenience of calculation, we introduce two more systems of Cartesian coordinates (y'_1, y'_2, y'_3) , (y''_1, y''_2, y''_3) as shown in the figure. They are connected by the following relations:

$y_{1} = y_{1}$		
$y'_{2} = y_{2}\sin\theta_{1} - (y_{3} - d_{1})\cos\theta_{1}$		
$y'_{3} = y_2 \cos\theta_1 + (y_3 - d_1)\sin\theta_1$		
"and	}	(1)
$y''_{1} = z_{1}$		
$y''_2 = z_2 \sin\theta_2 - z_3 \cos\theta_2$		
$y''_3 = z_2 \cos\theta_2 + z_3 \sin\theta_2$)	
where $z = v = D$ $z = v =$	d	

where $z_2 = y_2 - D$, $z_3 = y_3 - d_2$.

For long fault the displacements, stresses and strains are assumed to be independent of y_1 and depended on y_2, y_3 and time t. This separates out the displacements, stresses and strains into two independent groups: one group containing u, τ_{12} , τ_{13} , e_{12} and e_{13} associated with strike slip movement. The remaining components are associated with a possible dip slip movement of the fault. We consider here the strike slip movement across the faults.

We take t=0 at an instant when the medium is in aseismic state. The stress-strain relationship can be taken as:

$$\tau_{12} + \frac{\eta}{\mu} \frac{\partial}{\partial t} (\tau_{12}) = \mu \frac{\partial u}{\partial y_2} + 2\eta \frac{\partial}{\partial t} \left(\frac{\partial u}{\partial y_2} \right)$$

$$\tau_{13} + \frac{\eta}{\mu} \frac{\partial}{\partial t} (\tau_{13}) = \mu \frac{\partial u}{\partial y_3} + 2\eta \frac{\partial}{\partial t} \left(\frac{\partial u}{\partial y_3} \right)$$
(2)

where η is the effective viscosity and $\mu\,$ is the effective rigidity of the material.

The stresses satisfy the following equation of motion :

$$\frac{\partial}{\partial y_2}(\tau_{12}) + \frac{\partial}{\partial y_3}(\tau_{13}) = 0$$

$$(-\infty < y_2 < \infty, y_3 \ge 0, t \ge 0)$$
(3)

[Assuming that the external forces do not change significantly during our investigation]

We consider aseismic state of the model during which the inertial terms are very small and are neglected in the above equation.

The boundary conditions are:

$$\begin{aligned} \tau_{13} &= 0 \text{ on } y_3 = 0, (-\infty < y_2 < \infty, \ t \ge 0) \\ \tau_{13} &\to 0 \text{ as } y_3 \to \infty, \quad (-\infty < y_2 < \infty, \ t \ge 0) \end{aligned}$$
 (4a)

Mantle convection introduces tectonic forces in the lithosphere-asthenosphere system far away from the faults which causes the faults to slip leading to an earthquake. We represent these tectonic forces by $\tau_{\infty}(t)$ and assume it to be a slowly increasing function of time and write

 $\tau_{\infty}(t) = \tau_{\infty}(0)(1 + kt)$, where k > 0Then, the relevant boundary conditions become:

$$\begin{aligned} \tau_{12} &\rightarrow \tau_{\infty}(t) = \tau_{\infty}(0)(1+kt), \\ (k>0) \text{ as } |y_2| &\rightarrow \infty, \text{ for } y_3 \geq 0, t \geq 0. \\ \tau_{\infty}(0) &= \text{ The value of } \tau_{\infty}(t) \text{ at } t = 0. \\ \tau_{12}(0) &\rightarrow \tau_{\infty}(0) \text{ as } |y_2| \rightarrow \infty, \text{ for } t = 0 \end{aligned}$$

$$(4b)$$

Now differentiating partially equation (2) with respect to y_2 and with respect to y_3 and adding them using equation (3) we get,

$$\nabla^2 \mathbf{u}(\mathbf{y}_2, \mathbf{y}_3, \mathbf{t}) = \mathbf{c} \cdot \mathbf{e}^{-\frac{\mu \cdot \mathbf{t}}{2\eta}}, \quad (c, \text{ an arbitrary constant})$$
and $\nabla^2 \mathbf{U} = \mathbf{0}$
(5)
where, $\mathbf{U} = \mathbf{u} - (\mathbf{u})_0 \mathbf{e}^{-\frac{\mu \mathbf{t}}{2\eta}}$

We assume that $(u)_0, (\tau_{12})_0, (\tau_{13})_0, (e_{12})_0$ and $(e_{13})_0$ are the values of u, $\tau_{12}, \tau_{13}, e_{12}$ and e_{13} respectively at time t=0. They are functions of y_2, y_3 and satisfy the relations (2) to (4c).

III. Displacements, Stresses and Strains in the Absence of any Fault Movement

The above boundary value problem given by (2) to (5) has been solved by taking Laplace transform with respect to time t of all constitutive equations and boundary conditions. Taking the inverse Laplace transform the solutions are obtained as:

$$\begin{aligned} u &= (u)_{0} e^{-\frac{\mu t}{2\eta}} + y_{2} \tau_{\infty}(0) \left[\frac{1}{\mu} - \frac{\eta k}{\mu^{2}} + \frac{kt}{\mu} + \left(\frac{\eta k}{\mu^{2}} - \frac{1}{\mu} \right) e^{-\frac{\mu t}{2\eta}} \right] \\ e_{12} &= (e_{12})_{0} e^{-\frac{\mu t}{2\eta}} + \tau_{\infty}(0) \left[\frac{1}{\mu} - \frac{\eta k}{\mu^{2}} + \frac{kt}{\mu} + \left(\frac{\eta k}{\mu^{2}} - \frac{1}{\mu} \right) e^{-\frac{\mu t}{2\eta}} \right] \\ \tau_{12} &= \tau_{\infty}(0) \left(1 + kt - e^{-\frac{\mu t}{\eta}} \right) + + (\tau_{12})_{0} e^{-\frac{\mu t}{\eta}} \\ \tau_{13} &= (\tau_{13})_{0} e^{-\frac{\mu t}{\eta}} \\ \tau_{12} &= The \text{ stress across the fault } F_{1} \\ &= \tau_{12} \sin\theta_{1} - \tau_{13} \cos\theta_{1} \\ &= (\tau_{1'2'})_{0} e^{-\frac{\mu t}{\eta}} + \tau_{\infty}(0) \left(1 + kt - e^{-\frac{\mu t}{\eta}} \right) \sin\theta_{1}, \quad t \ge 0 \end{aligned}$$

$$(6)$$

where $(\tau_{1'2'})_0$ is the value of $\tau_{1'2'}$ at t=0 which is a function of y_2, y_3 . Similar equation for the fault F_2 is given by:

$$\tau_{1^{''}2^{''}}$$
 = The stress across the fault F₂

 $=\tau_{12}\sin\theta_2-\tau_{13}\cos\theta_2$

We observed that for the fault F_1 the relevant stress component $\tau_{1'2'}$ increases with time and finally tends to $\tau_{\infty}(t)\sin\theta_1$ but the rheological nature of the region in the neighbourhood of F_1 has been assumed to be such that it slips when the magnitude of stress $\tau_{1'2'}$ reaches a threshold value say $(\tau_c)_1 (< \tau_{\infty}(t)\sin\theta_1)$ after a time, say T_1 .

Similarly, for the fault F_2 when the stress $\tau_{1^{''}2^{''}}$ exceeds the critical value say $(\tau_c)_2$ ($< \tau_{\infty}(t)\sin\theta_2$) F_2 slips after a time say T_2 . We assume that $(\tau_c)_1 < (\tau_c)_2$ so that the fault F_1 slips first before F_2 .

The slip across F_1 generates seismic waves in the system which gradually die out with the passage of time and aseismic state re-established in the system. During this small interval of time when the seismic disturbances were present in the system, our stress equations of motion (3) were not valid. We leave out this small amount of time (of the order of few minutes at the most) and consider our model afresh when aseismic state re-established and set up our new time origin t=0 suitably. Due to the slip across F_1 a considerable part of the accumulated stress near it got released. Observation shows that in major earthquakes more than 80 percent of the accumulated stress released through a slipping movement across the fault.

IV. Displacements, Stresses and Strains After the Commencement of the Fault Movement

We assume that the accumulated stress near F_1 came down from the critical level $(\tau_c)_1$ to a level $(\tau_{1'2'})_p$. All the basic equations (2) to (5) remain valid for the second phase of our model. But now we have an additional dislocation condition across F_1 given by: $[u]_{F_1} = U_1 f_1(v_2')H(t_1)$ across F_1 .

$$u_{F_1} = U_1 f_1(y_3) H(t_1)$$
 across F_1 .

$$(y_2' = 0, 0 \le y_3' \le D_1, t_1 = t - T_1)$$

where [u] is the discontinuity in u across F_1 , and $H(t_1)$ is Heaviside unit step function.

We solved the resulting boundary value problem by modified Green's function method following [1], [2] and correspondence principle (as shown in Appendix) and get the final solution for Displacement, Strain and Stresses after the movement across F_2 (t – $T_2 > 0$) as:

$$\begin{aligned} u &= (u)_{p} e^{-\frac{\mu t}{2\eta}} + y_{2} \tau_{\infty}(0) \left[\frac{1}{\mu} - \frac{\eta k}{\mu^{2}} + \frac{kt}{\mu} + \left(\frac{\eta k}{\mu^{2}} - \frac{1}{\mu} \right) e^{-\frac{\mu t}{2\eta}} \right] \\ &+ \frac{U_{1}}{2\pi} H(t - T_{1}) \psi_{1}(y_{2}, y_{3}) + \frac{U_{2}}{2\pi} H(t - T_{2}) \varphi_{1}(y_{2}, y_{3}) \\ e_{12} &= (e_{12})_{p} e^{-\frac{\mu t}{2\eta}} + \tau_{\infty}(0) \left[\frac{1}{\mu} - \frac{\eta k}{\mu^{2}} + \frac{kt}{\mu} + \left(\frac{\eta k}{\mu^{2}} - \frac{1}{\mu} \right) e^{-\frac{\mu t}{2\eta}} \right] \\ &+ \frac{U_{1}}{2\pi} H(t - T_{1}) \psi_{2}(y_{2}, y_{3}) + \frac{U_{2}}{2\pi} H(t - T_{2}) \varphi_{2}(y_{2}, y_{3}) \\ &\tau_{12} &= (\tau_{12})_{p} e^{-\frac{\mu t}{\eta}} + \tau_{\infty}(0) \left(1 + kt - e^{-\frac{\mu t}{\eta}} \right) \\ &+ \frac{\mu U_{1}}{2\pi} H(t - T_{1}) \left(1 + e^{-\frac{\mu t}{\eta}} \right) \psi_{2}(y_{2}, y_{3}) + \frac{\mu U_{2}}{2\pi} H(t - T_{2}) \left(1 + e^{-\frac{\mu t}{\eta}} \right) \varphi_{2}(y_{2}, y_{3}) \\ &\tau_{13} &= (\tau_{13})_{p} e^{-\frac{\mu t}{\eta}} + \frac{\mu U_{1}}{2\pi} H(t - T_{1}) \left(1 + e^{-\frac{\mu t}{\eta}} \right) \psi_{3}(y_{2}, y_{3}) + \frac{\mu U_{2}}{2\pi} H(t - T_{2}) \left(1 + e^{-\frac{\mu t}{\eta}} \right) \varphi_{3}(y_{2}, y_{3}) \\ &\tau_{13} &= (\tau_{13})_{p} e^{-\frac{\mu t}{\eta}} + \frac{\mu U_{1}}{2\pi} H(t - T_{1}) \left(1 + e^{-\frac{\mu t}{\eta}} \right) [\psi_{2}(y_{2}, y_{3}) \sin \theta_{1} - \psi_{3}(y_{2}, y_{3}) \cos \theta_{1}] \\ &+ \frac{\mu U_{1}}{2\pi} H(t - T_{1}) \left(1 + e^{-\frac{\mu t}{\eta}} \right) [\psi_{2}(y_{2}, y_{3}) \sin \theta_{1} - \psi_{3}(y_{2}, y_{3}) \cos \theta_{1}] \\ &+ \frac{\mu U_{2}}{2\pi} H(t - T_{2}) \left(1 + e^{-\frac{\mu t}{\eta}} \right) [\varphi_{2}(y_{2}, y_{3}) \sin \theta_{2} - \varphi_{3}(y_{2}, y_{3}) \cos \theta_{2}] \end{aligned}$$

where, ψ_1, ψ_2, ψ_3 and ϕ_1, ϕ_2, ϕ_3 are given in the Appendix.

It has been observed, as in [3] that the strains and the stresses will remain bounded everywhere in the model, including the upper and lower edges of the faults, the functions f_1 and f_2 should satisfy the following sufficient conditions:

(I) $f(y_3)$, $f'(y_3)$ are continuous in $0 \le y_3 \le D_1$,

II) Either (a) $f''(y_3)$ is continuous in $0 \le y_3 \le D_1$,

or (b) $f''(y_3)$ is continuous in $0 \le y_3 \le D_1$, except for a finite number of points of finite discontinuity in $0 \le y_3 \le D_1$,

or (c) $f''(y_3)$ is continuous in $0 \le y_3 \le D_1$, except possibly for a finite number of points of finite discontinuity and for the ends points of $(0, D_1)$, there exist real constants m<1 and n<1 such that $y_3^m f''(y_3) \to 0$ or to a finite limit as $y_3 \to 0 + 0$ and $(D_1 - y_3)^n f''(y_3) \to 0$ or to a finite limit as $y_3 \to D_1 - 0$ and (III) $f(D_1) = 0 = f'(D_1)$, f'(0) = 0,

These are sufficient conditions which ensure finite displacements, stresses and strains for all finite (y_2, y_3, t) . We can evaluate the integrals if $f(y_3)$ is any polynomial satisfying (I),(II) and (III). One such function is

$$f(y'_3) = \frac{{y'_3}^2 (y'_3 - D_1)^2}{\left(\frac{D_1}{2}\right)^4}$$

V. **Numerical Computations**

We consider $f_1(\xi'_3)$ to be

$$f_1(\xi'_3) = \frac{{\xi'_3}^2 (\xi'_3 - D_1)^2}{\left(\frac{D_1}{2}\right)^4}$$

(and a similar function for $f_2(\eta'_3)$) which satisfies all the conditions for bounded strains and stresses stated above.

Following [4], [5] and the recent studies on rheological behaviour of crust and upper mantle by [6], [7] the values to the model parameters are taken as:

 $\mu = 3.5x10^{11} dyne/sq.cm.$ $\eta = 5x10^{20}$ poise

 d_1 and d_2 =Depths of the faults F₁ and F₂ below the free surface = 10 km. and 25 km. respectively (noting that the depth of the major earthquake faults are in between 10-30 km.)

$$t_{1} = t - T_{1}$$

$$t_{2} = t - T_{2}$$

$$\tau_{\infty}(t) = \tau_{\infty}(0)(1 + kt), \qquad k = 10^{-9}$$

$$\tau_{\infty}(0) = 50 \text{ bar}$$

$$(\tau_{12})_{0} = 50 \text{ bar}$$

$$(\tau_{13})_{0} = 50 \text{ bar}$$

$$(\tau_{c})_{1} = 200 \text{ bar}$$

$$(\tau_{c})_{2} = 250 \text{ bar}$$

D = 10 km. = Distance measure along the horizontal axes between the upper edges of the fault.

VI. **Discussion of the Results**

In regions near California observations indicate that the rheological behaviour of the materials are such that the frictional and cohesive forces across the faults can withstand stresses of the order of 400 bars before slipping. In the present case, we assume that $(\tau_c)_1 \approx 200$ bar and $(\tau_c)_2 \approx 250$ bar. The computed times T_1 and T_2 for slips across vertical faults F_1 and F_2 to occur are found to be T_1 approx 98 years and $T_2 \approx$ 160 respectively. For inclined faults, $T_1 \approx 149$ and 117 years for $\theta_1 = \frac{\pi}{4}$ and $\frac{\pi}{3}$ respectively, and $T_2 = 193$ and 152 years for $\theta_2 = \frac{\pi}{4}$ and $\frac{\pi}{3}$ respectively. We assume that a major earthquake occurs due to the slip across F_1 and 80 percent of the accumulated stress released, so that $(\tau_{1'2'})_p \approx 40$ bar in the expression (7). We compute:

6.1. The effect of fault-slip across F_1 on the stress accumulation at a point near the middle of the neighbouring fault F₂

The effect of fault-slip across F_1 on the stress accumulation at a point near the middle of the neighbouring fault F_2 given by:

$$\frac{\mu U_1}{2\pi} H(t - T_1) \left(1 + e^{-\frac{\mu t}{\eta}} \right) [\psi_2(y_2, y_3) \sin\theta_1 - \psi_3(y_2, y_3) \cos\theta_1] \text{ at } y_2'' \approx 0.5 \text{ km and } y_3'' \approx 5 \text{ km}$$

This has been shown in Fig. (2) $(\theta_1 = \frac{\pi}{4} \text{ and } \theta_2 = \frac{\pi}{4})$ we find that the magnitude of the stress $\tau_{1'2'}$ near the mid point of F_2 is the order of 4.3 bar. Initially, just after T_1 its value was little more than 4.3 bar which came down slowly to 4.1 bar after a laps of about 400 years. It retains almost the same value but having a decreasing trend. The positive sign indicate that there is an increase in stress accumulation near F_2 due to a fault slip across F_1 .

6.2. The effect of fault-slip across F_2 on the stress accumulation at a point near the middle of the neighbouring fault F₁

The effect of fault-slip across F_2 on the stress accumulation at a point near the middle of the neighbouring fault F_1 given by:

$$\frac{\mu U_2}{2\pi} H(t - T_2) \left(1 + e^{-\frac{\mu t}{\eta}} \right) [\phi_2(y_2, y_3) \sin\theta_2 - \phi_3(y_2, y_3) \cos\theta_2] \text{ at } y_2' \approx 0.5 \text{ km and } y_3' \approx 5 \text{ km}$$

From Fig. (3) we find that the magnitude of the stress $\tau_{1}^{"} 2^{"}$ near the midpoint of the fault F_1 has a value 2.38 bar initially which decreases to a value 2.35 bar after a laps of about 400 years.

6.3. Stress accumulation against time at a point $y_2=8$ km., $y_3=8$ km. After the movement of the faults

Fig. (4) shows that the pattern of total stress over time at a particular point given by $y_2=8$ km., $y_3=8$ km. Total stress accumulation depends upon the inclination of the fault. Sudden release of stress at T_1 and T_2 are clearly visible. The stress increases at a slightly decreasing rate over years.

6.4. Region of stress accumulation and release

Fig. (5a) shows the regions of stress accumulation and release due to the fault movement across F_1 only (with fault F_1 is shown in black colour).

Fig. (5b) shows the regions of stress accumulation and release after the slip across both the faults F_1 and F_2 (with faults F_1 and F_2 are shown in black colours).

6.5. Contour map

Fig. (6a) shows contour map for stress accumulation/release in the medium due to the fault slip across F_1 (with fault F_1 is shown in black colour).

Fig. (6b) shows contour map for stress accumulation/release in the medium due to the fault slip across both the faults F_1 and F_2 (with faults F_1 and F_2 are shown in black colours).

VII. Appendix

7.1. Displacements, stresses, and strains before the commencement of the fault movement

We take Laplace transform of all constitutive equations and boundary conditions

$$\overline{\tau_{12}} = \frac{\frac{\partial \overline{u}}{\partial y_2}(\mu + 2\eta p)}{1 + \frac{\eta p}{\mu}} + \frac{\frac{\eta}{\mu}(\tau_{12})_0}{1 + \frac{\eta p}{\mu}} - \frac{2\eta \left(\frac{\partial u}{\partial y_2}\right)_0}{1 + \frac{\eta p}{\mu}}$$
(8)

where $\overline{\tau_{12}} = \int_0^{\infty} \tau_{12} e^{-pt_1} dt$, p being the Laplace transform variable. and a similar equation for $\overline{\tau_{13}}$.

Also the stress equation of motion in Laplace transform domain as:

$$\frac{\partial}{\partial y_2}(\overline{\tau_{12}}) + \frac{\partial}{\partial y_3}(\overline{\tau_{13}}) = 0 \tag{9}$$

and the boundary conditions are:

$$\overline{\tau_{13}} = 0 \text{ on } y_3 = 0, (-\infty < y_2 < \infty, t_1 \ge 0)$$

$$\overline{\tau_{13}} \to 0 \text{ as } y_3 \to \infty, \quad (-\infty < y_2 < \infty, t_1 \ge 0)$$

$$\left. \right\}$$

$$(10)$$

$$\overline{\tau_{12}} \to \overline{\tau_{\infty}}(p) \text{ as } |y_2| \to \infty, \text{ for } y_2 \ge 0, \ t_1 \ge 0.$$
Using (8) and other similar equation, we get from (9)
$$(11)$$

 $\nabla^2 \overline{U} = 0$

Thus we are to solve the boundary value problem (12) with the boundary conditions (10) to (11) Let,

$$\bar{u} = \frac{(u)_0}{p + \frac{\mu}{2\eta}} + Ay_2 + By_3$$

be the solution of (12), where

$$\overline{U} = \overline{u} - \frac{(u)_0}{p + \frac{\mu}{2n}}$$

Using the boundary conditions (10) to (11) and the initial conditions we get,

$$A = \frac{\mu + \eta p}{\mu(\mu + 2\eta p)} \overline{\tau_{\infty}}(p) - \frac{\eta \tau_{\infty}(0)}{\mu(\mu + 2\eta p)}$$
$$B = 0$$

On taking inverse Laplace transform, we get

$$\begin{split} u &= (u)_0 e^{-\frac{\mu t}{2\eta}} + y_2 \tau_{\infty}(0) \left[\frac{1}{\mu} - \frac{\eta k}{\mu^2} + \frac{kt}{\mu} + \left(\frac{\eta k}{\mu^2} - \frac{1}{\mu} \right) e^{-\frac{\mu t}{2\eta}} \right] \\ e_{12} &= (e_{12})_0 e^{-\frac{\mu t}{2\eta}} + \tau_{\infty}(0) \left[\frac{1}{\mu} - \frac{\eta k}{\mu^2} + \frac{kt}{\mu} + \left(\frac{\eta k}{\mu^2} - \frac{1}{\mu} \right) e^{-\frac{\mu t}{2\eta}} \right] \\ \tau_{12} &= \tau_{\infty}(0) \left(1 + kt - e^{-\frac{\mu t}{\eta}} \right) + (\tau_{12})_0 e^{-\frac{\mu t}{\eta}} \\ \tau_{13} &= (\tau_{13})_0 e^{-\frac{\mu t}{\eta}} \\ (\tau_{1'2'})_1 &= (\tau_{1'2'})_0 e^{-\frac{\mu t}{\eta}} + \tau_{\infty}(0) \left(1 + kt - e^{-\frac{\mu t}{\eta}} \right) sin\theta_1 \end{split}$$

(12)

7.2. Displacements, stresses and strains after the fault slip

We assume a gradual accumulation of shear stress near the faults which ultimately results in a movement across the faults. We now consider a sudden movement across any one of the faults, say F_1 , commencing at a time $t = T_1$, $(T_1 > 0)$ while the other (here F_2) remains locked since $(\tau_c)_1 < (\tau_c)_2$. Afterwards at time $t = T_2$, $(\geq T_1 > 0)$, the second fault F_2 also undergoes sudden movement. All the equations (2) to (5) remain valid for $t \geq T_1$ also, but in addition we have the following conditions which characterise the sudden movement across F_1 and F_2 :

$$[u]_{F_1} = U_1 f_1(y_3') H(t_1) \ across F_1. \ (y_2' = 0, \ 0 \le y_3' \le D_1, t_1 = t - T_1 \ge 0)$$

$$[u]_{F_2} = U_2 f_2(y_3'') H(t_2) \ across F_2. \ (y_2^{''} = 0, \ 0 \le y_3'' \le D_2, \ t_2 = t - T_2 \ge 0)$$

$$(13)$$

 $[u]_{F_2} = U_2 f_2(y_3) H(t_2)$ across F_2 . $(y_2 = 0, 0 \le y_3 \le D_2, t_2 = t - T_2 \ge 0)$ where U_1 and U_2 are the dislocations across F_1 and F_2 respectively. The functions $f_1(y_3')$ and $f_2(y_3')$ represent the depth-dependence of the dislocations along the faults F_1 and F_2 . $[u]_{F_1}$ and $[u]_{F_2}$ are the relative displacements across F_1 and F_2 respectively and $H(t_1)$, $H(t_2)$ are the Heaviside unit step functions.

We try to obtain the solutions for u, e_{12} , τ_{12} and τ_{13} in the following form :

$$\begin{array}{c} u = (u)_{1} + (u)_{2} + (u)_{3} \\ e_{12} = (e_{12})_{1} + (e_{12})_{2} + (e_{12})_{3} \\ \tau_{12} = (\tau_{12})_{1} + (\tau_{12})_{2} + (\tau_{12})_{3} \\ \tau_{13} = (\tau_{13})_{1} + (\tau_{13})_{2} + (\tau_{13})_{3} \end{array}$$

$$(14)$$

where $(u)_1$, $(e_{12})_1$, $(\tau_{12})_1$ and $(\tau_{13})_1$ satisfy the relations (2) to (5) and are similar to the displacements, stresses and strain in the absence of any fault movement. They are given by

$$\begin{aligned} (u)_{1} &= (u)_{p} e^{-\frac{\mu t}{2\eta}} + y_{2} \tau_{\infty}(0) \left[\frac{1}{\mu} - \frac{\eta k}{\mu^{2}} + \frac{kt}{\mu} + \left(\frac{\eta k}{\mu^{2}} - \frac{1}{\mu} \right) e^{-\frac{\mu t}{2\eta}} \right] \\ (e_{12})_{1} &= (e_{12})_{p} e^{-\frac{\mu t}{2\eta}} + \tau_{\infty}(0) \left[\frac{1}{\mu} - \frac{\eta k}{\mu^{2}} + \frac{kt}{\mu} + \left(\frac{\eta k}{\mu^{2}} - \frac{1}{\mu} \right) e^{-\frac{\mu t}{2\eta}} \right] \\ (\tau_{12})_{1} &= (\tau_{12})_{p} e^{-\frac{\mu t}{\eta}} + \tau_{\infty}(0) \left(1 + kt - e^{-\frac{\mu t}{\eta}} \right) \\ \tau_{13} &= (\tau_{13})_{p} e^{-\frac{\mu t}{\eta}} \\ (\tau_{1'2'})_{1} &= (\tau_{1'2'})_{p} e^{-\frac{\mu t}{\eta}} + \tau_{\infty}(0) \left(1 + kt - e^{-\frac{\mu t}{\eta}} \right) sin\theta_{1} \end{aligned}$$

where $(u)_p$, $(e_{12})_p$, $(\tau_{12})_p$, $(\tau_{13})_p$, $(\tau_{1'2'})_p$ are the initial values of u, e_{12} , τ_{12} , τ_{13} and $\tau_{1'2'}$ with respect to the new time origin.

This part of the solution represents the effect of initial field (with respect to the new time origin) and of the tectonic forces due to mantle convection.

Now $(u)_2$, $(e_{12})_2$, $(\tau_{12})_2$, $(\tau_{13})_2$ are all zeros for $t \le T_1$ and satisfy the relation (2) to (5) and (13) together with the following condition

 $(\tau_{12})_2 \rightarrow 0 \text{ as } |y_2| \rightarrow \infty \ y_3 \ge 0, \ t_1 \ge 0, \text{ replacing (4b).}$

and $(u)_3$, $(e_{12})_3$, $(\tau_{12})_3$, $(\tau_{13})_3$ are all zeros for $t \le T_2$ and satisfy the relation (2) to (5) and (13) together with the following condition

 $(\tau_{12})_3 \rightarrow 0 \text{ as } |z_2| \rightarrow \infty z_3 \ge 0, t_2 \ge 0, \text{ replacing (4b).}$

We now consider the boundary value problem for $(u)_2$, $(\tau_{12})_2$, $(\tau_{13})_2$ which are the functions of y_2, y_3 and time t, satisfy the equations (2) to (5) and (13). This part represents the effect of fault slip across F_1 on the system. To obtain the solutions for $(u)_2$, $(\tau_{12})_2$, $(\tau_{13})_2$ we take Laplace transforms with respect to t_1 (= $t - T_1$) and obtain a boundary value problem involving $(\bar{u})_2, (\bar{\tau}_{12})_2, (\bar{\tau}_{13})_2$ which are the Laplace transforms of $(u)_2, (\tau_{12})_2, (\tau_{13})_2$ respectively with respect to t_1 . Therefore,

$$\{(\bar{u})_2, (\bar{u})_3, (\overline{\tau_{12}})_2, (\overline{\tau_{12}})_3, (\overline{\tau_{13}})_2, (\overline{\tau_{13}})_3\} = \int_0^\infty \{(u)_2, (u)_3, (\tau_{12})_2, (\tau_{12})_3, (\tau_{13})_2, (\tau_{13})_3\} e^{-pt_1} dt_1$$

where p is the Laplace transform variable.

We have the following relations in transformed domain

$$(\overline{\tau_{12}})_2 = \frac{(\mu + 2\eta p)}{1 + \frac{\eta p}{\mu}} \frac{\partial(\overline{u})_2}{\partial y_2}$$
(15)

$$(\overline{\tau_{13}})_2 = \frac{(\mu + 2\eta p)}{1 + \frac{\eta p}{2}} \frac{\partial(\overline{u})_2}{\partial y_3}$$
(16)

$$\frac{\partial}{\partial v_2} (\overline{\tau_{12}})_2 + \frac{\partial}{\partial v_2} (\overline{\tau_{13}})_2 = 0 \tag{17}$$

$$\nabla^{2}(\bar{u})_{2} = 0$$
(18)
$$(\bar{t}_{1}\bar{v})_{2} = 0 \quad (-\infty \le v_{2} \le \infty \quad t \ge 0)$$
(19)

$$(\tau_{13})_2 \to 0 \text{ as } v_2 \to \infty \quad (-\infty < v_2 < \infty, \ t \ge 0) \tag{11}$$

$$(\overline{\tau_{12}})_2 \to 0 \text{ as } |y_2| \to \infty, \text{ for } y_2 \ge 0, \ t \ge 0.$$

$$(21)$$

$$[(\bar{u})_2]_{F_1} = \frac{b_1}{p} f_1(y'_3) \operatorname{across} F_1: y'_2 = 0, \ 0 \le y'_3 \le D_1$$
(22)

The resulting boundary value problem, can be solved by using modified form of Green's function technique, developed by Maruyama (1966) and correspondence principles :

 $(\bar{u})_{2}(\bar{Q}) = \int (\bar{u})_{2}(P) \{ G_{13}^{1}(Q, P) d\xi_{2} - G_{12}^{1}(Q, P) d\xi_{3} \}$ (23) where the integration is taken over the fault F_{1} and $Q(y_{1}, y_{2}, y_{3})$ is the field point in the half space, not on the fault, and $P(\xi_{1}, \xi_{2}, \xi_{3})$ is any point on the fault F_{1} and $(\bar{u})_{2}(P)$ is the discontinuity in $(\bar{u})_{2}$ across F_{1} at the point P while $G_{13}^{1}(Q, P)$ and $G_{12}^{1}(Q, P)$ are two Green's functions are given by :

$$G^{1}_{13}(Q,P) = \frac{1}{2\pi} \left[\frac{y_3 - \xi_3}{L^2} - \frac{y_3 + \xi_3}{M^2} \right]$$

and

$$G^{1}_{12}(Q,P) = \frac{1}{2\pi} \left[\frac{y_2 - \xi_2}{L^2} + \frac{y_2 - \xi_2}{M^2} \right]$$

where,

$$L^{2} = (y_{2} - \xi_{2})^{2} + (y_{3} - \xi_{3})^{2}, \quad M^{2} = (y_{2} - \xi_{2})^{2} + (y_{3} + \xi_{3})^{2}$$

Now $P(\xi_1, \xi_2, \xi_3)$ being a point on F_1 , $0 \le \xi_2 \le D_1 \cos\theta_1$, $0 \le \xi_3 \le D_1 \sin\theta_1$ and $\xi_2 = \xi_3 \cot\theta_1$. We introduce a change of coordinate axes from (ξ_1, ξ_2, ξ_3) to (ξ'_1, ξ'_2, ξ'_3) connected by the relations $\xi_1 = \xi'_1$

$$\xi_{1} - \xi_{1} - \xi_{1}$$

$$\xi_{2} = \xi'_{2} \sin\theta_{1} + \xi'_{3} \cos\theta_{1}$$

$$\xi_{3} = d_{1} - \xi'_{2} \cos\theta_{1} + \xi'_{3} \sin\theta_{1}$$

so that, $\xi'_{2} = 0$, $0 \le \xi'_{3} \le D_{1}$ on F_{1} . Now from (23)

$$(\bar{u})_{2}(Q) = \frac{U_{1}}{p 2\pi} \int_{0}^{b_{1}} f_{1}(\xi'_{3}) \left[\frac{y_{2}sin\theta_{1} - (y_{3} - d_{1})cos\theta_{1}}{[\xi'_{3}^{2} - 2\xi'_{3}\{y_{2}cos\theta_{1} + (y_{3} - d_{1})sin\theta_{1}\} + y_{2}^{2} + (y_{3} - d_{1})^{2}} + \frac{y_{2}sin\theta_{1} + (y_{3} + d_{1})cos\theta_{1}}{[\xi'_{3}^{2} - 2\xi'_{3}\{y_{2}cos\theta_{1} - (y_{3} + d_{1})sin\theta_{1}\} + y_{2}^{2} + (y_{3} + d_{1})^{2}} \right] d\xi'_{3}$$

or,

$$(\bar{u})_2(Q) = \frac{U_1}{p \ 2\pi} \psi_1(y_2, y_3)$$

where,

$$\psi_{1}(y_{2}, y_{3}) = \int_{0}^{D_{1}} f_{1}(\xi'_{3}) \left[\frac{y_{2}sin\theta_{1} - (y_{3} - d_{1})cos\theta_{1}}{\left[\xi'_{3}^{2} - 2\xi'_{3}\{y_{2}cos\theta_{1} + (y_{3} - d_{1})sin\theta_{1}\} + y_{2}^{2} + (y_{3} - d_{1})^{2} + \frac{y_{2}sin\theta_{1} + (y_{3} + d_{1})cos\theta_{1}}{\xi'_{3}^{2} - 2\xi'_{3}\{y_{2}cos\theta_{1} - (y_{3} + d_{1})sin\theta_{1}\} + y_{2}^{2} + (y_{3} + d_{1})^{2}} \right] d\xi'_{3}$$
where transform with respect to t_{1} and noting that

Taking Laplace transform with respect to t_1 and noting that (u) = 0 for $t \leq 0$

$$(u)_2 = \frac{U_1}{2\pi}\psi_1(y_2, y_3)H(t - T_1)$$

Now from (15),

$$(\overline{\tau_{12}})_2 = \frac{(\mu + 2\eta p)}{1 + \frac{\eta p}{\mu}} \frac{\partial(\overline{u})_2}{\partial y_2}$$
$$= \frac{(\mu + 2\eta p)}{1 + \frac{\eta p}{\mu}} \frac{U_1}{p 2\pi} \psi_2(y_2, y_3)$$

where,

$$\psi_{2}(y_{2}, y_{3}) = \frac{\partial}{\partial y_{2}} \{\psi_{1}(y_{2}, y_{3})\}$$

$$= \int_{0}^{D_{1}} f_{1}(\xi'_{3}) \left[\frac{\xi'_{3}^{2} \sin\theta_{1} - 2\xi'_{3}(y_{3} - d_{1}) - \{y_{2}^{2} - (y_{3} - d_{1})^{2}\}\sin\theta_{1} + 2y_{2}(y_{3} - d_{1})\cos\theta_{1}}{[\xi'_{3}^{2} - 2\xi'_{3}\{y_{2}\cos\theta_{1} + (y_{3} - d_{1})\sin\theta_{1}\} + y_{2}^{2} + (y_{3} - d_{1})^{2}]^{2}} + \frac{\xi'_{3}^{2}\sin\theta_{1} - 2y_{2}(y_{3} + d_{1}) - \{y_{2}^{2} - (y_{3} + d_{1})^{2}\}\sin\theta_{1} - 2y_{2}(y_{3} + d_{1})\cos\theta_{1}}{[\xi'_{3}^{2} - 2\xi'_{3}\{y_{2}\cos\theta_{1} - (y_{3} + d_{1})\sin\theta_{1}\} + y_{2}^{2} + (y_{3} + d_{1})^{2}]^{2}} \right] d\xi'_{3}$$

Now taking Laplace Inverse transformation and noting that

$$\begin{aligned} (\tau_{12})_2 &= 0 \text{ for } t_1 \leq 0\\ (\tau_{12})_2 &= \frac{\mu U_1}{2\pi} H(t - T_1) \left(1 + e^{\frac{\mu t}{\eta}}\right) \psi_2(y_2, y_3) \end{aligned}$$

Similarly from (16) we can find out

$$(\tau_{13})_2 = \frac{\mu U_1}{2\pi} H(t - T_1) \left(1 + e^{-\frac{\mu t}{\eta}} \right) \psi_3(y_2, y_3)$$

where,

$$\psi_{3}(y_{2}, y_{3}) = -\int_{0}^{D_{1}} f_{1}(\xi'_{3}) \left[\frac{\xi'_{3}^{2} \cos\theta_{1} - 2\xi'_{3}y_{2} + \{y_{2}^{2} - (y_{3} - d_{1})^{2}\}\cos\theta_{1} + 2y_{2}(y_{3} - d_{1})\sin\theta_{1}}{[\xi'_{3}^{2} - 2\xi'_{3}\{y_{2}\cos\theta_{1} + (y_{3} - d_{1})\sin\theta_{1}\} + y_{2}^{2} + (y_{3} - d_{1})^{2}]^{2}} - \frac{\xi'_{3}^{2}\cos\theta_{1} - 2\xi'_{3}y_{2} + \{y_{2}^{2} - (y_{3} + d_{1})^{2}\}\cos\theta_{1} - 2y_{2}(y_{3} + d_{1})\sin\theta_{1}}{[\xi'_{3}^{2} - 2\xi'_{3}\{y_{2}\cos\theta_{1} - (y_{3} + d_{1})\sin\theta_{1}\} + y_{2}^{2} + (y_{3} + d_{1})^{2}]^{2}} d\xi'_{3}$$

In the similar way, we can compute $(u)_3$, $(e_{12})_3$, $(\tau_{12})_3$, $(\tau_{13})_3$ the displacement, stresses and strains components due to sudden movement of the fault F_2 by simple linear transformation of coordinates (y_1, y_2, y_3) and (ξ'_1, ξ'_2, ξ'_3) to (z_1, z_2, z_3) and $(\eta'_1, \eta'_2, \eta'_3)$.

$$(u)_{3} = \frac{U_{2}}{2\pi}H(t - T_{2})\phi_{1}(y_{2}, y_{3})$$

$$(e_{12})_{3} = \frac{U_{2}}{2\pi}H(t - T_{2})\phi_{2}(y_{2}, y_{3})$$

$$(\tau_{12})_{3} = \frac{\mu U_{2}}{2\pi}H(t - T_{2})\left(1 + e^{-\frac{\mu t}{\eta}}\right)\phi_{2}(y_{2}, y_{3})$$

$$(\tau_{13})_{3} = \frac{\mu U_{2}}{2\pi}H(t - T_{2})\left(1 + e^{-\frac{\mu t}{\eta}}\right)\phi_{3}(y_{2}, y_{3})$$

where,

$$\begin{split} & \phi_{1}(y_{2}, y_{3}) = \int_{0}^{D_{2}} f_{2}(\eta'_{3}) \left[\frac{(y_{2} - D)sin\theta_{2} - (y_{3} - d_{2})cos\theta_{2}}{(\eta'_{3}^{2} - 2\eta'_{3}\{(y_{2} - D)cos\theta_{2} + (y_{3} - d_{2})sin\theta_{2}\} + (y_{2} - D)^{2} + (y_{3} - d_{2})^{2}} \right. \\ & \left. + \frac{(y_{2} - D)sin\theta_{2} + (y_{3} - d_{2})cos\theta_{2}}{\eta'_{3}^{2} - 2\eta'_{3}\{(y_{2} - D)cos\theta_{2} - (y_{3} - d_{2})sin\theta_{2}\} + (y_{2} - D)^{2} + (y_{3} - d_{2})^{2}} \right] d\eta'_{3} \\ & \phi_{2}(y_{2}, y_{3}) \\ = \int_{0}^{0} f_{2}(\eta'_{3}) \left[\frac{\eta'_{3}^{2}sin\theta_{2} - 2\eta'_{3}(y_{3} - d_{2}) - \{(y_{2} - D)^{2} - (y_{3} - d_{2})^{2}\}sin\theta_{2} + 2(y_{2} - D)(y_{3} - d_{2})cos\theta_{2}}{\left[\eta'_{3}^{2} - 2\eta'_{3}\{(y_{2} - D)cos\theta_{2} + (y_{3} - d_{2})sin\theta_{2}\} + (y_{2} - D)^{2} + (y_{3} - d_{2})^{2}} \right]^{2} \\ & + \frac{\eta'_{3}^{2}sin\theta_{2} + 2\eta'_{3}(y_{3} - d_{2}) - \{(y_{2} - D)^{2} - (y_{3} - d_{2})sin\theta_{2}\} + (y_{2} - D)^{2} + (y_{3} - d_{2})^{2}}{\left[\eta'_{3}^{2} - 2\eta'_{3}\{(y_{2} - D)cos\theta_{2} - (y_{3} - d_{2})^{2}\}sin\theta_{2} - 2(y_{2} - D)(y_{3} - d_{2})cos\theta_{2}} \right]}{\left[\eta'_{3}^{2} - 2\eta'_{3}\{(y_{2} - D)cos\theta_{2} - (y_{3} - d_{2})^{2}\}sin\theta_{2} + (y_{2} - D)^{2} + (y_{3} - d_{2})^{2}} \right]^{2} \\ & + \frac{\eta'_{3}^{2}cos\theta_{2} - 2\eta'_{3}\{(y_{2} - D)cos\theta_{2} - (y_{3} - d_{2})sin\theta_{2}\} + (y_{2} - D)^{2} + (y_{3} - d_{2})^{2}}{\left[\eta'_{3}^{2} - 2\eta'_{3}\{(y_{2} - D)cos\theta_{2} + (y_{3} - d_{2})sin\theta_{2}\} + (y_{2} - D)^{2} + (y_{3} - d_{2})^{2}} \right]^{2} \\ & - \frac{\eta'_{3}^{2}cos\theta_{2} - 2\eta'_{3}(y_{2} - D) + \{(y_{2} - D)^{2} - (y_{3} - d_{2})sin\theta_{2}\} + (y_{2} - D)^{2} + (y_{3} - d_{2})^{2}} \right]^{2} \\ & - \frac{\eta'_{3}^{2}cos\theta_{2} - 2\eta'_{3}(y_{2} - D) + \{(y_{2} - D)^{2} - (y_{3} - d_{2})sin\theta_{2}\} + (y_{2} - D)^{2} + (y_{3} - d_{2})^{2}} \right]^{2} \\ & - \frac{\eta'_{3}^{2}cos\theta_{2} - 2\eta'_{3}(y_{2} - D) + \{(y_{2} - D)^{2} - (y_{3} - d_{2})^{2}]cos\theta_{2} - 2(y_{2} - D)(y_{3} - d_{2})sin\theta_{2}}}{\left[\eta'_{3}^{2} - 2\eta'_{3}\{(y_{2} - D)cos\theta_{2} - (y_{3} - d_{2})sin\theta_{2}\} + (y_{2} - D)^{2} + (y_{3} - d_{2})^{2}} \right] d\eta'_{3} \end{aligned}$$

Figure. 1. The section of the fault system by the plane $y_1 = 0$ and relevant coordinate axes

Figure. 2. The effect of fault-slip across F_1 on the stress accumulation at a point near the middle of the neighbouring fault F_2

Figure. 3. The effect of fault-slip across F_2 on the stress accumulation at a point near the middle of the neighbouring fault F_1

Accumulation against time after the movement of the faults

Figure. 4. Stress accumulation against time at a point $y_2=8$ km., $y_3=8$ km. after the movement of the faults

Region of stress accumulation/reduction across F₁

Figure. 5a. Stress accumulation and release due to the fault movement across F_1 only

Figure. 5b. Stress accumulation and release after the slip across both the faults F_1 and F_2

Figure. 6a. Contour map for stress accumulation/release in the medium due to the fault slip across F_1

Contour map for stress accumulation/release across both the faults $\rm F_4$ and $\rm F_2$

Figure. 6b. Contour map for stress accumulation/release in the medium due to the fault slip across both the faults F_1 and F_2 (with faults F_1 and F_2 are shown in black colours)

VIII. Acknowledgements

One of the authors (Papiya Debnath) thanks the Principal and Head of the Department of Basic Science and Humanities, Techno India College of Technology, a unit of Techno India Group (INDIA), for allowing me to pursue the research, and also thanks the Geological Survey of India; Department of Applied Mathematics, University of Calcutta for providing the library facilities.

References

- T. Maruyama, On two dimensional dislocation in an infinite and semi-infinite medium, Bull. earthquake res. inst., tokyo univ., 44, part 3, pp. 811-871, 1966.
- K. Rybicki, Static deformation of a multilayered half-space by a very long strike-slip fault, Pure and Applied Geophysics, 110,p-1955-1966, 1973.
- [3] A. Mukhopadhyay, et.al. On stress accumulation near a continuously slipping fault in a two layer model of lithosphere, Bull. Soc. Earthq. Tech., vol.4, pp. 29-38. (with S.Sen and B. P. Pal), 1980b.17
- [4] L.M. Catlhes III, The viscoelasticity of the Earths mantle (Princeton University Press, Princeton, N.J, 1975.15)
- [5] K. Aki, P.G. Richards, Quantitive Seismology (University Science Books, Second Ed., 1980)
- [6] P. Chift, J. Lin, U. Barcktiausen, Marine and Petroleum Geology (19, 951-970, 2002)
- [7] S.I. Karato. (July,2010) Rheology of the Earth's mantle, A historical review Gondwana Research,vol-18, issue-1,pp-17-45.