A First-principles Study on the Surface Magnetism of the CsCl Structured CoX (X =Ti, V, Nb) (001) Surface

EunsungJekal, Dao Phuong

Department of material science, ETH Z[•]urich.* Hefei National Laboratory, University of Science and Technology of China, China.

Date of Submission: 13-11-2019	Date of Acceptance: 27-11-2019

(Dated: November 10, 2019)

The exchange stiffness constant A_{ex} was linearly propositional to the difference of spin wave resonance field H_{SWR} and ferromagnetic resonance field H_{FMR} . In this work, we measured the H_{SWR} and H_{FMR} with in-plane angles in order to analyze the angular dependence of A_{ex} in NiFethin film with thickness of 100 nm. The A_{ex} of NiFe thin film was shown isotropic behavior notdepending on the in-plane angles. The measured value of A_{ex} was 10.9×10^{-7} erg/cm and its value should be applied to the spin wave devices.

I. Introduction

Heterogeneous intermetallic compounds such as CoTi,FeTi, NiTi, etc. have attracted a lot of attention due to various interesting properties [1-3]. They have highstrength and high melting temperature and exhibit formation memory effects, so they have an x-ray absorption and emission spectrum and x-ray photoelectricity.

The physical properties have been explored using various methods such as self-release, Hall effect and specificheat experiment [4, 5]. The basic properties of matter can be understood from the density of states and energy bands obtained from the calculation of electronic structures. The electronic structure calculations for these compounds have been followed up since the first time by paconconstantopoulos.Eibler et al calculate the electronic structure of these compounds [6]. Rhee et al studied the relationship between the electronic structure and the optical properties of these compounds[7].Surface electronic structures of these compounds werealso studied. Canto and de Coss calculated the paramagnetic state of electronic structures using a self-sufficientclose coupling method for the (001) surface of FeTi withCsCl structure. As a result, when Fe atoms appear on thesurface, much of the local density is in a bound state. Thedensity of the state was about 160% of the bulk value, and the Ti surface atoms showed a high degree of antibonding at the local state density and the density of theFermi energy at 350% compared to the bulk. Kotoreevet al. Calculated the state density, charge distribution work function of the (110) surface in the paramagnetic state of X (X = Fe, Co, Ni) Ti. Mankovsky et al.calculated the electronic structure of the (001) plane forFeTi, which is paramagnetic in bulk, and the magnetic moment of the surface Fe atoms was about 2.27 μ_B , similar to that of bcc iron. The Ti of the layer showed $-0.45 \mu_B$ and the middle Ti atom had a magnetic moment of $-0.25 \mu_B$. Kellou et al. describe an electron sphere for the surface of X (X = Fe, Co, Ni) Ti (001) and the interface between them. As a result, when Ti atoms are on the surface in the XTi (001) system, they are 0.40 μ_B in FeTi(001), 0.62 μ_B in CoTi (001), and $0.73 \mu_B$ in NiTi (001). The magnetic moment was shown to increase. However, they did not present the calculation result when Fe, Co, and Ni atoms came out to the surface.

In this study, we investigate the spin polarization electronic structure of (001) surface in CoTi, CoV and CoNbwhich have magnetic properties in bulk and investigateits surface magnetism.

II. Method

First, it was calculated whether four compounds of Co,3*d* and 4*d* transition metal alloys, such as CoTi, CoV,CoZr, and CoNb, had a CsCl structure and showed magnetism in bulk. As a result, it was found that only theCoZr paramagnetic state was lower in energy than thespin polarization state and thus did not have magnetism.

Accordingly, surface electronic structure calculations on the (001) surface of three compounds of CoTi, CoV, andCoNb were performed. When creating (001) surfaces from these three compounds with CsCl structure, there could be a surfaceending with Co and a surface ending with X (X = Ti, V,Nb). Both of these surfaces were considered here. Thinplate model consisting of nine atomic layers each to calculate the electronic structure of two surfaces ending inCo or X atoms. In each system, if Co or X atoms areplaced on the surface, the atoms in the middle layer arealso Co or X atoms. For comparison, the lattice constants of these three compounds were all set to 5.652 a.u. likeCoTi.

The method used to calculate the surface electronicstructure is the full-potential liniarized augmented

planewave (FLAPW) method. At this time, the Muffin Tinradius of each atom was set to 2.25 a.u., and the number of basis functions for constructing the reinforced planarwave was about 150 per atom. The energy eigenvalues were obtained by solving the Kohn-Sham equation for 36k-points distributed evenly in the Brillouin region, which cannot be reduced two-dimensionally. The general gradient approximation (GGA) of the PW91 type is used to handle exchange-correlation potentials, and the core electrons are treated with the full relativity, which solves the Dirac equation. The subrelative treatment was not considered. Self-contained convergence conditions are charge density and spin mill Theplots were set at each time of 2.0×10^{-4} e/a.u.³ or less.

III. Result And Discussion

Tables I, II, and III show the number of spins, then umber of spin electrons, and the magnetic moment, depending on the angular momentum of each atom in the (001) surface system of CoTi, CoV, and CoNb, each having a CsCl structure in the bulk. For (001) surface ending with Ti in CoTi surface system, the surface surface of Tishowed that the number of p electrons (0.18) decreased significantly (0.24) compared to the middle layer due to the surface generation.

TABLE I. *l*-decomposed electrons within muffin-tin spheres on the atoms in the Co- and Ti-terminated CoTi(001) surfacesystems. The values of magnetic moments (MMs) calculated for the atoms are also given. S, S-1 and C denote the surface- subsurface- and center layers

Systems	Atom type	$s(\uparrow/\downarrow)$	$p(\uparrow/\downarrow)$	$d(\uparrow/\downarrow)$	$Total(\uparrow/\downarrow)$	MM
Co-term	Co(S)	0.40 (0.21/0.19)	0.18 (0.08/0.10)	7.15 (4.17/2.98)	7.73 (4.46/3.27)	1.19
	Ti(S-1)	0.21 (0.10/0.11)	0.22 (0.10/0.12)	1.73 (-0.72/1.01)	2.18 (0.94/1.24)	-0.31
	Co(C)	0.44 (0.23/0.21)	0.36 (0.18/0.18)	7.15 (3.98/3.17)	7.96 (4.40/3.56)	0.83
	Ti(S)	0.19 (0.10/0.09)	0.15 (0.08/0.07)	1.78 (1.24/0.54)	2.13 (1.42/0.71)	0.72
Ti-term	Co(S-1)	0.44 (0.23/0.21)	0.36 (0.18/0.18)	7.13 (4.04/3.09)	7.93 (4.46/3.47)	0.98
	Ti(C)	0.22 (0.11/0.11)	0.24 (0.12/0.12)	1.75 (0.88/0.87)	2.22 (1.11/1.11)	0.00

In this system, the magnetic moment of Ti surface atom was 0.72 μ_B , the middle layer Ti was not magnetic, and the magnetic moment of Coatom of S-1 layer was 0.98 μ_B . The density of states forthese is shown in Fig. 1. When the surface Ti atomsare compared to the center atoms, magnetic momentsare expressed due to some band narrowing and spin separation, which are typical surface effects. Comparing themagnetic moment of each atom obtained in this calculation with the calculation results of Kellou et al. [13],these results indicate that Co atoms of 0.62 μ_B and subsurface layer were 0.93 μ_B , which had a somewhat largermagnetic moment than the results of this calculation.

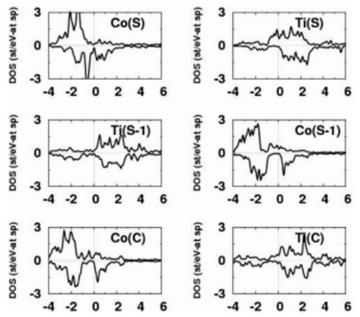


Fig. 1 Atom-projected spin-polarized density of states (DOS) for the chosen atoms of the Co- (left-pannels) and Ti-terminated (rightpannels) CoTi(001) surface. The spin-down DOS values are multiplied by a negative number, and the Fermi levels are set to zero.

This seems to be due to the difference in the radius of the adopted MT sphere.Surface systems ending with Co atoms have a surfaceCo atom of 1.19 μ_B , which can be considered as a result bulking, and is significantly increased from the value of layer Co atoms of 0.83 μ_B . The magnetic moment of the Ti (S-1) layer was negative -0.31 μ_B . However, Kellouet al. do not present the calculation results of surfacesystems ending with Coatoms and cannot be compared.

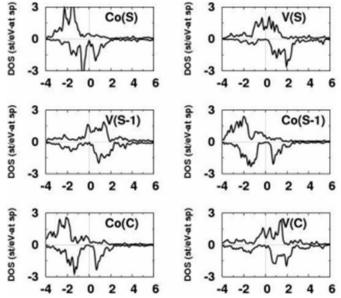

In the left panel of Fig. 1, the density of surface Coatoms shows a sharp surface state around -0.7 eV forminor spins and an increase in magnetic moment due to increased spin separation compared to the center layerCo atoms.

TABLE II.*I*-decomposed electrons within muffin-tin spheres on the atoms in the Co- and V-terminated CoV(001) surfacesystems. The values of magnetic moments (MMs) calculated for the atoms are also given. S, S-1. and C denote the surface- subsurface- and center layers

5-1, and C denote the sufface-, subsufface- and center layers						
Systems	Atom type	$s(\uparrow/\downarrow)$	$p(\uparrow/\downarrow)$	$d(\uparrow/\downarrow)$	$Total(\uparrow/\downarrow)$	MM
	Co(S)	0.38 (0.20/0.18)	0.18 (0.08/0.10)	7.12 (4.23/2.89)	7.69 (4.52/3.17)	1.34
Co-term	V(S-1)	0.21 (0.11/0.12)	0.22 (0.11/0.12)	1.73 (1.46/1.27)	2.18 (1.69/152)	0.17
	Co(C)	0.42 (0.22/0.10)	0.15 (0.08/0.07)	2.80 (2.21/0.59)	3.18 (2.41/0.77)	1.41
	V(S)	0.22 (0.12/0.10)	0.20 (0.10/0.10)	7.22 (3.61/3.61)	7.82 (3.91/3.91)	0.00
V-term	Co(S-1)	0.41 (0.21/0.20)	0.34 (0.16/0.18)	7.10 (4.14/2.96)	7.86 (4.52/3.34)	1.18
	V(C)	0.23 (0.11/0.12)	0.25 (0.12/0.13)	1.73 (1.69/1.04)	3.24 (1.94/1.30)	0.64

Table II lists the prime numbers belonging to eachatom in the CoV (001) surface system. The number of spins and the number of spin electrons and the magnetic moment are given. On the Co-terminated (001) surface, the Co *p*-electron number (0.18) was reduced by half compared to the middle Co atomic layer, and the spin moment due to p-electron was -0.02 μ_B . This effect and the magnetic moment due to *d*-electrons were reduced compared to the Co atoms in the middle layer, so that the magnetic moments of the surface Co atoms were decreased by 0.07 μ_B to 1.34 μ_B compared to the middle layer Co atoms. In this system, the magnetic moment of the V atoms in the S-1 layer is 0.17 μ_B , which is considerably larger than the 0.64 μ_B of the layer V atoms, which can be considered bulky in the CoV (001) system ending with the Co atom given in the left panel of Fig. 2, the surface Co and middle layer Co atoms are compared. As with CoTi (001), a sharp surface condition exists at

-0.7 eV. In the CoV (001) surfacesystem ending with V atoms, the magnetic moment of the surface V atoms is 1.64 μ_B , which is an increase of 2.5 times compared to 0.64 μ_B in the middle layer V. This is due to the significant increase in spin separation at the surface V atoms, as shown in the right panel of 2. Table III summarizes the data for the CoNb (001) surface system.

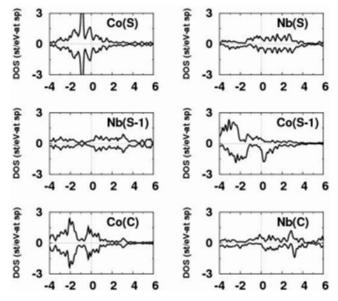


Fig. 2 Atom-projected spin-polarized density of states (DOS) for the chosen atoms of the Co- (left-pannels) and V-terminated (rightphannels) CoV(001) surface. The spin-down DOS values are multiplied by a negative number, and the Fermi levels are set to zero.

and C denote	the surface-, subs	surface- and center la	iyers			
Systems	Atom type	$s(\uparrow/\downarrow)$	$p(\uparrow/\downarrow)$	$d(\uparrow/\downarrow)$	$Total(\uparrow/\downarrow)$	MM
	Co(S)	0.40 (0.20/0.20)	0.20 (0.1/0.10)	7.22 (3.61/3.91)	7.82 (3.91/3.91)	0.00
Co-term	Nb(S-1)	0.18 (0.09/0.09)	0.20 (0.10/0.10)	2.14 (1.07/1.07)	2.56 (1.28/1.28)	0.00
	Co(C)	0.46 (0.23/0.23)	0.28 (0.19/0.19)	7.23 (3.62/3.61)	8.10 (4.06/4.04)	0.02
	Nb(S)	0.16 (0.08/0.08)	0.13 (0.07/0.06)	2.23 (1.24/0.99)	2.54 (1.40/1.14)	0.26
Nb-term	Co(S-1)	0.46 (0.24/0.22)	0.39 (0.20/0.19)	7.15 (4.22/2.93)	8.03 (4.48/3.35)	1.33
	Nb(C)	0.18 (0.09/0.09)	0.22 (0.11/0.11)	2.19 (1.24/0.95)	2.63 (1.46/1.17)	0.29

TABLE III.*I*-decomposed electrons within muffin-tin spheres on the atoms in the Co- and Nb-terminated Co(001) surfacesystems. The values of magnetic moments (MMs) calculated for the atoms are also given. S, S-1, and C denote the surface-.subsurface- and center layers

As shown in this table, in CoNb (001) systems ending with Nb atoms, the magnetic moment of the surfaceNb atoms was 0.26 μ_B , which was slightly reduced compared to 0.29 μ_B of the middle layer Nb atoms, but themagnetic moment of the Co atoms in the S-1 layer hada size of 1.33 μ_B . This can also be seen in the panel'sstate density in the middle right. One interesting thingis that the CoNb (001) surface system, which ends withCo atoms, shows in Table III that the magnetism dies because the magnetic moment of all atoms is close to zero.Comparing the case of surface Co atom and middle layerCo atom at the state density given in the left panel of 3,both surface spin atoms and surface spin atoms appearto be near -1.0 eV in the case of majority spin or minorspin electrons. Spin separation for both atoms have nomagnetic moment.

Fig. 3 Atom-projected spin-polarized density of states (DOS) for the chosen atoms of the Co- (left-pannels) and Nb-terminated (rightpannels) CoNb(001) surface. The spin-down DOS values are multiplied by a negative number, and the Fermi levels are set to zero.

In this study, the electronic structure of the surfacesystem was not calculated because CoZr showed paramagnetism in the bulk, but it is necessary to check whether magnetic surface is expressed on the surface as inFeTi (001) system in near future.

IV. Conclusion

The electronic structure of the (001) surface systemin Co and X (X = Ti, V, Nb) binary compounds with CsCl structure in bulk state was calculated by using the fullpotential liniarized augmented plane wave (FLAPW) method and its surface magnetism was investigated. Todo this, we adopted a single-plate model consisting of nine layers, each terminated with Co or X atoms. In

CoTi (001) systems ending with Co atoms, the surfacestate at -0.7 eV and their magnetic moments were $1.19\mu_B$, a significant increase over 0.83 μ B of the middle layerCo atom. In the CoV (001) surface system ending withV atoms, the magnetic moment of the surface V atomswas 1.64 μ_B , which is 2.5 times larger than that of themiddle layer. The magnetic moment of the surface Coatoms was 1.34 μ_B , which decreased slightly compared to the center Co atoms. In the CoNb (001) system, themagnetism disappeared in the surface system

ending withCo atoms, and in the system ending with Nb atoms, the magnetic moment of the surface Nb atoms was 0.26 μ_B ,0.03 μ_B less than that of the middle layer Nb atoms.

TABLE II.1-decomposed electrons within muffin-tin spheres on the atoms in the Co- and V-terminated CoV(001) surfacesystems. The values of magnetic moments (MMs) calculated for the atoms are also given. S, S-1, and C denote the surface-, subsurface- and center layers

Systems	Atom type	$s(\uparrow/\downarrow)$	p(↑/↓)	$d(\uparrow/\downarrow)$	$Total(\uparrow/\downarrow)$	MM
	Co(S)	0.38 (0.20/0.18)	0.18 (0.08/0.10)	7.12 (4.23/2.89)	7.69 (4.52/3.17)	1.34
Co-term	V(S-1)	0.21 (0.11/0.12)	0.22 (0.11/0.12)	1.73 (1.46/1.27)	2.18 (1.69/152)	0.17
	Co(C)	0.42 (0.22/0.10)	0.15 (0.08/0.07)	2.80 (2.21/0.59)	3.18 (2.41/0.77)	1.41
	V(S)	0.22 (0.12/0.10)	0.20 (0.10/0.10)	7.22 (3.61/3.61)	7.82 (3.91/3.91)	0.00
V-term	Co(S-1)	0.41 (0.21/0.20)	0.34 (0.16/0.18)	7.10 (4.14/2.96)	7.86 (4.52/3.34)	1.18
	V(C)	0.23 (0.11/0.12)	0.25 (0.12/0.13)	1.73 (1.69/1.04)	3.24 (1.94/1.30)	0.64

Reference

- M. Armbr'uster, R. Schl'ogl, and Y. Grin, Science and technology of advanced materials, 15, 034803 (2014). [1].
- [2]. J. Barrault, D. Duprez, A. Guilleminot, A. PercheronGuegan, and J. Achard, Applied Catalysis 5, 99 (1983).
- [3]. J. Barrault, D. Duprez, A. Percheron-Guegan, and J. Achard, Journal of the Less Common Metals 89, 537 (1983).
- P. Cong, R. D. Doolen, Q. Fan, D. M. Giaquinta, S. Guan, E. W. McFarland, D. M. Poojary, K. Self, H. W.Turner, and W. H. [4]. Weinberg, AngewandteChemie International Edition 38, 483(1999).
- A. Rogachev, A. Mukasyan, and A. Varma, Journalof Materials Synthesis and Processing 10, 31 (2002). [5].
- F. P. Netzer and E. Bertel, Handbook on the Physics and Chemistry of Rare Earths 5, 217 (1982).
 E. Hug and N. Bellido, Materials Science and Engineering: A 528, 7103 (2011). [6]. [7].

IOSR Journal of Applied Physics (IOSR-JAP) is UGC approved Journal with Sl. No. 5010, Journal no. 49054.

EunsungJekal " A First-principles Study on the Surface Magnetism of the CsCl Structured CoX (X =Ti, V, Nb) (001) Surface." IOSR Journal of Applied Physics (IOSR-JAP), vol. 11, no. 6, 2019, pp. 53-57. <u>ا</u>