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Abstract: This theory proposes a possible isotope shift in high Tc superconductors. The attractive electron-

electron pairing in the non-variational quasi-particles Hamiltonian formulation by Bogoliubov and Valatin 

leads due to deeply overlap of electron wave functions  around 
ZFe  ion,  providing  an initiation for the 

covalent mixing of electron wave functions to form a singlet pair in the superconductivity regime. The 

mathematical solution yields  a reversal of signs (stable and unstable energy) in the solution of the quadratic 

function and leads to negative isotope effect exponent.   

 

I. Introduction 
The Bardeen, Cooper and Scheriffer (BCS)[1] bilinear model Hamiltonian (BMH) is of the form;  
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Since this form of mean field Hamiltonian is bilinear in the creation and annihilation operators. We diagonalized 

by using a linear canonical transformation  of these operators introduced by Bogoliubov and Valatin (BV)[2-4]. 
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1, kko    are fermions annihilation operators,the coefficient  kk VU ,  are chosen to make the Hamiltonian 

diagonal and also for the coefficients of  


10 kk   and  01 kk   in the MH to vanish  and are required to satisfy 
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Putting Eqn(3) into Eqn(1), upon simplification, we obtain  
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The Hamiltonian is diagonalized if we select kU    and kV  so that the co-efficient of  


10 kk   and  01 kk    

vanish. This means that the Hamiltonian is carried into a pair containing only constant plus terms proportional to 

the occupation number 


1kko  . The coefficient of undesired terms is zero, than get 
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Resolving Eqn (8) by completing the square method, 
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Observing the math’s solutions[4-6] reveals the existence reversal of signs in k  and kE  arise naturally from 

the method of solution of the quadratic function resulting to the stable and the unstable solutions of the energy 
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The negative sign is chosen in other to constructively criticized, challenged the statement that the positive sign 

corresponds to the stable state solution of energy and not the negative. kE , gives the energy of excitation, k   

plays the role of an energy gap or minimum(maximum) energy excitation since at the Fermi level where  

,0k   0 kkE . Applying

k

k

kk
E

UV
2


  , 

kk

k

k

k

k

kk

k

k
kk

EV

UE

U

V
VU













 ,,1 22

   to get the unstable square solution in kk UV ,   and 

the equivalent solution in BCS we obtain 
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While Eqn (15) and Eqn (16)  differ slightly with the result of BSC in signs and in number, It is also greater than 
the stable solution of Eqn (17) ( which agrees very well with BCS ) by the factor  3. 
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The diagonalized model Hamiltonian becomes   
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The first sum in the equation of the band is constant which differ from the corresponding sum for the normal 

state. T = 0, kk    , 0 k  by exactly the condensation energy  )0()0(
2

1
)0()0(  NUU ns

, 

U(T) = internal energy, 0 k  is the energy gap at T=0. The second sum gives the increase in energy above 

the ground state in terms of the number operators for Fermions. 
 kkk CCb  applying the values of  

 kk
CC   into the equation and dropping off-diagonal terms in quasi-particle operator. Equation emphasizes 

the rudiment of the superconductivity model for the superconducting iron oxy-pnictide materials, attractive 

electron-electron pairing due to deep overlapping of electron wave functions  around 
ZFe  ion  of effective 

valence (Z),  provides an initiation for the covalent mixing of electron wave functions to form a singlet pair, 

 kk
CC  HM[7-9].  

191 1100  

 kkkkkkkkk VUCCb   

While the energy gap expressions are 
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At T= 0, equations reduces to Eqn (1) but at T > 0, the probability of a fermions quasi-particle with excitation 

energy, kE  is the Fermi- Dirac distribution,   1
1exp)(
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k   , being temperature dependent, the integral equation has a trivial solution for  0 k  which corresponds 

to the normal state (NS). Non trivial solution   exists if the NS is unstable and the system becomes 

superconducting. The equation above gives the superconducting state as long as the gap parameter for   is 

non-zero. 

 kkk ,1
, approaching this equation Coopers way[10] 
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Where   , sph VVV   is constant less than unity.  For weak superconductors, N(0)V << 1 and 

N(0)V  >> 1 for  strong coupling superconductors. Changing the sum over k to the density of states  )( kN   
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, is Debye cut-off frequency such that[11] DD K   . Since the density of state in the NS varies little 

within an energy  D  of the Fermi level and also )( kN   can be approximated by the constant value N(0) at 

the Fermi level 
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             Upon simplification of Eqn(24 ), we obtain the gap equation, critical temperature and apply it to weak 

coupling limits. 

   25
6.13

exp2
)(

,exp13.1 






 





ZTK

T
T

c

effDc



   

Since isotope effect exponent is as a results of the discovery of the interaction of electron-electron in the self 

consistence phonon mediated superconductivity. Hence, it value for iron pnictides can be got from the transition 
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temperature or the gap equations. Using this relation [12],  
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  and solving with Eqn(25), we obtain 
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Energy gap, transition temperature and isotope effect exponent can be predicted in the iron based 

superconducting materials from Eqn(25) and Eqn(26).Thus, isotope effect exponent is BCS and  negative (-0.2). 

 

 

 

II. Summary and Conclusion 
This theory shows that mathematical calculations of energy gap, transition temperature, isotope effect 

exponent and assumes from mathematical deductions that coherent length, penetration depth, specific heat and 

other properties have negative values. These contradict experimental and theoretical findings. However, It  

remains valid for property, such as isotope effect exponent and in agreement with theories and experimental 

predictions of isotope shift in iron pnictides and cuprates.  
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