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Abstract: In this paper, a microscopic theory of low temperature resistivity of a metal containing localized 

magnetic impurities is presented utilizing the method of second quantization and the time-dependent 

perturbation theory up to second order in the spin-exchange Hamiltonian. The transition rate of scattering is 

calculated both in the first and second order approximations considering non-spin-flip and spin-flip processes. 

The Kondo effect is revealed in the second-order spin-flip calculation. The results are in very good agreement 

with the experimental observations. 
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I. Introduction 
The study of the anomalous behavior of the low temperature resistivity of a metal containing trace of 

magnetic impurities has been of profound interest both for experimental and theoretical physicists. Since 1930’s 

[1,2], it has been observed that the resistivity of a host metal such as copper or gold with traces of magnetic 

impurities like iron, shows a minimum as temperature is lowered and then increases logarithmically with further 

lowering of temperature. The physics of the mechanism involved in such cases, was first correctly proposed in 

1964 by Kondo [3]. According to Kondo, the anomalous behavior of resistivity is due to an exchange interaction 

between the spins of local impurity d-electrons and the itinerant electrons. Since then the phenomenon of this 

resistivity minimum has been named as the Kondo effect. Although discovered long back, the Kondo effect has 

continued to be a very active field of research in condensed matter physics. Recently the Kondo effect has been 

observed in unusual materials. The formation of heavy fermions in inter-metallic compounds, those involving 

rare-earth elements like cerium, praseodymium and ytterbium is now thought to be a manifestation of the Kondo 

effect extended to a lattice of magnetic impurities. 

Sengupta and Baskaran [4] have recently made theoretical prediction of unconventional Kondo effect 

in graphene that can be tuned by a controlled gate voltage. In graphene a mass-less Dirac like spectrum for 

electrons is exhibited. The experimental works in this correction have been also reported [5, 6]. Even in 

quantum dots tunable Kondo effect has been observed [7, 8]. After the original suggestions of Kondo, various 

theoretical works have been reported to understand the Kondo effect in special materials. In this connection the 

work by Wehling et.al. [9] is worth mentioning, where the first-principle theory of resonant impurities and 

density functioned calculations have been used. In the present work we exploit the original Kondo Hamiltonian 

to perform a second-quantized calculation of spin-spin interactions involving the impurity and conduction 

electrons. We then use the Fermi golden rule extended to the second order in the perturbation Hamiltonian, to 

derive expressions for the scattering rate and hence the resistivity of a metal having traces of magnetic 

impurities. We find that the Kondo effect is not a first order perturbation effect but arises only in second order 

perturbation calculations involving spin-flip scattering processes. 

 

II. Kondo Hamiltonian in the second quantized form 
The Kondo effect arises due to the interaction of impurity spins (d-electrons) with those of the 

conduction electrons of the host metal. The simplest Hamiltonian for this interaction can be written as, 

Hk =  Ek

k,ς

ckς
+ ckς −  

Jkk ′

ħ2

k,k′

 Ѱk′
+ s Ѱk .  Ѱd

+S  Ѱd                                           (1) 

 

The first term in (1) is the unperturbed energy of the conduction electrons and the second term 

represents the perturbation Hamiltonian responsible for scattering of conduction electrons from k   to k′     , caused 

by the localized d-electrons. The quantity nkς = ckς
+ ckς  is the number operator for conduction electrons with 

spin index ς, each having kinetic energy Ek . The operators Ѱd   and Ѱk  are the two components of spinors that 

remove electrons from impurity and conduction states respectively. S   and s  denote the spin operators for 



A Perturbative calculation of the Low- Temperature … 

DOI: 10.9790/4861-07414252                                        www.iosrjournals.org                                          43 | Page 

impurity and conduction electrons respectively. The interaction Jkk ′  has the unit of energy and is the analogue of 

the famous Heisenberg spin-exchange interaction. 

As is known, the Kondo effect is due to anti-ferromagnetic interaction and hence  Jkk ′ < 0. To rewrite 

(1) in a more convenient form, we shall introduce the relevant creation and annihilation operators for electrons 

which are fermions. 

The two component spinors in (1) will be written as, 

        Ѱk =  
ck↑

ck↓

        ;          Ѱd   =     
cd↑

cd↓

                                                     (2) 

 

The non-vanishing anti-commutation relations for the creation and annihilation operators corresponding to 

conduction and impurity electrons follow from, 

 ck′ς′  , ckς
+  + = δkk ′δςς ′ 

                                          cdς′  , cdς
+  + = δςς ′                                             (3) 

 

We shall employ the spin-raising operators (s+ and S+) and the spin-lowering operators (s− and S−) which 

increases or decreases the z-component of electron spins. These are given by,  

                              ħς+ = sx + isy = s+;          ħΣ+ = Sx + iSy = S+ 

      ħς− = sx − isy = s−     ;         ħΣ− = Sx − iSy = S−                           (4) 

 

where ς and ∑ denote the corresponding Pauli spin matrices.  

Now, we have  

                      s . S  = sxSx + sy Sy + szSz                                                                  (5) 

 

Using (4), we can rewrite (5) as,  

                s . S  = szSz +
1

2
 s−S+ + s+S−                                                             (6)   

 

It will be convenient to write (6) in terms of the Pauli spin operators of the conduction electrons. Thus, 

               s . S  =
ħ

2
ςz . Sz +

ħ

2
 ς−S+ + S−ς+                                                      (7) 

 

where (4) has been used. 

To make calculations easier, we now find a simplified expression for the coupling constant  Jkk ′  for the spin-spin 

interaction. In the position space, the exchange interaction is a short-range point-like interaction. Hence, this can 

be represented by a Dirac delta-function. Thus, 

               J  r − r′    = J0δ  r − r′                                                                       (8) 

 

where J0 is a negative constant. 

In that case, Jkk ′  is the Fourier transform of (8). Using the integral representations of the Dirac delta-function, 

                  δ  r − r′    =
1

 2π 3
 eik   . r  −r′    d                                                    (9) 

 

And the Fourier transform integral, 

                     f r  =
1

 2π 
3

2 
 g(k  ) eik   .r  dk                                                       (10) 

 

We easily find that 

                                                         Jkk ′ = Fourier transform of J r − r′     

                                            =
J0

 2π 
3

2 
                                                                       (11) 

 

For convenience, the constant  2π 
3

2   can be replaced by the constant volume V. Thus 

                                Jkk ′ =
J0

V
                                                                                     (12) 
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Substituting (7) and (12) in the perturbation part of the Hamiltonian given in (1), we have  

Hexch = − 
J0

2ħV
    Ѱk′

+ ςzѰk Sz +  Ѱk′
+ σ−Ѱk S+ + S− Ѱk′

+ σ+Ѱk  

k,k ′

          (13) 

 

Equ.(13) can be further simplified by expressing it in terms of the creation and annihilation operators of the 

conduction electron. Using the matrices for the Pauli operator we have from (4), 

                         σ+ =  
0 1
0 0

                 ;       σ− =   
0 0
1 0

                                            (14) 

 

In that case, we obtain, 

Ѱ
k ′
+ σzѰk    =  c

k ′↑
+ ck′↓

+   
1 0
0 −1

  
ck↑

ck↓

  

                                                                 = c
k ′↑
+ ck↑ − c

k ′↓
+ ck↓                                                        (15) 

 

 

Ѱk′
+ ς+Ѱk =  ck′ ↑

+ ck′ ↓
+   

0 1
0 0

  
ck↑

ck↓

  

                                                                 = c
k ′↑
+ ck↓                                                                       (16)    

 

and  

 Ѱ
k ′
+σ−Ѱk =  c

k ′↑
+ c

k ′↓
+   

0 0
1 0

  
ck↑

ck↓
  

                                                                   = c
k ′↓
+ ck↑                                                                    (17)    

 

Substituting (15), (16), and (17) in (13), we then have  

Hexch = − 
J0

2ħ𝑉
    𝑐

𝑘 ′↑
+ 𝑐𝑘↑ − 𝑐

𝑘 ′↓
+ 𝑐𝑘↓ 𝑆𝑧 + 𝑆+𝑐

𝑘 ′↓
+ 𝑐𝑘↑ + 𝑆−𝑐

𝑘 ′↑
+ 𝑐𝑘↓ 

𝑘 ,𝑘 ′

              (18) 

 

III. Calculation Of Rate Of Scattering 

Our object is to calculate the resistivity arising due to the perturbation Hamiltonian given by (18), when 

a conduction electron in a given state 𝑘    gets scattered by a localized impurity d-electron into any of the final 

state 𝑘′     . We shall separately consider both non-spin-flip and spin-flip scattering processes. The transition rate of 

scattering due to first order and second order perturbation, is given by the famous Fermi’s golden rule [10],  

      𝑊𝑘→𝑘′ =  
2𝜋

ħ
  𝛿 𝐸𝑘 − 𝐸𝑘′ 

𝑘′

 𝑇𝑘′𝑘 +  
𝑇𝑘′𝑞𝑇𝑞𝑘

𝐸𝑘 − 𝐸𝑞
𝑞≠𝑘

 

2

                           (19) 

 

Where, 

                                    𝑇𝑘′𝑘 =  𝑘′    ; 𝑠𝑝𝑖𝑛 𝐻𝑒𝑥𝑐ℎ  𝑘  ; 𝑠𝑝𝑖𝑛                                                                  (20) 

 

is the relevant matrix element.  

 

In (20), spin refers to impurity spin. The quantity ∑ 𝛿 𝐸𝑘 − 𝐸𝑘′ 𝑘′  in (19), represents the sum over the final 

group of states  𝑘′    .  Using the well-known equivalence, 

                    =  
 4𝜋𝑘′

2𝑑𝑘′ 𝑉

 2𝜋ħ 3

𝑘′

                                                                         (21) 

 

We have, 

 𝛿 𝐸𝑘 − 𝐸𝑘′ 

𝑘′

=
4𝜋𝑉

 2𝜋ħ 3
 𝑘′

2𝑑𝑘′𝛿 𝐸 − 𝐸′ 

+∞

−∞

 

                       or           ∑ 𝛿 𝐸𝑘 − 𝐸𝑘′ 𝑘′ =
𝑉

2𝜋2ħ
3  𝑚 2𝑚 𝐸′

1
2 𝛿 𝐸 − 𝐸′ 𝑑𝐸′ 

                                                =
𝑉𝑚

2𝜋2ħ
3  2𝑚 𝐸

1
2                                                          (22) 
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Since, we are interested in states near the Fermi surface, we can write 

𝐸 = 𝐸𝐹 =
𝐾𝐹

2

2𝑚
 

so that (22) reduces to 

                             𝛿 𝐸𝑘 − 𝐸𝑘′ 

𝑘′

=  
𝑚𝐾𝐹

2𝜋2ħ
3 𝑉                                                           (23) 

 

Since (23) represents the total number of single-spin electron states, hence 

 

                             
1

𝑉
 𝛿 𝐸𝑘 − 𝐸𝑘′ 

𝑘′

 =  
𝑚𝐾𝐹

2𝜋2ħ
3 = 𝑁 0                                        (24)  

 

gives the density of such states. Thus, we can write 

                               𝛿 𝐸𝑘 − 𝐸𝑘′ 

𝑘′

= 𝑁 0 𝑉                                                             (25) 

 

Using (25) in (19), we have, 

                              𝑊𝑘→𝑘′ =  
2𝜋𝑁 0 𝑉

ħ
  𝑇𝐾′𝐾

(1)
+ 𝑇𝐾′𝐾

(2)
 

2
                                             (26)    

 

Where     𝑇𝐾′𝐾
(1)

= first-order matrix element 

𝑇𝐾′𝐾
(2)

= Second-order matrix element. 

Such that 

                               𝑇𝑘′𝑘 =  𝑘′    ; 𝑠𝑝𝑖𝑛 𝐻𝑒𝑥𝑐 ℎ  𝑘  ; 𝑠𝑝𝑖𝑛                                                   (27) 

 

where ‘spin’ refers to impurity spin and 𝐻𝑒𝑥𝑐ℎ  is given by (18). 

 

(A) First Order Scattering Processes 

To determine the rate of scattering of a conduction electron by the impurity electrons in the first order 

approximation, we have to calculate the transition amplitude 𝑇𝐾′𝐾
(1)

 appearing in (26). 

The relevant diagrams for the two possible processes corresponding to the non-spin-flip and the spin-flip of the 

conduction electron are shown in Fig1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(a) (b) 

Figure 1: (a) non-spin-flip and (b) spin-flip first order scattering processes. 

 

For the non-spin flip process shown in Fig.1a, only the first term in (18) will contribute. 

We write the composite state vector of the conduction and the impurity electrons as 

  𝑘 𝜍𝑧 ; 𝑆, 𝑚𝑠  =   𝑘 𝜍𝑧     𝑆, 𝑚𝑠                                                                    (28)  

In (28), 𝑆 is the total spin of the impurity electron and (ħ𝑚𝑠) is the eigen value of 𝑆𝑧 . Using (28) and (18) in 

(27), we then get, 

↑ 

↑ 

 

𝑘  ↑ 

𝑘′    ↑ 

𝑆𝑧  𝑆+ 

↓ 

𝑘  ↑ 

↑ 

 𝑘′    ↓ 
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𝑇𝐾′𝐾
(1)

=  −
𝐽0

2ħ𝑉
  𝑘′↑ 𝑐𝑘 ′↑

+ 𝑐𝑘↑ 𝑘↑  𝑆, 𝑚𝑠 𝑆𝑧  𝑆, 𝑚𝑠                                      (29) 

 

Since,  

 𝑘′↑ 𝑐𝑘 ′↑
+ 𝑐𝑘↑ 𝑘↑ =  𝑘′↑ 𝑘′↑ = 1                                    

and 

                                     𝑆, 𝑚𝑠 𝑆𝑧  𝑆, 𝑚𝑠 = ħ𝑚𝑠 𝑆, 𝑚𝑠 𝑆, 𝑚𝑠 = ħ𝑚𝑠                                    (30) 

 

we can reduce (29) to,  

                            𝑇𝐾′𝐾
(1)

= − 
𝐽0

2𝑉
 𝑚𝑠                                                                  (31) 

 

Substituting (31) in (26), we have for the first-order scattering,  

                        𝑊𝑘→𝑘′

(1)  𝑛𝑜𝑛 − 𝑓𝑙𝑖𝑝 =  
𝜋

2ħ𝑉
 𝑁 0 𝐽0

2𝑚𝑠
2                                    (32)        

 

Next, we consider the spin-flip process shown in Fig.1b. As the spin of the conduction electron flips, the spin of 

the impurity changes as, 𝑚𝑠 → 𝑚𝑠 + 1. Taking into account the second term in (18), we can write,  

    𝑇𝑘↑→𝑘′↓
(1)

=  −
𝐽0

2ħ𝑉
  𝑘′ ↓  𝑐

𝑘 ′↓
+ 𝑐𝑘↑ 𝑘↑  𝑆, 𝑚𝑠 + 1 𝑆+ 𝑆, 𝑚𝑠                        (33) 

 

Using the well-known result [11],  

                            𝑗′, 𝑚′ 𝐽± 𝑗, 𝑚 = ħ 𝑗 𝑗 + 1 − 𝑚(𝑚 ± 1) 
1

2 𝛿𝑗𝑗 ′𝛿𝑚 ′,𝑚±1                              (34) 

 

We have  

                             𝑆, 𝑚𝑠 + 1 𝑆+ 𝑆, 𝑚𝑠 = ħ 𝑆 𝑆 + 1 − 𝑚𝑠(𝑚𝑠 + 1)                                     (35) 

 

Also 

                                         𝑘′ ↓  𝑐
𝑘 ′↓
+ 𝑐𝑘↑ 𝑘↑ =  𝑘′ ↓  𝑘′ ↓ = 1                                                    (36) 

 

Hence, we can simplify (33) as, 

                        𝑇𝑘↑→𝑘′↓
(1)

= − 
𝐽0

2𝑉
  𝑆 𝑆 + 1 − 𝑚𝑠 𝑚𝑠 + 1                                                        (37) 

 

The corresponding transition rate of scattering is, therefore, given by 

                           𝑊
𝑘→𝑘 ′

 1 
 𝑓𝑙𝑖𝑝 =  

𝜋

2ħ𝑉
 𝑁 0 𝐽0

2[𝑆 𝑆 + 1 − 𝑚𝑠 𝑚𝑠 + 1 ]                             (38) 

 

The total rate of scattering is the sum of (32) and (38). Thus,  

                                  𝑊
𝑘→𝑘 ′

 1 
=  

𝜋

2ħ𝑉
 𝑁 0 𝐽0

2[𝑆 𝑆 + 1 − 𝑚𝑠]                                                  (39)    

 

When we sum over all impurities, the 𝑚𝑠-term in (39) vanishes. If 𝑁𝑖  is the number of impurity electrons in V, 

then due to scattering by them, we shall have 

                                        𝑊
𝑘→𝑘 ′

 1 
=  

𝜋

2ħ
 𝑆 𝑆 + 1 𝑛𝑖𝐽0

2𝑁 0                                                         (40) 

 

where  𝑛𝑖  the density of impurities. 

 Now, the density of conduction electrons at 𝑇 = 0, is given by [12],  

                                             𝑛𝑒 =
𝐾𝐹

3

3𝜋2ħ
3                                                                                               (41) 

 

Also, as shown earlier, 

                       𝑁 0 =  
𝑚𝐾𝐹

2𝜋2ħ
3                                                                                (42) 

 

Hence,                          𝑛𝑒 = 𝑁 0  
4𝐸𝐹

3
                                                                                            (43) 
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Writing the fractional concentration of impurities as 

                               𝑐 =
𝑛𝑖

𝑛𝑒

                                                                                          (44) 

 

we can now, because of (43), rewrite (40) as  

                𝑊
𝑘→𝑘 ′

 1 
=  

2𝜋𝑐𝐸𝐹

3ħ
 𝑆 𝑆 + 1  𝐽0𝑁(0) 2                                                (45) 

 

The resistivity 𝜌 is given by the well-known relation [12],  

                                         𝜌 =  
𝑚

𝑒2𝑛𝑒

 𝑊𝑘→𝑘′                                                          (46) 

 

Because of (45), it is clear from (46), that the resistivity is temperature independent in the first-order 

perturbation calculation. Hence Kondo effect cannot be a first-order effect. 

 

(B) Second-Order Scattering Processes 

We now calculate the second order transition amplitude 𝑇𝐾′𝐾
(2)

 in the expression for the scattering rate given in 

(26). This involves double scattering process as in the second Born approximation and hence we have,  

𝑇𝐾′𝐾
(2)

=  
 𝑘′ 𝜍𝑧 ; 𝑆, 𝑆𝑧    𝐻𝑒𝑥𝑐ℎ  𝑞 𝜍𝑧 ; 𝑆, 𝑆𝑧  𝑞 𝜍𝑧 ; 𝑆, 𝑆𝑧    𝐻𝑒𝑥𝑐ℎ  𝑘 𝜍𝑧 ; 𝑆, 𝑆𝑧 

𝐸𝑘 − 𝐸𝑞
𝑞≠𝑘

         (47) 

The relevant diagrams are shown in Fig.2. 

 

 
(a)                                                                                   (b) 

 

 
(c)                                                                        (d) 

Figure 2: Second order scattering processes: (a) and (b) for non-spin-flip and (c) and (d) for spin-flip 

scatterings. 
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We first calculate 𝑇𝐾′𝐾
(2)

 for the non-spin-flip cases in (a) and (b) in Fig.2. In Fig. (2a), the initial electron 𝑘  ↑ gets 

scattered into an unoccupied intermediate state𝑞 ↑, and then finally into the state 𝑘′    ↑. 

We have to consider only the first term in  𝐻𝑒𝑥𝑐ℎ . given in (18). Again, since electrons are frmions, we must use 

the Fermi distribution function 𝑓𝑞  while evaluating𝑇𝐾′𝐾
(2)

. Now, we know that 

𝑓𝑞 = Probability that the state q is occupied. 

And     1 − 𝑓𝑞 = probability that the state q is unoccupied. 

 

Taking analogy from (29) and (30), we have from (47), 

𝑇
𝐾 ′𝐾

 2 
 𝑛𝑜𝑛 − 𝑓𝑙𝑖𝑝 =  −

𝐽0

2ħ𝑉
 

2

   𝑆, 𝑚𝑠 𝑆𝑧  𝑆, 𝑚𝑠  
2

𝑞

 1 − 𝑓𝑞 

𝐸𝑘 − 𝐸𝑞

 

                                                   =  −
𝐽0

2ħ𝑉
 

2

 ħ𝑚𝑠 
2  

 1 − 𝑓𝑞 

𝐸𝑘 − 𝐸𝑞
𝑞

                         (48) 

 

We have multiplied by the factor  1 − 𝑓𝑞  to emphasized that the state  𝑞 ↑, is unoccupied. 

Defining  

                                 𝑝 𝑘 =
1

𝑉
 

1 − 𝑓𝑞

𝐸𝑘 − 𝐸𝑞
𝑞

                                                                (49) 

 

We rewrite (48) as,  

                   𝑇
𝐾 ′𝐾

 2 
 𝑛𝑜𝑛 − 𝑓𝑙𝑖𝑝 =  −

𝐽0𝑚𝑠

2
 

2

 
𝑝 𝑘 

𝑉
                                                (50) 

 

Fig.(2b) corresponds to the case where the intermediate state 𝑞  is occupied.The transition amplitude, in this case 

is the same as in (50), except that 𝑝 𝑘  must be replaced by 

                                ℎ 𝑘 =
1

𝑉
 

𝑓𝑞

𝐸𝑘 − 𝐸𝑞
𝑞

                                                                        (51)      

 

Hence, for Fig. (2b), we have 

                                  𝑇
𝐾 ′𝐾

 2 
 𝑛𝑜𝑛 − 𝑓𝑙𝑖𝑝 = −  

𝐽0𝑚𝑠

2
 

2

 
ℎ 𝑘 

𝑉
                                   (52) 

 

The total transition amplitude is the sum of (50) and (52), and is given by 

                          𝑇𝑛𝑜𝑛 −𝑓𝑙𝑖𝑝
 2 

 𝑘  ↑→ 𝑘′    ↑ =  −
𝐽0𝑚𝑠

2𝑉
 

2

  
1

𝐸𝑘 − 𝐸𝑞

 

𝑞

                    (53) 

 

In (53), the Fermi-distribution functions get cancelled. Thus, the transition amplitude given by (53) is 

independent of temperature and hence the resulting resistivity. We, therefore, conclude that the second-order 

scattering involving no-spin-flip process cannot give rise to Kondo effect. 

To get temperature-dependent resistivity, it is necessary to consider the scattering processes in Fig.(2(c) 

and (2d)), where spin-flip occurs in the intermediate state for both the conduction and the impurity electrons. 

In this spin-flip case, the second and the third terms in (18) will contribute. Substituting these in (47) and 

referring to Fig. (2c), we have  

𝑇
𝐾 ′𝐾

 2 
=  −

𝐽0

2ħ𝑉
 

2

  𝑆, 𝑚𝑠 𝑆− 𝑆, 𝑚𝑠 + 1 

𝑞

 𝑆, 𝑚𝑠 + 1 𝑆+ 𝑆, 𝑚𝑠 ×  
1 − 𝑓𝑞

𝐸𝑘 − 𝐸𝑞

       (54) 

 

But    𝑆, 𝑚𝑠 𝑆− 𝑆, 𝑚𝑠 + 1 =  𝑆, 𝑚𝑠 + 1 𝑆+ 𝑆, 𝑚𝑠 
∗ 

Using this result in (54), we obtain 

                  𝑇
𝐾 ′𝐾

 2 
=  

𝐽0

2ħ𝑉
 

2

   𝑆, 𝑚𝑠 + 1 𝑆+ 𝑆, 𝑚𝑠  
2

𝑞

 
1 − 𝑓𝑞

𝐸𝑘 − 𝐸𝑞

                              (55) 
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Making use of (34) and (49) in (55), we then get 

              𝑇
𝐾 ′𝐾

 2 
=  

𝐽0

2
 

2

 
1

𝑉
  𝑆 𝑆 + 1 − 𝑚𝑠 𝑚𝑠 + 1  𝑝 𝑘                                           (56) 

 

In the same way the contribution from Fig.(2d) will be given by 

                      𝑇
𝐾 ′𝐾

 2 
=  

𝐽0

2
 

2

 
1

𝑉
  𝑆 𝑆 + 1 − 𝑚𝑠 𝑚𝑠 − 1  ℎ 𝑘                                     (57) 

 

where ℎ 𝑘 is given by (51). 

We rewrite (57) as 

                 𝑇
𝐾 ′𝐾

 2 
=  

𝐽0

2
 

2

 
1

𝑉
  𝑆 𝑆 + 1 − 𝑚𝑠 𝑚𝑠 + 1 + 2𝑚𝑠 ℎ 𝑘                             (58) 

 

The total contribution from the two spin-flip processes is given by the sum of (56) and (58). We thus get, 

𝑇𝑓𝑙𝑖𝑝
 2 

 𝑘  ↑→ 𝑘 ′    ↑ =  
𝐽0

2
 

2

 
1

𝑉
  2𝑚𝑠ℎ 𝑘 +  𝑆 𝑆 + 1 − 𝑚𝑠 𝑚𝑠 + 1  ×  𝑝 𝑘 + ℎ 𝑘        (59) 

 

 In (59), the second term involving  𝑝 𝑘 + ℎ 𝑘  will be temperature-independent and hence it will be 

ignored. However, the first term in (59) containing h (k) will be temperature-dependent. Retaining this term, we 

have,  

                 𝑇𝑓𝑙𝑖𝑝
 2 

 𝑘  ↑→ 𝑘 ′    ↑ =  
𝐽0

2
 

2

 
1

𝑉
  2𝑚𝑠ℎ 𝑘  =  

𝐽0
2𝑚𝑠

2𝑉
 ℎ 𝑘                                    (60)   

 

To calculate ℎ 𝑘  in (60), we convert the summation over q into an integral and we write, 

                ℎ 𝑘 =
1

𝑉
 

 4𝜋𝑞2𝑑𝑞 𝑉

 2𝜋ħ 3

𝑘𝐹

0

 
1

𝑘2

2𝑚
−

𝑞2

2𝑚

                                                                       (61)   

 

where we have used the fact that 𝑓𝑞 = 1, at T=0. 

Equ.(61) can be expressed in terms of N(0) as, 

                                    ℎ 𝑘 =
2𝑁(0)

𝑘𝐹

  
𝑞2

𝑘2 − 𝑞2
 𝑑𝑞

𝑘𝐹

0

                                                      (62) 

 

The integral in (62) can be evaluated as, 

  
𝑞2

𝑘2 − 𝑞2
 𝑑𝑞

𝑘𝐹

0

= − 𝑑𝑞
𝑘𝐹

0

+
𝑘

2
  

1

𝑘 + 𝑞
+

1

𝑘 − 𝑞
 𝑑𝑞

𝑘𝐹

0

 

                                                     = −𝑘𝐹 −
𝑘

2
𝑙𝑛  

𝑘 − 𝑘𝐹

𝑘 + 𝑘𝐹

                                                           (63) 

 

Now, for𝑇 ≠ 0, but 𝑇 ≪ 𝑇𝐹 , the range of k-values for the thermally excited electrons is determined by, 

 
𝑘2

2𝑚
−

𝑘𝐹
2

2𝑚
 ≈ 𝑘𝐵𝑇    ( 𝑘𝐵  is the Boltzmann constant) 

This gives,  

 𝑘 − 𝑘𝐹  𝑘 + 𝑘𝐹 ≈ 2𝑚𝑘𝐵𝑇 
and hence,  

                        
𝑘 − 𝑘𝐹

𝑘 + 𝑘𝐹

 ≈
𝑚𝑘𝐵𝑇

2𝑘𝐹
2 =

𝑚𝑘𝐵𝑇

4𝑚𝐸𝐹

=
1

4
 

𝑇

𝑇𝐹

                                                         (64)   

 

where we have used the results,   

𝑘𝐹
2 = 2𝑚𝐸𝐹       and  𝐸𝐹 = 𝑘𝐵𝑇𝐹  

Substituting (64) in (63), we obtain 

  
𝑞2

𝑘2 − 𝑞2
 𝑑𝑞

𝑘𝐹

0

= −𝑘𝐹 −
𝑘

2
 𝑙𝑛  

1

4
 + 𝑙𝑛  

𝑇

𝑇𝐹

   

Writing 𝑘 ≈ 𝑘𝐹  and ignoring the constant terms, and then substituting the result in (62), we get 
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                                               ℎ 𝑘 = 𝑁 0 𝑙𝑛  
𝑇𝐹

𝑇
                                                                (65)      

 

Using (65) in (60), we have  

                                𝑇𝑓𝑙𝑖𝑝
 2 

 𝑘  ↑→ 𝑘 ′    ↑ =  
𝐽0

2𝑚𝑠

2𝑉
 𝑁 0 𝑙𝑛  

𝑇𝐹

𝑇
                                     (66) 

 

To get the total transition amplitude, we have to add  𝑇(1) 𝑘  ↑→ 𝑘′    ↑  given by (31) to (66). We arrive at the 

result, 

                         𝑇  𝑘  ↑→ 𝑘 ′    ↑ =  −
𝑚𝑠

2𝑉
 𝐽0  1 − 𝐽0𝑁 0 𝑙𝑛  

𝑇𝐹

𝑇
                                              (67)         

 

If we compare (67) with (31), we see that in the second-order corrections, we should replace 𝐽0 by the 

temperature-dependant term, as follows, 

𝐽0 ⟹ 𝐽0  1 − 𝐽0𝑁 0 𝑙𝑛  
𝑇𝐹

𝑇
   

Using this replacement in (45), we then get, 

Wk→k′ =  
2πEF

3ħ
 c S S + 1 N 0 2J0

2  1 − 2J0N 0 ln  
TF

T
                                    (68) 

 

In writing (68), we have retained terms up to third power in J0. 

To compare our results with experiments, it will be convenient to rewrite (68) as, 

          Wk→k ′ = W 0  c − 2cJ0N 0 ln  
TF

T
                                                                     (69) 

 

Where W 0 =  
2πEF

3ħ
  S S + 1 N0

2J0
2  is clearly independent of temperature and impurity concentration, and 

hence a constant for a given host metal. 

Using the expressions for ρ given by (46), we have, 

                    
ρimp (T)

ρ(0)
= c − 2J0N 0 c ln  

TF

T
                                                                 (70) 

 

 Ignoring the first term in (70), we have the following expression for the variation of ρimp (T) with 

temperature and concentration of impurities. 

                            
ρimp  T 

ρ 0 
= −2J0N 0 c ln  

TF

T
                                                              (71) 

 

At very low temperatures, there is also a contribution to ρ T , due to only electron –phonon scattering. This is 

given by [12],  

                      
ρph  T 

ρ 0 
= aT5                                                                                               (72) 

 

The sum of (71) and (72) gives the total resistivity of a host metal containing magnetic impurities. Thus we have  

                        
ρ T 

ρ 0 
= aT5 − 2J0N 0 c ln  

TF

T
                                                                  (73) 

 

 It is the quantity given by (73) which is measured experimentally. For comparison with experiment, we 

note that the second term in (73) is positive since J0 is negative for anti-ferromagnetic coupling of spins. We 

now consider the following representative values of the parameters in (73), taken from [13], 

N 0 ≈ ne ≈ 1022m−3 

                                           J0 ≈ 0.02ev = 3.2 × 10−21J                                       (74) 

 

TF ≈ 104K 

a ≈ 10−10k−5 
 Using (74) in (73) and taking two values of c corresponding to 0.05% and 0.1% impurity, we present 

the theoretical results in Fig.3. 

The corresponding experimental results for Cu with Fe impurities are shown in Fig.4. 
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Figure 3: Temperature variation of resistivity,
ρ T 

ρ 0 
, showing clearly the appearance of resistivity minimum. 

 

 
Figure 4: Resistances at low temperatures for Cu with 0.05%, 0.1% and 0.2% of Fe impurities. 
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The theoretical curves in Fig.3.Indicate how for a general host metal containing magnetic impurities, 

the low-temperature resistivity behaves, showing clearly the logarithmic increase and the existence of a 

resistivity minimum. The theoretically predicted trend is in agreement with the experimental observations 

shown in Fig.4. It should be emphasized that experimentally one determines resistivity for a specified alloy of a 

non-magnetic metal and magnetic impurities. The results from alloy to alloy differ in specific details but still 

retaining similar trends.  

 

IV. Conclusion 
In this work, we have presented a quantum mechanical formulation of the anomalous behavior of the 

low-temperature resistivity of a metal in the presence of magnetic impurities. The results indicate that the Kondo 

effect is a very subtle physical phenomenon which manifests itself only as a second order perturbation in the 

spin-exchange interaction Hamiltonian. The existence of a resistivity minimum and the logarithmic increase in 

resistivity are clearly brought out. The theory presented is quite impressive and successful, considering the high 

level of complexities of physical mechanisms involved in the Kondo effect  
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