Spectroscopic Properties of Er³⁺ Doped Zinc Lithium Bismuth Borate Glasses

S.L.Meena and Beena Bhatia

Ceramic Laboratory, Department of physics, Jai Narain Vyas University, Jodhpur 342001(Raj.) India

Abstract: Zinc lithium bismuth borate glasses containing Er^{3+} in (25- x): Bi_2O_3 :20 Li_2O :20ZnO: $35B_2O_3$:x Er_2O_3 (where x=1, 1.5,2 mol %) have been prepared by melt-quenching method. The amorphous nature of the glasses was confirmed by x-ray diffraction studies. Optical absorption and fluorescence spectra were recorded at room temperature for all glass samples. Judd-Ofelt intensity parameters Ω_{λ} (λ =2, 4, 6) are evaluated from the intensities of various absorption bands of optical absorption spectra. Using these intensity parameters various radiative properties like spontaneous emission probability, branching ratio, radiative life time and stimulated emission cross-section of various emission lines have been evaluated.

Keywords: Amorphous nature, Optical Properties, Judd-Ofelt Theory, Rare earth ions.

I. Introduction

Glasses doped with various rare –earth ions are important materials for fluorescent display devices, optical detectors, optical fibers and optical amplifiers [1-3]. Among the other heavy metal oxide glasses, bismuth borate glasses have wide range of applications in the field of glass ceramics, layers for optical and electronic devices, thermal and mechanical sensors, reflecting windows [4,5], Glasses containing heavy metal oxides exhibits good non-linear optical properties and good chemical durability [6,7]. The past literature shows that the rare earth ions find more important application in the preparation of the laser materials [8, 9].

Among various glasses, borate glasses are excellent host matrices because boric oxide (B_2O_3) acts as a good glass former and flux material [10]. ZnO is a wide band gap semiconductor and has received increasing research interest. It is an important multifunction material due to its specific chemical, surface and micro structural properties. It is used in various applications such as gas sensor, varistors, catalysts etc [11]. Er^{3+} ion is the most studied among the rare earth ions and the up conversion process of this ion in various kinds of host materials has been investigated [12-16].

In this work, the spectroscopic properties of Er^{3+} -doped (25- x): Bi₂O₃:20Li₂O:20ZnO: 35B₂O₃:xEr₂O₃ (where x=1, 1.5,2 mol %) glasses were investigated for operation at the 1.55 µm wavelength. The optical properties, the absorption spectra, fluorescence spectra of Er^{3+} of the glasses were investigated. The J-O intensity parameters render significant information regarding local structure and bonding in the vicinity of rareearth ions. The parameter Ω_2 is related with the symmetry of the glass hosts while Ω_6 is a measure of the covalency in the network [17].

Preparation of glasses

II. Experimental Techniques

The following Er^{3+} doped zinc lithium bismuth borate glass samples (25-x) Bi₂O₃:20Li₂O:20ZnO: 35 B₂O₃: xEr₂O₃ (where x=1, 1.5.2) have been prepared by melt-quenching method. Analytical reagent grade chemical used in the present study consist of Bi₂O₃, Li₂O, ZnO, and B₂O₃ and Er₂O₃. All weighed chemicals were powdered by using an Agate pestle mortar and mixed thoroughly before each batch (10g) was melted in alumina crucibles in silicon carbide based an electrical furnace.

Silicon Carbide Muffle furnace was heated to working temperature of 1050° C, for preparation of Zinc Lithium Bismuth Borate glasses, for two hours to ensure the melt to be free from gases. The melt was stirred several times to ensure homogeneity. For quenching, the melt was quickly poured on the steel plate & was immediately inserted in the muffle furnace for annealing. The steel plate was preheated to 100° C. While pouring; the temperature of crucible was also maintained to prevent crystallization. And annealed at temperature of 350° C for 2h to remove thermal strains and stresses. Every time fine powder of cerium oxide was used for polishing the samples. The glass samples so prepared were of good optical quality and were transparent. The chemical compositions of the glasses with the name of samples are summarized in Table 1

Table 1 Chemical composition of the glasses							
Sample Glass composition (mol %)							
ZnLiBiB (UD)	25 Bi ₂ O ₃ :20Li ₂ O:20ZnO: 35 B ₂ O ₃						
ZnLiBiB (Er 1)	24 Bi ₂ O ₃ :20Li ₂ O:20ZnO: 35 B ₂ O ₃ : 1 Er ₂ O ₃						
ZnLiBiB (Er 1.5)	23.5 Bi ₂ O ₃ :20Li ₂ O:20ZnO: 35 B ₂ O ₃ : 1.5 Er ₂ O ₃						
ZnLiBiB (Er 2)	23 Bi ₂ O ₃ :20Li ₂ O:20ZnO: 35 B ₂ O ₃ : 2 Er ₂ O ₃						

ZnLiBiB (UD)-Represents undoped Zinc Lithium Bismuth Borate glass specimens ZnLiBiB (Er) -Represents Er³⁺ doped Zinc Lithium Bismuth Borate glass specimens

III. Theory

3.1 Oscillator Strength

The intensity of spectral lines are expressed in terms of oscillator strengths using the relation [18]. $f_{\text{expt.}} = 4.318 \times 10^{-9} \mathrm{f} \epsilon (v) \mathrm{d} v$ (1)

where, ε (*v*) is molar absorption coefficient at a given energy *v* (cm⁻¹), to be evaluated from Beer–Lambert law. Under Gaussian Approximation, using Beer-Lambert law, the observed oscillator strengths of the absorption bands have been experimentally calculated, using the modified relation [19].

$$P_{\rm m} = 4.6 \times 10^{-9} \times \frac{1}{cl} \log \frac{I_0}{I} \times \Delta \upsilon_{1/2}$$
(2)

where c is the molar concentration of the absorbing ion per unit volume, I is the optical path length, $logI_0/I$ is absorbtivity or optical density and $\Delta v_{1/2}$ is half band width.

3.2. Judd-Ofelt Intensity Parameters

According to Judd [20] and Ofelt [21] theory, independently derived expression for the oscillator strength of the induced forced electric dipole transitions between an initial J manifold $|4f^{N}(S, L) J\rangle$ level and the terminal J' manifold $|4f^{N}(S'L') J' > is given by:$

$$\frac{8\Pi^2 mc \bar{\upsilon}}{3h(2J+1)n} \left[\frac{\left(n^2+2\right)^2}{9} \right] \times S(J,J^{-})$$
(3)

where, the line strength S (J, J') is given by the equation S (J, J') = $e^2 \sum \Omega_{\lambda} < 4f^N(S, L) J \| U^{(\lambda)} \| 4f^N(S', L') J' > 2$ $\lambda = 2, 4, 6$ (4)

In the above equation m is the mass of an electron, c is the velocity of light, v is the wave number of the transition, h is Planck's constant, n is the refractive index, J and J' are the total angular momentum of the initial and final level respectively, Ω_{λ} ($\lambda = 2, 4$ and 6) are known as Judd-Ofelt intensity parameters which contain the effect of the odd-symmetry crystal field terms, radial integrals and energy denominators. $\| U^{(\lambda)} \|^2$ are the matrix elements of the doubly reduced unit tensor operator calculated in intermediate coupling approximation. Ω_{λ} parameter can be obtained from least square fitting method [22]. The matrix element $U^{(\lambda)}$ ² that are insensitive to the environment of rare earth ions were taken from the literature [23].

3.3.Radiative Properties

The Ω_{λ} parameters obtained using the absorption spectral results have been used to predict radiative properties such as spontaneous emission probability (A) and radiative life time ($\tau_{\rm R}$), and laser parameters like fluorescence branching ratio ($\beta_{\rm R}$) and stimulated emission cross section ($\sigma_{\rm n}$). The spontaneous emission probability from initial manifold $|4f^{N}(S', L')J'>$ to a final manifold $|4f^{N}(S, L)J|$ is given by:

A [(S', L') J'; (S, L) J] =
$$\frac{64 \pi^2 v^3}{3h(2J'+1)} \left| \frac{n(n^2+2)^2}{9} \right| \times S(J', \bar{J})$$
 (5)
Where, S $(J', J) = e^2 \left[\Omega_2 \right\| U^{(2)} \|^2 + \Omega_4 \| U^{(4)} \|^2 + \Omega_6 \| U^{(6)} \|^2$]

The fluorescence branching ratio for the transitions originating from a specific initial manifold |4fN(S', L')J'> to a final many fold $|4f^N(S, L)J>$ is given by

 $\tau_{rad} = \sum A[(S', L') J'; (S,L)] = A_{Total}^{-1}$ (7) S L J

where, the sum is over all possible terminal manifolds. The stimulated emission cross -section for a transition from an initial manifold |4f N(S', L') J' > to a final manifold |4f N(S, L) J >| is expressed as

$$\sigma_p(\lambda_p) = \left[\frac{\lambda_p^4}{8\pi c \, n^2 \Delta \lambda_{eff}}\right] \times A[(S', L') J'; (\bar{S}, \bar{L})\bar{J}] \tag{8}$$

where, λ_p the peak fluorescence wavelength of the emission band and $\Delta \lambda_{eff}$ is the effective fluorescence line width.

IV. Result and Discussion

4.1. XRD Measurement

Figure 1 presents the XRD pattern of the samples containing show no sharp Bragg's peak, but only a broad diffuse hump around low angle region. This is the clear indication of amorphous nature with in the resolution limit of XRD instrument.

Fig.1: X-ray diffraction pattern of ZnLiBiB (ER) glasses.

4.2. Absorption spectra

The absorption spectra of ZnLiBiB (ER) glasses, consists of absorption bands corresponding to the absorptions from the ground state ${}^{4}I_{15/2}$ of Er^{3+} ions. Ten absorption bands have been observed from the ground state ${}^{4}I_{15/2}$ to excited states ${}^{4}I_{11/2}$, ${}^{4}F_{9/2}$, ${}^{4}S_{3/2}$, ${}^{2}H_{11/2}$, ${}^{4}F_{7/2}$, ${}^{4}F_{3/2}$, ${}^{2}H_{9/2}$ and ${}^{4}G_{11/2}$ for Er^{3+} doped ZnLiBiB(ER) glasses.

The experimental and calculated oscillator strengths for Er^{3+} ions in zinc lithium bismuth borate glasses are given in **Table 2**

Energy level	Glass ZnLiBiB		Glass ZnLiBiB		Glass ZnLiBiB	
	(ER01)		(ER1.5)		(ER02)	
	Pexp.	P _{cal.}	Pexp.	P _{cal.}	Pexp.	P _{cal.}
${}^{4}I_{11/2}$	0.81	0.67	0.78	0.63	0.76	0.51
⁴ I _{9/2}	0.42	0.81	0.38	0.80	0.32	0.46
${}^{4}F_{9/2}$	2.14	1.23	2.1	1.17	1.7	0.89
${}^{4}S_{3/2}$	0.36	0.60	0.32	0.56	0.21	0.46
${}^{2}\text{H}_{11/2}$	6.40	2.43	6.2	2.26	5.2	1.78
${}^{4}F_{7/2}$	5.20	2.01	5	1.89	4.1	1.51
${}^{4}F_{5/2}$	0.64	0.76	0.62	0.71	0.51	0.58
${}^{4}F_{3/2}$	0.32	0.47	.30	0.44	0.21	0.36
$^{2}H_{9/2}$	1.66	0.88	1.6	0.83	0.88	0.66
${}^{4}G_{11/2}$	4.84	6.69	4.4	6.25	3.22	4.91
R.m.s.deviation	1.763		1.740		1.490	

Table 2. Measured and calculated oscillator strength ($P^m \times 10^{+6}$) of Er^{3+} ions in ZnLiBiB glasses.

The various energy interaction parameters like Slater-Condon parameters F_k (k=2, 4, 6), Lande's parameter ξ_{4f} and Racah parameters E^k (k=1, 2, 3) have been computed using partial regression method and formula described elsewhere [24]. The ratio of Racah parameters E^1/E^3 and E^2/E^3 are about 10.35 and 0.049 respectively. Which are almost equal to the hydrogenic ratio [25]. This implies that Er^{3+} ions at different doping concentrations are subjected. Computed values of Slater-Condon, Lande, Racah, nephelauexetic ratio and bonding parameter for Er^{3+} doped ZnLiBiB glass specimens are given in **Table 3**.

Table3. Computed values of Slater-Condon, Lande, Racah, nephelauexetic ratio and bonding parameter for Er³⁺ doped ZnLiBiB glass specimens.

		6		
Parameter	Free ion	ZnLiBiB ER01	ZnLiBiB ER1.5	ZnLiBiB ER02
$F_2(cm^{-1})$	441.680	433.887	433.483	434.069
$F_4(cm^{-1})$	68.327	67.018	67.091	67.515
$F_6(cm^{-1})$	7.490	7.044	7.016	7.098
$\xi_{4f}(cm^{-1})$	2369.400	2415.794	2417.019	2413.232
$E^{1}(cm^{-1})$	6855.300	6661.704	6654.207	6687.888
$E^{2}(cm^{-1})$	32.126	31.349	31.258	31.246
$E^{3}(cm^{-1})$	645.570	643.513	643.835	644.810
F_4/F_2	0.15470	0.15446	0.15477	0.15554
F_6/F_2	0.01696	0.01623	0.01619	0.01635
E^1/E^3	10.61899	10.35209	10.33527	10.37187
E^2/E^3	0.049764	0.048715	0.048550	0.048458
β'		0.9824	0.9814	0.9828
b ^{1/2}		0.0938	0.0964	0.0927

Judd-Ofelt intensity parameters Ω_{λ} ($\lambda = 2, 4$ and 6) were calculated by using the fitting approximation of the experimental oscillator strengths to the calculated oscillator strengths with respect to their electric dipole contributions. In the present case the three Ω_{λ} parameters follow the trend $\Omega_4 < \Omega_6 < \Omega_2$. The variation of Ω_2 with Bi₂O₃ content has been attributed to changes in the asymmetry of the ligand field at the rare earth ion site and to the changes in their rare earth oxygen covalence [26].

The values of Judd-Ofelt intensity parameters are given in Table 4.

Table 4. Judd-Ofelt intensity parameters for Er³⁺ doped ZnLiBiB glass specimens.

Glass Specimen	$\Omega_2(pm^2)$	$\Omega_4(\text{pm}^2)$	$\Omega_6(\text{pm}^2)$	Ω_4 / Ω_6
ZnLiBiB ER01	0.796	0.122	0.744	0.164
ZnLiBiB ER1.5	0.732	0.124	0.726	0.171
ZnLiBiB ER02	0.595	0.100	0.589	0.170

4.3. Fluorescence Spectrum

The fluorescence spectrum of Er^{3+} doped in zinc lithium bismuth borate glass is shown in Figure 3. There are four broad bands (${}^{4}\text{F}_{7/2} \rightarrow {}^{4}\text{I}_{15/2}$), (${}^{2}\text{H}_{11/2} \rightarrow {}^{4}\text{I}_{15/2}$) (${}^{4}\text{S}_{3/2} \rightarrow {}^{4}\text{I}_{15/2}$) and (${}^{4}\text{F}_{9/2} \rightarrow {}^{4}\text{I}_{15/2}$) respectively for glass specimens.

Fig.3: Fluorescence spectrum of ZnLiBiB glasses doped with Er^{3+} .

Table 5. Emission peak wave lengths (λ_p), radiative transition probability (A_{rad}), branching ratio (β_R), stimulated emission crosssection (σ_p), and radiative life time (τ) for various transitions in Er³⁺ doped ZnLiBiB glasses.

		ZnLiBiB(ER01)			ZnLiBiB(ER1.5)			ZnLiBiB(ER02)					
Transition	$\lambda_{g}(nm)$	A _{ad} (s ⁻¹)	βε.	σ _p (10 ⁻¹⁰ cm ²)	$\tau_R(\mu s)$	A _{nd} (s ⁻¹)	βa	σ ₂ (10 ⁻²⁸ cm ²)	τ <u>a</u> (μs)	A _{ad} (s ⁻¹)	βε	σ ₃ (10 ⁻²⁰ cm ²)	25(htt)
*Fig-*fing	485	2527.06	0.4232	0.582		2385.02	0.4214	0.537		1936.96	0:4214	0.427	
² H ₁₁₀ -++ ⁴ I ₁₅₀	530	1669.72	0.2796	0.449	167.46	1355.54	0.2749	0.403	176.70	1264.31	0.2751	0.0325	217.57
4552-+41152	550	1106.22	0.1853	0.271		1082.37	0.1913	0.263		878.82	0.1912	0.0212	
$^{+}F_{9,7} \rightarrow ^{4}I_{15/2}$	657	668.45	0.1119	0.292	246.28	636.26	0.1124	0.275	266.79	516.20	0.1123	0.0219	271.92

V. Conclusion

In the present study, the glass samples of composition (25-x) Bi₂O₃:20Li₂O: 20ZnO:35B₂O₃:xEr₂O₃ (where x =1, 1.5, 2 mol %) have been prepared by melt-quenching method. The value of stimulated emission cross-section (σ_p) is found to be maximum for the transition (${}^{4}F_{7/2} \rightarrow {}^{4}I_{15/2}$) for glass ZnLiBiB (ER 01), suggesting that glass ZnLiBiB (ER 01) is better compared to the other two glass systems ZnLiBiB (ER1.5) and ZnLiBiB (ER02).

References

- Camall. W.T., Eields, P.R. and Rajanak, K. (1964). Eloectronic energy levels in the trivalent lanthanide aquo ions. Pr³⁺,Nd³⁺,Pm³⁺,Sm³⁺,Dy³⁺,Er³⁺ and Tm³⁺, J.Chem.Phys., 49(10): 4424-4442.
- [2]. Wang, J.S., Vogel, E.M. and Snitzer, E. (1994). Tellurite glass a new candidate for fiber devices, J. Opt. Mater., 3(3):187-203.
- [3]. Lin, H., Pun, E.Y.B. and Wang, X.J. et al.(2005). Intense visible fluorescence and energy transfer in Dy3⁺, Tb³⁺, Sm³⁺ and Eu³⁺ doped rare-earth borate glasses. J. Alloy. Compd., 390:197-201.
- [4]. Becker, P. (2003). Thartmal and Optical Properties of Glasses of the system Bi₂O₃-B₂O₃ Cryst. Res. Technol.1, 74.
- [5]. Kamniskii A. (1990).Laser crystals. Second ed. Springer, Berlin. 252-253.
- [6]. Dumbaugh, W.H. and Lapp. J.C. (1992). Heavy- Metal Oxide Glass, J. Am. Cer.Soc., 75, 2315.
- [7]. Lin, J.J., Huang, W., Sun, Z., Ray. C.S. and Day, D.E. (2004). Structure and non-lnear optical performance of TeO₂-Nb₂O₅-ZnO glasses, J. Non-Cryst. Solids, 336(3), 189-194.
- [8]. Ramteke, D.D., Annapurna, K., Deshpande, V.K. and Gedam, R.S. (2014). Effect of Nd³⁺ on spectroscopic properties of lithium borate glasses. J. Rare Earths 32(12), 1148-1153
- [9]. Subhadra, M. and Kistaiah, P. (2012). Infrared and raman spectroscopic studies of alkali bismuth borate glasses. Evidence of mixed alkali effect, Vibrational Spectroscopy 62, 23-27.
- [10]. Vijay kumar, R., Venkataiah, G. and Marimuthu, K. (2015). White light stimulation and luminescence studies on Dy³⁺ doped Zincborophosphate glasses. Physica B 457,287-295.
- [11]. Rajesh,D., Balakrishna, A. and Ratnakaram, Y.C.(2012). Luminescence, structural and dielectric properties of Sm³⁺ impurities in strontium lithium bismuth borate glasses. Opt. Mat.35, 108-116.
- [12]. Ramasamy, Parthiban, Palanisamy and Jinkwon, Kim. (2014). Upconversion nanophosphors for solar cell applications. RSC Advances 4.66, 34873-34895.
- [13]. Lenth, Wilfried and Ronger, M.Macfariane.(1992)Upconversion lasers. Optics and Photonics News 3.3, 8-15.
- [14]. Page, R.H. et al. (1998).Upconversion- pumped luminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium. J. Opt. Soc.Am.B, JOSAB 15,996-1008.
- [15]. Gamelin, Daniel and Hans Gudel.(2001).Upconversion processes in transition metal and rare earth metal systems. Transition metal and rare earth compounds,1-56.
- [16]. Zou,X., Izumitani, T.(1993).Spectroscopic properties and mechanisms of excited absorption and energy transfer upconversion for Er³⁺ doped glasses. J. Non-Cryst.Solids 162, 68.
- [17]. Krupke,W.F.(1974).Induced- emission cross-section in neodymium laser glasses. IEEE J. Quantum electron QE-10,450-457.
- [18]. Gorller-Walrand, C. and Binnemans, K. (1988) Spectral Intensities of f-f Transition. In: Gshneidner Jr., K.A. and Eyring, L., Eds., *Handbook on the Physics and Chemistry of Rare Earths*, Vol. 25, Chap. 167, North-Holland, Amsterdam, 101-264.
- [19]. Sharma, Y.K., Surana, S.S.L. and Singh, R.K. (2009) Spectroscopic Investigations and Luminescence Spectra of Sm³⁺ Doped Soda Lime Silicate Glasses. *Journal of Rare Earths*, 27, 773-780.

- [20]. Judd, B.R. (1962). Optical Absorption Intensities of Rare Earth Ions. *Physical Review*, **127**, 750-761.
- [21]. Ofelt, G.S. (1962) Intensities of Crystal Spectra of Rare Earth Ions. The Journal of Chemical Physics, 37, 511.
- [22]. Goublen, C.H. (1964). Methods of Statistical Analysis. Asian Publishing House, Bombay, Chap. 8, 138.
- [23]. Babu, P. and Jayasankar, C.K. (2001). Spectroscopy of Pr³⁺ Ions in Lithium Borate and Lithium Fluoroborate Glasses. *Physica B*: Condensed Matter, **301**, 326-340.
- [24]. Sharma, Y.K. (1991) .Spectral and Electoral Properties of Lanthanide Ions in Different Environment. PhD Thesis, University of Jodhpur, Jodhpur.
- [25]. Dieke, G.H. (1968). Spectra and Energy Levels of Rare Earth Ions in Crystals. InterScience, Johan Wiley and Sons, New York.
- [26]. Martin, R.A. & Knight, J.C. (2006). Silica- clad neodymium-doped lanthanum phosphate fibers and fiber lasers,"IEEE Photon Technol . Lett. 18(4), 574-576.