Experimental Vagococcuc salmoninarum infection in Rainbow Trout (Oncorhynchus mkiss) by İntraperitoneal İnjection

Mikail Ozcan^{1,}Unal Ispır², Yasemin Yılmaz¹

¹Kahramanmaras Sutcu Imam University, Faculty of Agriculture, Department of Fisheries Kahramanmaras-TURKEY

²Inonu University, Fisheries Faculty Battalgazi-Malatya- TURKEY

Abstract: Experimental Coldwater 'streptococcosis', caused by Vagococcus salmoninarum, was induced in rainbow trout (Oncorhynchus mykiss) using intraperitoneal injection challenge model. V. salmoninarum at a concentration of $1.6x10^9$, $9.6x10^9$, $1.55x10^{10}$, $7.22x10^{10}$ and $3.7x10^{11}$ CFU/ml was intraperitoneally injected. Phosphate buffered saline (PBS) was intraperitoneally injected to control group. The signs of disease was observed in experimental groups. After post injection, fish were monitored and mortality was recorded for 14 days. Fish mortality rate increased with the increase of bacterial concentrations of V. salmoninarum. The first mortalities were observed after 48 hours, although the signs of the bacterial infection were already observed at the 7 days after the injection. The results indicated that the 14 days LD₅₀ value of V. salmoninarum was 1.09×10^9 CFU ml⁻¹.

Keywords: Oncorhynchus mykiss, Vagococcuc salmoninarum, injection

I. Introduction

Vagococcus salmoninarum is the causative agent of coldwater streptococcosis. An infectious disease which produces high mortalities and severe economic losses on fish farms, particularly in rainbow trout and atlantic salmon (Ghittino et al., 2004; Schmidtke & Carson, 1994). V. salmoninarum is a Gram positivecoccobacilli which is first described as a Lactobacillus strain in 1968 (Austin & Austin, 2012). This strain were defined as V.salmoninarum in later years. However, in the last two decades the disease has become established in fish farmed in many countries in Europe and the world (Schmidtke & Carson, 1994; Michel et al., 1997; Ghittino et al., 2004; Ruiz-Zarzuela et al., 2005; Salogni et al., 2007; Didinen et al., 2011). Mortality rates ranging up to 20-50% per year were (Nougayrède et al., 1995; Michel et al., 1997; Ruiz-Zarzuela et al., 2005). Thestreptococcosis caused by Lactococcus garvieae, Streptococcus iniae, *Streptococcus* agalactiaeStreptococcus parauberis and V. salmoninarum. There are detailed informations about the other four strains.But, for V. salmoninarum there are limited information available. There are little information in previous studies lethal doses related V. salmoninarumhave been reported. Ghittino et al (2004) reported that lethal dose of V. salmoninarum to rainbow trout of 1×10^9 cfu/fish. The aim is this study was to investigate of lethal dose of V. salmoninarum afterinjection of five different bacteria dosess in rainbow trout.

1. Fish

II. Materials and Methods

Rainbow trout for the experiments (weight~71g) were obtained from a commercial fish farm in Kahramanmaras (Turkey) without any previous history of infection with *V.salmoninarum*. The fish were kept in a 225 L fiberglass tank. Prior to each experiment the fish were transferred to aquaria containing aerated well water and acclimatised for a minimum of 2 weeks. Fish were fed *ad libitum* with a commercial (Ecobio) feed throughout the experiments. To verify the *V. salmoninarum*-free status the rainbow trout, samples were obtained for bacterial culture from kidney. The samples were incubated at 22 °C for 72h. *V. salmoninarum* was not isolated from selected rainbow trout. The use of the fish and the experimental protocol were approved by the Animal Experimentation Ethics Committee of the Agriculture Faculty, Sutcu Imam University (Kahramanmaras, Turkey).

2. Bacteria

V.salmoninarum, originally isolated from a rainbow trout farm suffering from this bacteria in Turkey, was used for experiments. The strain were stored in tryptone soy broth (TSB) supplemented with 15% (v/v) sterile glycerol at -80° C. Isolate of *V.salmoninarum* was then confirmed by standard biochemical tests as described in Bergey's Manual of Determinative Bacteriology (Holt *etal.*,1994) as well as PCR analysis according to Diler *et al.*, (2011). For each experiment the bacteria was inoculated on tryptone soy agar, and several colonies were transferred into TSB and incubated for 48hour at 22°C with shaking and then pellet was

collected by centrifuged. The supernatant fluid was removed and the bacterial pellet was reuspended in 0.9% sterile NaCl as the stock bacterial suspension for experiments.

3. Experimental design

The inocula were prepared from the bacterial suspension by a dilution series with sterile PBS. The diluted inocula were plated on TSA and incubated for 48 h at 22°C. The doses of intraperitoneal injection were calculated as 1.6×10^9 , 9.6×10^9 , 1.55×10^{10} , 7.22×10^{10} and 3.7×10^{11} CFU/ml. Control injections were prepared by sterile TSB. Experimental fish were injected with 100µl of live *V. salmoninarum*. Then, fish were monitored and mortality was recorded twice daily for 14 days following injection and dead fish removed. Dead fish were removed twice a day and bacterial samples were obtained aseptically from the anterior kidney, and liver of and dead fish to confirm the presence of *V. salmoninarum*. Samples were cultured ontoTSAplates and incubated at 22° C for 72h. The extrapolated median lethal concentration (LD₅₀) of *V. salmoninarum* by immersion was calculated by the arithmetical method of Karber (Turner, 1965).

III. Results and Discussion

In experimental groups the fish in the 48 h began to die after post challenge and mortalities continued for the next 5 to 14 d(Figure 1).

Figure 1: In experimental groups the fishsurvival by day

All dead fish in these groups showed the following typical signs of disease (Figure 2): erratic swimming; darknes on skin; dermal melanosis; exophthalmia (mono and/or bileteral); eyeball disruption; redness of anus; bloody ascitic fluid in the body cavity; palaness in liver; discoloration and growth in splen and kidney; petechial hemorrhages in muscles, gonads and air bladder. Bloodly and yellowish exudate accumulation in the intestines; spleen, and liver and hemorrhage in the viscera. However, in control groups, disease and internal signs were not observed.

Figure 2: Clinical signs of infection by V. Salmoninarum

DOI: 10.9790/2380-0912016872

Figure 2: Clinical signs of infection by V. Salmoninarum

- A: Dark in skin
- B: Bilateral exophthalmos in eyes
- C: Severe distention in the abdomen.
- D: Exudates filled the peritoneal cavity.
- E: Hemorrhage in peritoneal cavity and Splenic enlargement
- F: Haemorrhagic liver and swollen kidney of fish.

The result revealed that first mortality was observed in 1.6×10^9 and 1.55×10^{10} cfu/ml injected group after 48 hours. However, the external symptoms of bacterial infection, such as erratic swimming; darknes on skin; exophthalmia, were observed at 168 hours after the inoculation. Fish signs of infection and death rate increased as the increase of bacterial concentration. Levels of mortality in the control group and experimental fish group are given in Tables 1.Two mortality was noted in fish injected with 1.6×10^9 CFU/mL at 96 h post infection. No fish died following exposure to 9.6×10^9 CFU/mL at 48 h post infection, and six fishdied at end of experiment.The mortality in the 1.55×10^{10} CFU/mL injected group was one at 48 h post infection, but six fish died in total at end of experiment. All fish injected with 7.22×10^{10} and 3.7×10^{11} CFU/mL was died at end of experiment. Not mortality was noted in the negative control group. *V. salmoninarum* were isolated in all died and moribud fish. The cumulative mortality was 0, 20, 55, 65, 100 and 100.0% at CFU/mL concentrations, respectively, of experimental groups (Table 1). The extrapolated LD₅₀ dose was 1.09×10^9 CFU/mL.

Table 1 Mortality observed in rainbow troutinfected with V. salmoninarum by intraperitoneal injection

			Cumulative mortality hours after post infection					
Dose (CFU/mL)	No. fish/replicate	0	24h	48h	72h	96h	At the end of study	Mean percent mortality (%) for replicate
Control TSB	10/2	-	-	-	-	-	-	0.00%
1.6x10 ⁹	10/2	-	-	2	-	-	2/2	20
9.6x10 ⁹	10/2	-	-	-	-	-	6/5	55
1.55×10^{10}	10/2	-	-	1	-	-	6/7	65
7.22×10^{10}	10/2	-	-	-	-	-	10/10	100
$3.7 \text{ x} 10^{11}$	10/2	-	-	-	-	-	10/10	100

Experiments in rainbow trout demonstrated by V. salmoninarum infection, the mortality was high. The disease was easily initiated by intraperitoneal injection and were observed. The clinical signs of infection and lesions observed following the present study. These results, including the severity of external and internal organs, and the persistence of the infection in rainbow trout, provided sufficient information to demonstrate V.salmoninarum as a fish pathogen. Rainbow trout Oncorhynchus mykiss naturallyand experimentaly infected of V.salmoninarum in usually show clinical signs such as swimming difficulty, lethargic activity, darkening skin coloration; anorexia, external hemorrhages, furuncles, exophthalmia, petechial haemorrhages of gills, paleness on the gills, ascites(Michel et al., 1997; Ghittinoet al., 2004; Salogni et al., 2007; Didinen et al., 2011).At present study, dead fish exhibited the lesions commonly seen in experimental groups, especially exophthalmia. Clinical signs and gross findings in V.salmoninarum infection in rainbow trout described here are similar to those reported in rainbow trout and other fish with other Gram positive bacteria such as Lactococcus garvieae, Streptococcus iniaeand Streptococcus agalactiae(Erdar & Ghittino, 1999; Klesius et al., 2000; Abdullah et al., 2013).Ghittino*et al.*, (2004) reported LC₅₀ values of 10^9 cfu of virulent V. salmoninarum/fishusing a 50g rainbow trout infected by intraperitoneal injection challenge. The LD₅₀ in this study was 3.4×10^7 CFU/ mL in uninjured 40g rainbow trout. This difference in the LD_{50} values between those experiments was attributed differences in innate immune mechanisms in the fish populations. While it is possible the fish were stressed during the challenge may be observed difference in lethal doses Streptococcosis stands for a common name of a disease caused by different genera and species. Lactococcus garvieae, Streptococcus iniae, Streptococcus parauberis and Streptococcus agalactiaeare the etiological agents of warmwater streptococcosis. Coldwater streptococcosis, however, is caused by Vagococcus salmoninarum (Ozturk & Altinok, 2014). Streptococci spp. have been shown to gain entry into fish by ingestion of moribund fish or contaminated feed (Shoemaker et al., 2000; Bromage & Owens, 2002), injured skin from contaminated water (Rasheed & Plumb, 1984), and through intraperitoneal and intramuscular injection for experimental purposes (Shoemaker et al. 2000, 2001; Bromage & Owens, 2002). Disease progression is variable and dependent upon the virulence of the isolate, the host species affected, route of infection, fish age, and other environmental and water quality factors(Eldar & Ghittino, 1999).There are differences with regard to in the lethal doses between Streptococcus species and its strains. The reported LD₅₀ for intraperitoneal injected Streptococcus iniae and Lactococcus garvieae in rainbow trout has 2.5 X 10⁵ and 1.25 X 10¹ cfu/fish, respectively (Erdar & Ghittino, 1999).Bromage et al., (1999) investigated that LD_{50} value of S. *iniae* on Lates calcarifer and they reported that the LD_{50} value estimated to be 2.5 x 10^5 cfu and 3.2×10^4 cfu. Pasnik et al. (2011) reported to have lethal dose of S. ictaluri to catfish of 3.8×10^7 cfu/fish. According to these results, it was suggested that the LD_{50} for V. salmoninarumby injection could be diverse for rainbow trout than other fish species. This differences in the virulence of the V. salmoninarum isolates, sensitivity against infection, high immunity of experimental fish, or difference of isolates and experimental design may be elucidations for diversity in results between studies.

IV. Conclusion

In experimental groups the fish in the 48 h began to die after post challenge and mortalities continued for the next 5 to 14 d. The extrapolated LD_{50} dose was 1.09×10^9 CFU/mL.

Acknowledgements

UI participated in study design, data collection, laboratory analyses, organization of the study and data interpretation and preparation of the manuscript. MO participated in study design, laboratory analyses and data interpretation and wrote the first draft of the manuscript. YY participated in data collection and laboratory analyses and assisted in every aspect of the study.

References

- Abdullah, S., Omar, N., Yusoff, S.M., Obukwho, E.B., Nwunuji, T.P., Hanan, L.andJ. Samad, Clinicopathological features and immunohistochemical detection of antigens in acute experimental *Streptococcus agalactiae* infection in red tilapia (*Oreochromis* spp.). *SpringerPlus* 2, 2013, 286.
- [2] Austin, B. and D.A. Austin, Bacterial fish pathogens; *diseases of farmed and wild fish*. Springer, NY: London.2012.
- [3] Bromage, E. S. andL. Owens, Infection of barramundi *Lates calcarifer* with *Streptococcusiniae*: effects of different routes of exposure. *Dis Aquat Organ 52*, 2002, 199–205.
- [4] Bromage, E.S., Thomas, A. and L. Owens, *Streptococcus iniae*, a bacterial infection in barramundi *Lates calcarifer*. *Dis Aquat Organ 36*,1999, 177–181.
- [5] Didinen, B.I., Kubilay, A., Diler, O., Ekici, S., Onuk, E.E. and A. Findik, First isolation of Vagococcus salmoninarum from cultured rainbow trout (Oncorhynchus mykiss, Walbaum) broodstocks in Turkey. Bull. Eur. Ass. Fish Pathol31, 2011, 235
- [6] Erdar, A. andC. Ghittino, *Lactococcus garvieae* and *Streptococcus iniae* infections in rainbow trout *Oncorhynchus mykiss*: similar, but different diseases. *Dis Aquat Organ36*, 1999, 227-231.
- [7] Ghittino, C., Agnetti, F., Panzieri, C., Cabra, S., Colussi, S. and M. Prearo, L' infezione da Vagococcus salmoninarum della trota iridea in Italia. Ittiopatol 1,2004 25-33.
- [8] Klesius, P.H., Shoemaker, C.A. and J.J. Evans, Efficacy of single and combined *Streptococcus iniae* isolate vaccine administered by intraperitoneal and intramuscular routes in tilapia (*Oreochromis niloticus*). Aquaculture188,2000, 237–246.

- [9] Michel, C., Nougayrede, P., Eldar, A., Sochon, E.andP. De Kinkelin, *Vagococcus salmoninarum*, a bacterium of pathological significance in rainbow trout *Oncorhynchus mykiss* farming. *Dis Aquat Organ30*, 1997, 199–208.
- [10] Nougayrède, P., Michel, C., Sochon, E., Vuillaume, A.andP. De Kinkelin, Vagococcosis, an emerging threat for farmed salmonid populations. Proceedings of the VII International Conference on Diseases of Fish and Shellfish. European Association of Fish Pathologists. Sept 10-15, 1995, Palma de Mallorca, Spain. 1995. p. 26.
- [11] Ozturk, R. C.andI. Altinok, Bacterial and Viral Fish Diseases in Turkey. Turkish J Fish Aquat Sci 14, 2014, 275-297.
- [12] Pasnik, D.J., Evans, C.C. and P.H. KlesiuS, Specific serum antibody responses in channel catfish (*Ictalurus punctatus*) provide limited protection against *Streptococcus ictaluri*. Vet Immunol Immunop144,2011, 144–146.
- [13] Rasheed, V. and J. Plumb, Pathogenicity of a non-hemolytic group B *Streptococcus* sp. in gulf killifish, *Fundulus grandis* Baird and Girard. *Aquaculture37*,1984, 97–105.
- [14] Reed, J.L. and H. Muench, A simple method for estimating fifty percent endpoints, *Am J Hyg27*,1938, 493-497.
- [15] Ruiz-Zarzuela, I., de Blas, I., Girones, O., Ghittino, C.andJ.L. Muzquiz, Isolation of Vagococcus salmoninarum in rainbow trout Oncorhynchus mykiss (Walbaum), broodstocks: characterisation of thepathogen. Vet ResCommun 29,2005, 553–562.
- [16] Salogni, C., Perantoni, P., Pitozzi, A. andG.L. Alborali, Outbreak of *Vagococcus salmoninarum*in rainbow trout (*Oncorhynchusmykiss*) broodstocks. *Ittiopatol4*, 2007,59-66.
- [17] Schmidtke, L.N.andJ. Carson, Characteristics of Vagococcus salmoninarum isolated from diseased salmonid fish. JAppl Bacteriol 77, 1994, 229–236.
- [18] Shoemaker, C. A., Evans, J.J.andP. H.. Klesius, Density and dose: factors affecting mortality of *Streptococcus iniae* infected tilapia (*Oreochromis niloticus*). Aquaculture188, 2000, 229–235.