Application of Phosphate Solubilizing Bacteria and Its Ecological Effect on Growth and Yield of Winter Maize (Zea Mays L.)

Dr. Rima Taipodia¹, Dulley Yubbey²

¹STO O/O Deputy Commissioner, Dibang Valley, Annini, Arunachal Pradesh ²Department of Ecology & Environment, Global open university, Nagaland.

Abstract: A study was conducted on "Application of Phosphate Solubilizing Bacteria & its Ecological effect on growth and yield of winter maize (Zea mays L.)" for two successive winter seasons at Bamin Michi village, Lower Subansiri District Arunachal Pradesh. In split plot design, the experiment was conducted and replicated three times. To the main plots, the three PSB treatments viz., control (T_1), seed inoculation with PSB (T_2) and PSB inoculation along with 5t FYM ha⁻¹ were allotted. Due to PSB inoculation along with FYM, the values of all growth parameters (plant height, green leaves, leaf area, LAI and dry matter production plant⁻¹) recorded higher and remained lower under control. However, on number of days to 50% silking, maturity and barren plants plot⁻¹, the effect of PSB inoculation alone, PSB added with 5t FYM ha⁻¹ and the control found at par to each other though these characters remained higher and lower with PSB added with FYM and the control correspondingly. With the inoculation of PSB added with FYM the values of almost all the yield attributes as well as grain and stover yields were recorded maximum. With the PSB inoculation along with 5t FYM ha⁻¹, maximum content of NPK content in grain and stover, as well as their uptake by grain, stover and total uptake by crop were recorded maximum. With inoculation of PSB along with 5t FYM ha⁻¹, the available NPK content in soil at crop harvest also remained maximum. In respect of protein and carbohydrates in grain, inoculation on PSB along with 5t FYM ha⁻¹ (T_3) found superior

Key Words: Hybrid maize; Planting methods; Nutrient management

I. Introduction

Maize (Zea mays L.) is an important cereal crop and ranks third in production after rice and wheat in India. Due to higher yield potential, short growing period, high value for food, forage and feed for livestock, poultry and a cheaper source of raw material for agro-based industry, it is increasingly gaining an important position in the cropping system. It has greater nutritional value as it contains about 72% starch, 10% protein, 4.8% oil, 8.5% fiber, 3% sugar and 17% ash (Chaudhry, 1983). Requirement of about 305 mt of food grains is anticipated for 1.4 billion population of India, and the substantive insist for individual food grains has been expected to about 120 mt for rice, 95mt for wheat, 25 mt for maize and 24-26 mt for pulses by the year 2025 (Tiwari,2001). This decisive state of affairs budding vast strain upon the policy planners for which the response is bigger, diversified as well as sustainable and more rapid grain production.

After the revolution in rice and wheat production, as opined by the Noble laureate, Dr. Norman E. Borlaug, the next few decades will be known as maize era (Rai, 1998).

Phosphate solubilizing bacteria are carrier based preparation in agriculture which may aid in increasing crop productivity by serving in solubilization of insoluble phosphorus, stimulating plant growth by providing hormones, vitamins and other growth factors. In soil pH, EC, O₂, CO₂ concentration and the presence of organic material, influence the degree of solubilization . As the only sources of organic matter, role of farmyard manure can never be ignored without which soil can never be productive. Farm yard manure (FYM) supplies all the essential nutrients for plants and increase the activity of phosphorus solubilizing bacteria in addition to this.

In view of above mentioned factors, it is desirable to build up cost effective, eco- friendly, sustainable systems, where the supply of phosphorus along with other nutrient to plants be secured. Based on research findings, It has been established that Phosphorus-solubilizing bacteria may play a demanding role in increasing the availability of Phosphorus to the crop plants. Although studies are available on summer maize cultivation with reference to planting time but survey of literature reveals that information is lacking on winter maize cultivation.

The present study, keeping the above facts in view was undertaken to find out the Application of Phosphate Solubilizing Bacteria & its Ecological effect on growth and yield of winter maize (Zea mays L.)

II. Materials And Methods

The present investigations were carried out on maize (Zea mays hybrid variety all rounder) during the winter seasons of 2011-12 and 2012-13 at Bamin Michi village, Lower Subansiri District Arunachal Pradesh.

The present field study was laid out in split plot design. The three treatments viz, control T_1 , seed inoculation with PSB T_2 and seed inoculation with PSB along with 5t FYM ha⁻¹ T_3 were allotted to plots. Using Fisher and Yates random table (Panse and Sukhatme, 1985) the treatments were allocated to each plot in three replications. There were 9 such plots.

The inter row spacing maintained was 60 cm with intra row spacing at 25 cm. The observations on growth and yield characteristics of the crop were recorded by using the standard procedures. The data obtained by various observations was subjected to statistical analysis by adopting Method of 'Analysis of Variance' (Cochron and Cox.1992) for determining the significance of difference between the treatment means and to draw valid conclusions.

III. Results & Discussion

1. Effect Of Treatment On Growth & Developemental Characters

In respect to growth parameters, the crop responded absolutely to PSB inoculation. Due to different variables, maize plant population did not have significant variation(Table 4.3). Due to PSB inoculation along with FYM, the values of all growth parameters (plant height(Table 4.2), green leaves (Table 4.3), leaf area(Table 4.4), LAI(Table 4.5) and dry matter production plant⁻¹(Table 4.6)) recorded higher and remained lower under control. However, on number of days to 50% silking, maturity and barren plants plot⁻¹ (Table 4.7), the effect of PSB inoculation alone, PSB added with 5t FYM ha⁻¹ and the control found at par to each other though these characters remained higher and lower with PSB added with FYM and the control correspondingly.

Traatmanta	Initial	Fina	1	
201	1 2012	2011	2012	
PSB				
T_1	67.43	67.51	63.10	62.14
T ₂	67.45	67.59	63.17	62.22
T ₃	67.48	67.47	63.37	62.25
SEm±	0.03	0.08	0.09	0.13
CD (P=0.05)	NS	NS	NS	NS

Table: 1 Effect of treatments on initial and final maize plant population plot⁻¹

Table 4.2 Effect of treatments	on plant height (cm)
--------------------------------	----------------------

						1	U V	,			
Treatments	30 DAS		60 DAS		90 DAS		120 DAS		At Harve	st	
	2011	2012	2011	2012	2011	2012	2011	2012	2011	2012	
PSB											
T_1	08.80	09.06	32.08	29.75	115.22	114.34	215.42	211.38	225.76	218.01	
T ² T ₃	09.09 09.63	09.23 09.58	33.49 35.62	30.71 32.25	119.87 127.44	$117.00 \\ 122.50$	219.77 228.29	216.01 223.02	$230.79 \\ 238.88$	222.26 229.58	
SEm± CD (P=0.05)	0.24 NS	0.14 NS	0.50 1.47	0.45 1.33	1.92 5.60	0.92 2.69	2.00 5.85	1.13 3.31	1.16 3.39	0.96 2.80	

Table 4.3 Effect of treatments on number of green leaves plant⁻¹

Treatments	30 D/	AS	60 DA	S	90 DA	s	120 DA	s
	2011	2012	2011	2012	2011	2012	2011	2012
PSB								
T ₁	2.01	1.93	5.69	5.70	08.83	08.76	6.63	6.52
T_2	2.10	2.01	5.86	5.83	09.04	08.95	6.88	6.67
T ₃	2.24	2.12	6.11	6.05	09.41	09.29	7.28	6.97
SEm±	0.06	0.05	0.10	0.07	0.11	0.09	0.08	0.11
CD (P=0.05)	NS	NS	0.28	0.22	0.33	0.25	0.22	0.33

Table 4.4 Effect of treatments on leaf area plant⁻¹ (cm²)

Treatments 30 DA		S	60 DAS		90 DAS		120 DAS	
	2011	2012	2011	2012	2011	2012	2011	2012
PSB								
T_1	70.96	65.18	905.85	841.16	5352.35	5257.47	4672.98	4650.9
T_2	72.14	66.41	936.40	892.48	5623.45	5520.23	4901.22	4860.9
T ₃	74.56	68.38	996.16	968.45	6010.19	5963.45	5265.34	5166.5
SEm±	1.73	0.74	12.18	6.30	76.92	28.55	49.06	27.61
CD (P=0.05)	NS	2.15	35.55	18.38	224.48	83.33	143.19	80.57

	Table 4.5 Effect of treatments on leaf area index											
Treatments	30 DA	S	60 DAS	5	90 DA	S	120 DAS					
	2011	2012	2011	2012	2011	2012	2011	2012				
PSB												
T_1	0.047	0.043	0.58	0.54	3.55	3.49	3.10	3.08				
T_2	0.047	0.044	0.62	0.58	3.73	3.66	3.25	3.22				
T ₃	0.049	0.045	0.65	0.63	4.00	3.96	3.49	3.43				
SEm±	0.001	0.0005	0.01	0.004	0.05	0.02	0.03	0.02				
CD (P=0.05)	NS	0.001	0.02	0.01	0.15	0.06	0.10	0.05				

Table 4.6 Effect of treatments on dry matter accumulation (g plant⁻¹)

Treatments	30 DA	S	60 DA	S	90 DAS		120 DAS	120 DAS		At Harvest		
	2011	2012	2011	2012	2011	2012	2011	2012	2011	2012		
PSB												
T1	0.24	0.23	3.80	3.78	35.53	34.44	153.84	149.20	261.61	254.43		
T_2	0.25	0.23	3.97	3.93	37.70	36.21	157.14	151.88	275.20	267.29		
T ₃	0.26	0.24	4.22	4.14	41.24	39.22	163.57	156.44	298.07	290.19		
SEm±	0.01	0.005	0.07	0.05	0.73	0.08	2.08	0.57	3.74	3.62		
CD (P=0.05)	NS	NS	0.19	0.16	2.14	0.23	6.07	1.66	10.91	10.56		

Table 4.7 Effect of treatments on developmental phases and crop lodging

Treatments	Days to 50% tasseling		Days to 50	% silking	Days to 5	0% maturity	Barr plot ⁻¹	Barren plant Crop lodging plot ⁻¹ (No. of plant		
	2011	2012	2011	2012	2011	2012	2011	2012	2011	2012
PSB										
T_1	107.28	105.05	113.36	110.32	132.07	128.35	6.98	7.40	1.20	1.20
T_2	106.82	104.57	112.69	109.87	131.36	127.68	6.51	7.17	1.09	1.09
T ₃	106.30	103.91	111.48	109.17	130.33	126.77	5.72	6.54	1.42	1.37
SEm±	0.78	0.54	0.43	0.22	0.43	0.36	0.14	0.14	0.12	0.10
CD (P=0.05)	NS	NS	1.26	0.64	1.26	1.04	0.41	0.41	NS	NS

2. Effect Of Treatments On Yeild And Yeild Attributes

With the inoculation of PSB added with FYM as compared to PSB alone or the control, the values of almost all the yield attributes as well as grain and stover yields (Table 4.8.1 to 4.10) were recorded maximum.

							, j					
Treatments	Cobs	plant ⁻¹	First co	bs plot ⁻¹	Second	l cobs plot	Cob ler	ngth (cm.)	Cob gir	th (cm.)	Kernel	rowscob ¹
	2011	2012	2011	2012	2011	2012	2011	2012	2011	2012	2011	2012
PSB												
T_1	0.87	0.85	53.21	51.85	1.77	1.52	13.10	13.06	09.73	09.62	12.17	12.13
T_2	0.88	0.86	53.73	52.12	2.00	1.97	13.41	13.38	10.00	09.89	12.32	12.27
T_3	0.90	0.89	54.72	52.78	2.57	2.66	13.96	13.91	10.42	10.29	12.55	12.51
SEm±	0.009	0.003	0.24	0.24	0.07	0.05	0.11	0.10	0.15	0.16	0.13	0.12
CD(P=0.05)	0.026	0.01	0.69	0.70	0.19	0.15	0.33	0.30	0.45	0.47	NS	NS

Table 4.8.1 Effect of treatments on yield attributes

Table 4.8.2 Ef	fect of treatmen	ts on yield	attributes
		-	

Treatments	K row ⁻¹	Kernels Grains cob ⁻¹ Test weight (g.) Grain weig (g)		eight cob ⁻¹ g)	First co yield (kg plo	obs grain	Second grain yiel plot ⁻¹)	l cobs d (kg				
	2011	2012	2011	2012	2011	2012	2011	2012	2011	2012	2011	2012
PSB												
T_1	26.71	26.74	395.22	393.85	233.82	232.32	93.81	92.46	4.39	4.17	0.18	0.16
T ₂	27.91	27.55	415.65	408.66	238.00	235.66	99.98	97.05	4.77	4.43	0.21	0.20
T ₃	29.98	28.90	451.29	434.22	247.27	242.10	111.91	105.51	5.49	4.93	0.30	0.29
SEm±	0.17	0.16	4.26	3.93	2.50	1.88	1.57	1.18	0.08	0.07	0.01	0.01
CD(P=0.05)	0.48	0.47	12.44	11.47	7.29	5.49	4.41	3.44	0.23	0.20	0.02	0.02

	Table 4.9 Effe	ct of treatm	ents on shell	ing percentage and	harvest index (HI)
Treatments Shellir	ng percentage	Harvest ind	ex in %(HI)		
2011-2012	2012-2013	2011-2012	2012-2013		
PSB					
T_1	74.97		74.77	35.11	35.08
T_2	75.54		75.42	35.27	35.23
T_3	76.85		76.78	35.56	35.42
SEm±	0.24		0.26	0.16	0.25
CD(P=0.0	5) 0.71		0.77	NS	NS

Table 4.10 Effect of treatments or	grain and stover yields (kg ha ⁻¹)	,
Tuble 1.10 Effect of a cuments of	grain and stover fields (ing ind)	

Treatment	ts Grai	n yield	Pooled	Stover Yield			
			Grain	r leia	-		
2011	-2012	2012-20	13	2011-2012	2012-2013		
	PSB						
	T_1		5469	5229	5349	9152	8772
	T_2		5873	5530	5701	9786	9240
	T ₃		6661	6105	6383	11025	10155
	SEm±		92	70	62	169	159
	CD(P=0.	05)	269	205	182	493	464

3. Effect Of Treatments On Nutreint Content And Its Uptake And Available Nutreint In Soil With the PSB inoculation along with 5t FYM ha⁻¹, maximum content of Nitrogen, phosphorus and potassium content in grain and stover, as well as their uptake by grain, stover and total uptake by crop were recorded maximum. With inoculation of PSB along with 5t FYM ha⁻¹, the available Nitrogen, phosphorus, and potassium content in soil at crop harvest also remained maximum (Table 4.11 to 4.13).

					· · · ·	,			0			
Treatments		N cont	ent			P conte	nt			K conte	ent	
	Grain		Stover		Grain		Stover		Grain		Stover	
	2011	2012	2011	2012	2011	2012	2011	2012	2011	2012	2011	2012
PSB												
T_1	1.60	1.59	0.43	0.43	0.31	0.30	0.18	0.17	0.40	0.39	1.61	1.63
T_2	1.61	1.60	0.44	0.44	0.32	0.30	0.19	0.18	0.40	0.40	1.62	1.63
T ₃ SEm± CD(P=0.05)	1.63 0.01 0.03	1.62 0.01 0.02	0.44 0.01 0.02	0.44 0.004 0.011	0.33 0.003 0.01	0.31 0.003 0.01	0.20 0.003 0.01	0.19 0.002 0.006	0.41 0.01 0.02	0.40 0.005 0.015	1.63 0.01 0.02	1.64 0.004 0.013

Table 4.12 Effect of treatments on nitrogen	and phosphorus uptake by	y grain and stover	and its total u	ıptake (kg
	ha ⁻¹)			

Treatments	nts N uptake by				Total N	Total N uptake			P uptake by			Uptake
	Grain		Stover		_		Grain		Stover		_	
	2011	2012	2011	2012	2011	2012	2011	2012	2011	2012	2011	2012
PSB												
T_1	87.75	83.22	40.73	38.58	130.49	123.81	17.10	15.01	17.18	15.65	36.29	32.67
T_2	95.58	89.46	44.12	41.17	141.71	132.64	19.29	16.62	19.75	17.59	41.05	36.21
T ₃	111.11	101.16	51.74	46.89	164.86	150.06	23.54	19.90	24.54	21.53	50.09	43.43
SEm±	1.65	1.34	0.96	0.80	2.47	1.99	0.42	0.32	0.52	0.41	0.81	0.63
CD(P=0.05)	4.81	3.90	2.80	2.35	7.15	5.82	1.23	0.93	1.53	1.19	2.35	1.85

Treatments	K uptake b	у	Total K uptake			
	Grain		Stover			
	2011	2012	2011	2012	2011	2012
PSB						
T_1	22.64	20.98	149.74	144.71	174.38	167.71
T:	24.27	22.07	160.56	152.51	186.84	176.58
T ₃	29.05	25.79	183.01	169.06	214.07	196.86
SEm±	0.55	0.34	3.10	2.75	3.46	3.00
CD(P=0.05)	1.60	1.00	9.05	8.02	10.09	8.74

Table 4.13 Effect of treatments on potassium uptake by grain and stover and its total uptake (kg ha⁻¹)

4. Effect Of Treatments On Quality

In respect of protein and carbohydrates in grain, inoculation on PSB along with 5t FYM ha^{-1} (T₃) found superior than inoculation with PSB alone and control (Table 4.14).

Table 4.14 Effect of treatments on percent protein and carbohydrate content in grain

Treatments	P	rotein	Carbohyd	rate		
	2011	2012	2011	2012		
PSB						
T_1		09.0	1	9.97	63.75	63.8
T_2		09.1	9	9.16	63.88	63.92
T ₃		09.4	9	9.43	64.85	65.1
SEm±		0.06		0.05	0.27	0.27
CD (P=0.05))	0.17		0.14	0.77	0.79

Table 4.15 Effect of treatments on available N, P and K (kg ha⁻¹) after crop harvest

Treatments	Nitro	gen	Phosphorus			Potassium	
	2011	2012	2011	2012	2011	2012	
PSB							
T_1	210.08	211.24	15.00	14.91	182.33	183.05	
T_2	210.31	211.48	15.54	15.62	182.53	183.14	
T ₃	214.40	216.39	16.61	16.78	184.16	185.85	
SEm±	0.75	0.72	0.24	0.29	1.14	1.00	
CD(P=0.05)	2.20	2.10	0.71	0.83	NS	NS	

IV. Conclusions

On the basis of above results, the following conclusions may be drawn:-

- 1. To maximize the yield of winter maize, seeds inoculated with PSB plus 5t FYM ha⁻¹ was found best in rice based cropping system under agro-ecological region of Ziro.
- The winter maize seeds inoculated with PSB plus 5t FYM ha⁻¹ produced maximum grain & Stover yields.
- 3. Yield of winter maize seeds inoculated with PSB plus 5t FYM ha⁻¹ was found most remunerative.

V. Recommendations

Winter maize be planted with PSB inoculation plus 5t FYM ha⁻¹ for economic grain production.

References

- [1]. Chaudhary, A.R. 1983. Maize in Pakistan, Punjab Agri. Res. Coordination Board, Univ. Agric., Faisalabad.
- [2]. Tiwari, K.N. (2001). Phosphorus need of Indian soils and crops. Bett. Crops Int.
- [3]. 15(2): 6-10.
- [4]. Rai, M. (1998). Wheat and maize in research agenda for crop sciences in country. Indian Fmg. 48(1): 8-15.
- [5]. Panse, V.G. and Sukhatme, P.V. (1985). Statistical methods for agricultural workers. ICAR Publication, New Delhi-12. pp. 336-340.
- [6]. Cochron, W.G. and Cox, G.M. (1992). Experimental Designs. (2nd Ed). John Wiley and Sons, Singapore. Pp53-58.