Effect of Some Agro-Management Systems on Growth and Production of Date Palm Off-Shoots under North Sinai Conditions

Sheren Adel Abd-ElHamied

Desert Research Center, Cairo, Egypt.

Abstract: This study was conducted during two successive seasons (2012 and 2013) at Baloza Experimental Station, Desert Research Center, North Sinai Governorate, Egypt. This research aimed to study the effect of effective microorganisms (EM) applications, and some planting media on improving rooting and growth characteristics of survived Hayany offshoots date palm cultivar in the nursery. The effective microorganisms (EM) applications were 0, 50 and 100 ml/ palm/year. While, planting media were T_1 : control treatment (normal sandy soil), T_2 : mixture of cattle manure + sandy soil (1:2, v: v), T_3 : mixture of goat manure + sandy soil (1:2, v: v), and T_4 : mixture of compost and sandy soil (1:2, v/v). The obtained results cleared that 100 ml of EM application was the best than other levels. Also, Hayany offshoots planted in T_3 recorded the best root performance results as compared with the other planting media. In addition, T_3 under 100 ml EM applications produced the highest offshoots survival ratio, rooting percentages and enhanced the other growth parameters.

Key words: Date palm, Hayany date palm cultivar, planting media, effective microorganisms, offshoots, nursery, rooting.

Introduction

I.

Date palm (*Phoenix dactylifera* L.) is one of the oldest fruit trees in the world. It's regard to the fruits trees of tropical and subtropical zone. However, the Middle East and North Africa are the major date palm producing areas in the world.

Successful establishment of date palm offshoots is depended on regeneration of a new root system and leaf growth. Many factors are affecting either success or failure of offshoots to establish and survive such as humidity and soil moisture.

A soil conditioner is a product which is added to soil to improve physical and chemical qualities, especially its ability to provide nutrition for plants. Soil conditioners can be used to improve poor soils to be more usable for planting or to rebuild soils which have been damaged by improper management. In addition, to maintain soils in peak condition.

Planting media repair damaged soil and help maintain the soil quality for plant life. Over time soil will become compacted. Planting media help to loosen the soil as well as replenish and maintain nutrients in order to flourish the plants. For the best result it is important to mix the soil and the soil conditioner before planting. Planting media may be containing organic matters. Organic manures improve soil physical conditions such as moisture retention, aggregate soil stability capacity, soil fertility and crop performance. (Hati *et al.*, 2006). Organic manures are able to increase the soil microbial biomass and enhance its activity that improves the enzymatic activity in the soil (Ren *et al.*, 1996; Sun 2003; Lv *et al.*, 2005).

Rooting medium is important in determining the extent of root formation of date palm offshoots. The highest rooting percentages were obtained by perlite + peatmoss (3:1) medium, followed by wood shavings + peatmoss (1:1) and perlite + peatmoss (1:1). Sand medium was inferior to the others studied media (Al-Mana et al., 1996). Offshoots planting in a soil mixture of sand, peat moss, vermiculite, and perlite (1:1:1:1) gave the highest survival percentage (EL-Bahr, 2007). El-Kosary, et al., (2008) said that (Olive solid waste + sandy soil 1:2, v/v) gave the highest survival percentage and improve rooting, growth characters and mineral content of Zaghloul date palm offshoots in the nursery. In addition, Aisueni et al., (2009) said that organic manure enhances date palm growth in the nursery.

Effective microorganisms (EM) products had been in the market since 1983 in Japan (Subba Rao, 2008). Higa (1991) reported that EM contains selected species of microorganisms including three principal types, namely, lactic acid bacteria, yeast actinomyces, and photosynthetic bacteria that are commonly found in soils. Moreover, EM application increased number of the soil micro flora i.e. total bacteria, total actinomyces and total fungi which are the producers of indole acetic acid and gibberellins leads to improve growth of root system that reflected on enhancing the uptake of nutrients, thereby improving plant health under salinity stress, and consequently improve leaf mineral content (Higa, 1991).

In addition, Effective microorganisms (EM) with organic materials can be added to the soil, to stimulate the supply and release of nutrients Jakubus et al., (2012). EM is used to improve soil fertility and plant growing conditions (Higa, 1991 and Higa and Wididana, 1991). These findings show that the use of EM compost results in richer soils that can improve growth of crops. In addition, EM application causes a distinct acceleration of organic matter mineralization in the soil, increases the volume of the root system of rootstocks and increases the growth of the assimilative surface of leaves. Zydlik P.and Zydlik Z., (2008). Adding EM to the soil increased the vegetative growth, leaf area, leaf chlorophyll and leaf mineral values(N, P, K, Fe, Zn, and Mn) as compared with the untreated Le Conte pear tree (Abd-El-Messeih et al., 2005). In addition, Osman et al. (2011) mentioned that effective microorganisms (EM) application at 1.0 cm3/palm gave the best results in growth of "Bartamuda" date palm. Moreover, El-Khawaga (2013) reported that EM application improved growth of date palm cultivars "Sewy", "Zaghloul" and "Hayany". Amro et al., (2014) mentioned that effective microorganisms (EM1) application at 90 ml/palm gave the best results in growth and leaf mineral content of "Hayany" date palm. Moreover Higa (1991) and (Higa and Wididana, 1991) Saied that enhancement effect of EM on improving growth and leaf minerals content may be attributed to the fact that EM have beneficial effect on lowering soil pH, and increasing the uptake of water and nutrients. Formowitz et al., (2007) and Ibrahim, (2012) reported that, EM is enhancing soil fertility.

This investigation aimed to study the best concentration of EM on establishing date palm offshoots in nursery. Also, to test the most suitable planting media for increasing offshoot rooting ability and its growth performance.

II. Materials And Methods

This study was conducted during the two successive seasons of 2012 and 2013 at Baloza Experimental Station, Desert Research Center, North Sinai Governorate, and Egypt. Three levels of EM 0, 50 and 100 ml/ palm/year adding once time by mixing EM with the planting media prior preparing offshoots for planting in both seasons.

Offshoots planting media prepared as follows: T_1 : control treatment (normal sandy soil) (Table, 1), T_2 : mixture of cattle manure + sandy soil (1:2, v: v), T_3 : mixture of goat manure + sandy soil (1:2, v: v) and T_4 : mixture of compost and sandy soil (1:2, v/v) (Table, 2).

Hayany offshoots were planted at February of each season. Each treatment was contained 20 offshoots planted with 2 m between offshoots. Each 5 offshoots were dealt as one replicate and each treatment contained four replicates. Finally, each offshoot of Hayany date palm cultivar weights had ranged from 12 to 15 kg after preparing for planting (cleaning from old roots, dry leaves and dipping in Ferbam (Fungicide)).

		1 av	ic 1, 50m	c physic	ai and	i chem	icai pi	opere	ics of th	it exper	munu	11 3011.		
Particle	size		Texture				Ava	ilable nu	utrients		Available nutrients			ts
distribut (?	tion %)		soil	Ec dsm ⁻¹	pН	(Cation)			(Anion)					
Sand	Silt	Clay		usm		N %	Р%	К%	Ca meg/l	Mg meg/l	CO3	HCO3 meg/l	Cl	SO 4
90	5	5	sandy	1.50	8.20	trace	0.44	0.57	2.65	2.40	-	3.85	5.3	5.5

Table 1: Some physical and chemical properties of the experimental soil.

Table 2: Some chemical	properties of cattle manure, goat manure and compost.

Properties	Cattle manure	Goat	Compost
		manure	El Neel
organic matter %	54.2	68.2	30.70
N %	1.23	2.61	1.66
Р %	0.80	2.40	0.44
К %	0.50	2.70	1.56
C : N	14.20	19.00	18.70

The following data were recorded at the first week of February of the next season i.e. 12 month of planting: offshoots survival percentage, No. of leaves, leaf length, total number of roots, root length, root diameter. Also, leaves N, P, K, Fe, Zn, Cu and Mn contents were recorded as follows; total nitrogen was determined using micro-kjeldahl method according to (Huphries, 1959). Phosphorus was calorimetrically determined using flame-Photometer according to (Brown and Lilleland 1946). Fe, Zn, Cu and Mn were estimated by atomic absorption spectrophotometer as described by Allan and prince (1965). Also, the percentages of increasing N, P, K, Fe, Zn, Cu and Mn content were estimated and tabulated.

Statistical analysis

Survival percentage%

The data were subjected to analysis of variance and Duncan's multiple range tests was used to differentiate means as described by **Duncan (1955)**. The data were tabulated and statistically analyzed according to the spilt plot design (Snedecor and Cochran 1989). The percentages were transformed to the arcsine to find the binomial percentages according to (Steel and Torrie 1980).

III. Results and Discussion

Table 3, cleared that Hayany offshoots survival percentage was insignificantly affected by the three EM applied levels in both seasons. However, high level with EM gave the best survival percentage in both seasons comparing with other concentration (66.67 and 68.67 % in both seasons, respectively).

Regarding planting media effect, Hayany offshoots were affected significantly by different planting media used in both seasons. T₃ (goat manure + sandy soil 1:2, v/v) produced the highest offshoots survival percentage (65.67 and 67.56 % in the first and second seasons, respectively) comparing with other planting media used. Moreover, T₃ was followed in a descending order by T₄, T₂ and T₁ (60.78, 57.56 and 42.56 % in the first season and 62.00, 59.22 and 43.89 % in the second season), respectively.

The obtained data from the interaction between EM application and planting media cleared that, T_3 (goat manure+ sandy soil 1:2, v/v) with 100 ml EM recorded the highest offshoots survival percentage (81.00 and 83.00 % in the first and second seasons). However, the treatment of 0 ml of EM with T_1 recorded the lowest offshoots survival percentages (40.00% in the first and 41.33% in the second seasons).

These results may be due to the application of animal manure to soil that decreases the P sorption capacity and increases the availability of P to plants. This is thought to be result from the cumulative effects of various processes. These processes may include, for example, an increase in soil pH, blockage of P sorption sites by organic products released from the decomposing organic materials and complexation of toxic metal ions (e.g. Mn and Fe) by organic acids (**(Easterwood and Sartain, 1990 ; Hue, 1992; Haynes and Mokolobate, 2001).** The immobilization of P by soil microbial biomass in response to added manure may also increase its availability to plants (**Ayaga** *et al.*, **2006; Iyamuremye** *et al.*, **1996).** Moreover, EM application increased number of the soil micro flora i.e. total bacteria, total actinomyces and total fungi which are the producers of indole acetic acid and gibberellins leads to improve growth of root system that reflected on enhancing the uptake of nutrients, thereby improving plant health under salinity stress, and consequently improve leaf mineral content (Higa, 1991).

The obtained results are in agreement with, (Al-Mana *et al.*, 1996) who found that the highest rooting percentages were obtained by deferent planting media. In addition, El-Bahr (2007) who found that offshoots planting in a soil mixture of sand, peat moss, vermiculite and perlite (1:1:1:1) gave the highest survival percentage. El- Kosary, *et al.*, (2008) El- Kosary, *et al.*, (2008) who added that the planting media affected significantly on survival percentage of Zaghloul date palm cultivar in the nursery. El-Khawaga (2013) reported that EM application improved growth of date palm cultivars "Sewy", "Zaghloul" and "Hayany". Amro *et al.* (2014) mentioned that the effective microorganisms (EM) application at 90 ml/palm gave the best results in growth and leaf mineral content of "Hayany" date palm.

T		Surviva	al percentage %		
1	reatments	Season 2012	Season 2013		
Effect of EM application	on				
0 ml		47.75 c	48.92c		
50 ml		55.50 b	56.92b		
100ml		66.67 a	68.67a		
Effect of planting med	lia *				
T ₁		42.56d	43.89d		
T ₂		57.56c	59.22c		
T ₃		65.67a	67.56a		
T_4		60.78b	62.00b		
Effect of interaction be	tween EM application and planti	ng media			
EM application	planting modia *	Survival percentage %			
ENI application	planting media	Season 2012	Season 2013		
	T ₁	40.00i	41.33k		
0.ml	T ₂	47.00g	49.00hi		
0 1111	T ₃	53.33f	54.33g		
	Τ ₄	50.67f	51.00h		
	T ₁	43.33h	44.00jk		
50 ml	T ₂	56.67e	57.67f		
50 III	T ₃	62.67d	65.33d		
	Τ ₄	59.33e	60.67e		
	T ₁	44.33gh	46.33ij		
100 ml	T ₂	69.00c	71.00c		
100 m	T ₃	81.00a	83.00a		
	T ₄	72.33b	74.33b		

Table 3: Effect of EM application and different planting media on survival	percentage (%) of
Hayany date palm offshoots during 2012 and 2013 seasons	8.

*T₁: Control (normal sandy soil), T₂: cattle manure + sandy soil (1:2, v:v), T₃: goat manure + sandy soil (1:2, v:v) and T₄: compost + sandy soil (1:2, v:v). Means having the same letter (s) in each column, row or interaction are not significantly different at 5% level.

Rooting parameters (length, diameter and number)

Data presented in Table 4 revealed that all studied root parameters were significantly affected by all treatments in both seasons. It is obvious that adding EM with high level to the soil increased rooting parameters in both seasons.

Planting media were also significantly affected the same rooting parameters mentioned before in both seasons. T₃ (goat manure + sandy soil 1:2, v/v) produced the highest offshoots roots length (35.11 in the 1st and 35.56 (cm) in the 2nd season), roots diameter (0.84 in the 1st and 0.87(mm) in the 2nd seasons) and roots number (41.79 in the 1st and 42.11 in the 2nd seasons) comparing with other planting media used.

The interaction between EM application and planting media cleared that, T_3 (goat manure + sandy soil 1:2, v/v) with 100 ml EM recorded the highest offshoots rooting parameters roots length (45.00 (cm) in the both seasons), roots diameter (1.03 in the 1st and 1.07(mm) in the 2nd seasons) and roots number (60.00 in the 1st and 61.00 in the 2nd seasons). However, under 0 ml of EM with T₁ recorded the lowest offshoots rooting parameters, roots length (16.00 and 17.33(cm) in the first and second seasons, respectively) roots diameter (0.31 and 0.33(mm) in the first and second seasons, respectively) and roots number (5.33 in the 1st and 5.00 in the 2nd seasons).

The increase of roots system volume and improving growth of data parameter could be due to the application organic matter mineralization caused by EM treatments that applied in the soil **Zydlik P.and Zydlik Z., (2008).**

These results paralleled with those Al-Mana *et al.*, (1996) who proved that the highest rooting percentages affected by the difference of planting media, and with El-Kosary, *et al.*, (2008) who added that the planting media affected significantly on root length, root diameter and roots number of Zaghloul date palm cultivar in the nursery. In addition, Amro *et al.*, (2014) mentioned that effective microorganisms (EM) application at 90 ml/palm gave the best results in growth of "Hayany" date palm.

		Root len	igth (cm)	Root dian	neter (mm)	Roots number	
Treatments		Season 2012	Season 2013	Season 2012	Season 2013	Season 2012	Season 2013
Effect of EM	application						
0 ml		20.33c	21.75c	0.56c	0.57c	18.42c	17.67c
50 ml		28.33b	27.75b	0.68b	0.70b	26.83b	27.17b
100 ml		35.67a	35.58a	0.83a	0.85a	39.00a	39.00a
Effect of plant	ing media *						
T ₁		17.22d	18.22d	0.41d	0.43d	7.22d	7.00d
T ₂		28.89c	28.22c	0.73c	0.73c	29.44c	29.33c
T ₃		35.11a	35.56a	0.84a	0.87a	41.79a	42.11a
T ₄		31.22b	31.44b	0.78b	0.79b	33.89b	33.33b
Effect of intera	action between EM appl	ication and p	lanting media	1			
FM		Root length (cm)		Root dian	neter (mm)	Roots number	
application	planting media *	Season 2012	Season 2013	Season 2012	Season 2013	Season 2012	Season 2013
	T ₁	16.00j	17.33j	0.311	0.33i	5.33j	5.001
0 ml	T ₂	19.67hi	20.67h	0.59i	0.59f	17.67h	16.67i
	T ₃	24.67g	26.33f	0.69g	0.70e	27.00f	26.33g
	T ₄	21.00h	22.67g	0.64h	0.64f	23.67g	22.67h
	T ₁	17.00j	18.00ij	0.41k	0.45h	7.00ij	7.00k
	T ₂	29.00f	26.67f	0.72f	0.73e	29.33f	29.33f
50 ml	T ₃	35.67d	35.33d	0.82d	0.83cd	38.33d	39.00d
50 III	T ₄	31.67e	31.00e	0.78e	0.80d	32.67e	33.33e
	T ₁	18.67i	19.33hi	0.50j	0.52g	9.33i	9.00j
100 1	T ₂	38.00c	37.33c	0.87c	0.88bc	41.33c	42.00c
TUUMI	T ₃	45.00a	45.00a	1.03a	1.07a	60.00a	61.00a
		1	1	1	1	1	1

Table 4: Effect of EM application and different planting media on length, diameter and number of
roots of Hayany date palm offshoots during 2012 and 2013 seasons.

*T1: Control (normal sandy soil), T2: cattle manure + sandy soil (1:2,v:v), T3: goat manure + sandy soil (1:2,v:v) and T4: compost + sandy soil (1:2,v:v). Means having the same letter (s) in each column, row or interaction are not significantly different at 5% level.

Leaf length and leaves number

Data presented in Table 5 revealed that leaf length and leaves number were significantly affected by all treatments in both seasons. It is obvious that adding EM with high level to the soil increased leaf length and leaves number in both seasons.

Planting media were also significantly affected the same parameters, leaf length and leaves number mentioned before in both seasons. T_3 (goat manure + sandy soil 1:2, v/v) produced the highest offshoots leaf length (163.33 in the 1st and 160.78 cm in the 2nd seasons) and leaves number (4.78 in the 1st and 4.44 in the 2nd seasons) as comparing with other soil planting media.

The interaction between EM application and planting media cleared that, T_3 (goat manure + sandy soil 1:2, v/v) with 100 ml EM recorded the highest offshoots leaf length (204.00 in the 1st and 200.00 cm in the 2nd seasons) and leaves number (6.33 in the 1st and 6.00 in the 2nd seasons). However, under 0 ml of EM with T_1 gave the lowest offshoots leaf length (100.00 in the 1st and 99.67cm in the 2nd seasons) and leaves number (2.00 in the both seasons) was recorded.

Adding animal manure to soil decreases the P sorption capacity and increases the availability of P to plants. This is thought to result from the cumulative effects of various processes. These processes may include, for example, an increase in soil pH, blockage of P sorption sites by organic products released from the decomposing organic materials and complication of toxic metal ions (e.g. Mn and Fe) by organic acids (**Easterwood and Sartain, 1990; Hue, 1992; Haynes and Mokolobate, 2001**). The immobilization of P by soil microbial biomass in response to added manure may also increase its availability to plants (**Ayaga** *et al., 2006*; **Iyamuremye** *et al.,* **1996**). Moreover, EM application increased number of the soil microflora i.e. total bacteria, total actinomyces and total fungi which are the producers of indole acetic acid and gibberellins leads to improvement growth of root system that reflected on enhanced the uptake of nutrients, thereby improving plant health under salinity stress consequently improved leaf mineral content (**Higa, 1991**). Moreover, the application of EM improving growth and leaf minerals content may be attributed to the fact that EM have beneficial effect on lowering soil pH, and increasing the uptake of water and nutrients (**Higa, 1991; Higa and Wididana, 1991**), and enhancing soil fertility (**Formowitz** *et al., 2007* **and Ibrahim, 2012**).

These results are parallel with El- Kosary, *et al.*, (2008) who added the planting media affected significantly on leaf length and leaves number of Zaghloul date palm cultivar in the nursery. EM application caused a distinct acceleration of organic matter mineralization in the soil and increased the growth of the assimilative surface of leaves Zydlik P.and Zydlik Z., (2008). In addition, Osman *et al.*, (2011) mentioned that the effective microorganisms (EM) application at 1.0 cm3/palm gave the best results in growth of "Bartamuda" date palm. Moreover, El-Khawaga (2013) reported that EM application improved growth of date palm cultivars "Sewy", "Zaghloul" and "Hayany". Amro *et al.*, (2014) mentioned that the effective microorganisms (EM) application at 90 ml/palm gave the best results in growth of "Hayany" date palm.

	-	leaf leng	th (cm)	leaves	number			
Tr	reatments	Season 2012	Season 2013	Season 2012	Season 2013			
Effect of EM applicat	tion	<u>.</u>						
0 ml		114.08c	113.17c	2.75c	2.67c			
50 ml		137.58b	137.50b	3.58b	3.50b			
100 ml		167.42a	166.42a	4.75a	4.50a			
Effect of planting me	dia *							
T ₁		104.11d	103.67d	2.11c	2.11c			
T ₂		139.78c	140.00c	3.78b	3.67b			
T ₃		163.33a	160.78a	4.78a	4.44a			
T ₄		151.56b	151.67b	4.11b	4.00b			
Effect of interaction be	Effect of interaction between EM application and planting media							
		leaf leng	th (cm)	leaves	number			
EM application	planting media *	Season 2012	Season 2013	Season 2012	Season 2013			
	T ₁	100.001	99.671	2.00h	2.00h			
0 ml	T ₂	113.33i	112.33i	2.67fgh	2.67fg			
	T ₃	124.33g	122.33g	3.33def	3.00f			
	T ₄	118.67h	118.33h	3.00efg	3.00f			
	T ₁	104.00k	103.00k	2.00h	2.00h			
50 1	T ₂	133.00f	134.00f	3.67de	3.67e			
50 mi	T ₃	161.67d	160.00d	4.67bc	4.33cd			
	T_4	151.67e	153.00e	4.00cd	4.00de			
	T ₁	108.33j	108.33j	2.33gh	2.33gh			
100 ml	T ₂	173.00c	173.67c	5.00b	4.67bc			
100 mi	T ₃	204.00a	200.00a	6.33a	6.00a			
	T ₄	184.33b	183.67b	5.33b	5.00b			

Table 5: Effect of EM application and different planting media on leaf length and leaves number of
Hayany date palm offshoots during 2012 and 2013 seasons.

 T_1 : Control (normal sandy soil), T_2 : catle manure + sandy soil (1:2,v:v), T_3 : goat manure + sandy soil (1:2,v:v) and T_4 : compost + sandy soil (1:2,v:v). Means having the same letter (s) in each column, row or interaction are not significantly different at 5% level.

Leaf nitrogen, phosphorus and potassium content (g/100g.D.W)

Data in Table 6, 7 and 8 showed significantly increased in leaf nitrogen, phosphorus and potassium content at 12 month of planting in both seasons. However, EM with high level raised significantly the rate of N content (16.67 in the 1^{st} and 16.83 % in the 2^{nd} seasons), P content (13.75 and 14.42 % in the first and second seasons, respectively) and K content (20.75 in the 1^{s} and 20.58% in the 2^{nd} seasons.

In addition, leaf nitrogen, phosphorus and potassium content was affected significantly by different planting media used in both seasons. It was clearly noticed that T_3 increased both of nitrogen, phosphorus and potassium content and rate of increase of nitrogen, phosphorus and potassium comparing with other soil treatments used in both seasons.

The interaction between EM application and planting media showed that, T_3 with high level of EM application was the best treatments that produced the highest nitrogen, phosphorus and potassium content and the rate of N, P and K in offshoots leaves comparing with other interactions used in both seasons.

Generally, these results are in agreement with (Abd-El-Messeih et al., 2005) how recorded that adding EM to the soil increased the leaf mineral values; N, P and K as compared with the untreated Le Conte pear tree. In addition, El- Kosary, et al., (2008) who added that the planting media affected significantly on leaf mineral content of Zaghloul date palm cultivar in the nursery. Elias et al., (2009) added the application of goat manure to soil could also improve the availability of P through enhanced biological cycling of soil and fertilizer P. Jakubus *et al.*, (2012) said that effective microorganisms (EM) with organic materials can be added to the soil to stimulate the supply and release of nutrients.

Table 6: Effect of EM application and different planting media on leaf nitrogen content (%) ofHayany date palm offshoots during 2012 and 2013 seasons.

		Leaves nitrogen content (%)							
т	reatments	at planting	ş	at 12 mont	h	Increasing	rate		
	cutificitity	Season 2012	Season 2013	Season 2012	Season 2013	Season 2012	Season 2013		
Effect of EM a	oplication								
0 ml		1.61 a	1.61a	1.68 c	1.67c	6.83c	6.75c		
50 ml		1.61 a	1.61a	1.72 b	1.70b	11.00 b	9.33b		
100 ml		1.61a	1.61a	1.77a	1.78a	16.67a	16.83a		
Effect of plantin	ng media *								
T ₁		1.62 a	1.61a	1.65 d	1.64cd	2.89d	3.00d		
T ₂		1.61 b	1.61a	1.73 c	1.72c	12.00 c	11.67c		
T ₃		1.60 b	1.60a	1.77 a	1.76a	16.78a	15.56a		
T ₄		1.60 b	1.60a	1.75b	1.74b	14.33b	13.67b		
Effect of intera	ction between EM appl	ication and pla	nting media						
EM		Leaves nitrogen content (%)							
ENI application	planting media *	at plan	ting at 12 i		month	Increas	ing rate		
approxim		Season 2012	Season 2013	Season 2012	Season 2013	Season 2012	Season 2013		
	T ₁	1.63a	1.62a	1.64j	1.63i	1.33j	1.00h		
0 ml	T ₂	1.61 a-d	1.61abc	1.68 gh	1.67g	6.67 h	6.33f		
	T ₃	1.60 d	1.60bc	1.70 f	1.70f	10.67f	10.00e		
	T ₄	1.60bcd	1.61c	1.69 fg	1.69fg	8.67g	9.67e		
	T ₁	1.62 ab	1.60ab	1.65 ij	1.64hi	3.00 i	3.00c		
	T ₂	1.60 cd	1.61bc	1.72 e	1.71ef	12.33e	10.67de		
50 ml	T ₃	1.61 bcd	1.60ab	1.76d	1.74d	15.33d	12.33d		
	T ₄	1.60 bcd	1.61abc	1.74 de	1.72de	13.67de	11.33de		
	T ₁	1.62abc	1.60abc	1.66hi	1.65h	4.33i	5.00f		
100 ml	T ₂	1.61a-d	1.61abc	1.78c	1.79c	17.00c	18.00c		
100 III	T ₃	1.60cd	1.60bc	1.85a	1.84a	24.67a	24.33a		
	T ₄	1.60cd	1.61abc	1.81b	1.81b	20.67b	20.00b		

'I1: Control (normal sandy soil), T2: cattle manure + sandy soil (1:2,v:v), T3: goat manure + sandy soil (1:2,v:v) and T4: compost + sandy soil (1:2,v:v) Means having the same letter (s) in each column, row or interaction are not significantly different at 5% level.

Leaf Iron, Zinc, Cupper and Manganese content %

Concerning the results in Table 9, 10, 11 and 12, data showed significantly increase in leaf iron, zinc, cupper and manganese content at 12 month of planting in both seasons. However, EM with high level raised significantly the rate of iron, zinc, cupper and manganese content in both seasons.

In addition, leaf iron, zinc, cupper and manganese content was affected significantly by different planting media used in both seasons. It was clearly noticed that T_3 increased all of iron, zinc, cupper and manganese content and rate of iron (21.00 in the 1st and 21.22 % in the 2nd seasons), zinc (24.33in the 1st and 24.78 % in the 2nd seasons), cupper (15.44 in the 1st and 15.56 % in the 2nd seasons) and manganese (26.56 % in both seasons) comparing with other soil treatments used.

The interaction between EM applications and planting media showed that, T_3 with high level of EM application was the best treatments that produced the highest iron, zinc, cupper and manganese content and rate of Fe, Zn, Cu and Mn increase in offshoots leaves comparing with other interactions used in both seasons.

Generally, these results are in agreement with (Abd-El-Messeih *et al.*, 2005) who said that adding EM to the soil increased the vegetative growth, leaf area, leaf chlorophyll, leaf mineral values Fe, Zn, and Mn as compared with the untreated Le Conte pear tree. In addition, El-Kosary, *et al.*, (2008) who added that the planting media affected significantly on leaf mineral content of Zaghloul date palm cultivar in the nursery. Effective microorganisms (EM) with organic materials can be added to the soil, to stimulate the supply and release of nutrients Jakubus *et al.*, (2012).

Table 7: Effect of EM application and different planting media on leaf phosphorus content (%) of Hayany date palm offshoots during 2012 and 2013 seasons.

			L	eaves phosph	orus content	(%)			
т	at pl	anting	at 12	month	Increasing rate				
	reatinents	Season 2012	Season 2013	Season 2012	Season 2013	Season 2012	Season 2013		
Effect of EM a	pplication								
0 ml		0.22ab	0.22a	0.30c	0.29c	7.75c	7.33c		
50 ml		0.23a	0.21ab	0.33b	0.32b	9.83b	11.17b		
100 ml		0.21b	0.21a	0.35a	0.35a	13.75a	14.42a		
Effect of planti	ng media *	-							
T ₁		0.23a	0.23a	0.28d	0.28d	5.22d	5.22d		
T ₂		0.22b	0.21b	0.33c	0.32c	10.89c	11.44c		
T ₃		0.21b	0.20b	0.35a	0.35a	13.56a	14.44a		
T ₄		0.22b	0.21b	0.34b	0.34b	12.11b	12.78b		
Effect of intera	ction between EM app	lication and pla	nting media						
FM		Leaves phosphorus content (%)							
EM application	planting media *	at plai	ting at		at 12 month		sing rate		
upplication		Season 2012	Season 2013	Season 2012	Season 2013	Season 2012	Season 2013		
	T ₁	0.24a	0.23a	0.27i	0.27j	3.33i	3.67j		
0 ml	T ₂	0.21cd	0.22abc	0.29fgh	0.29hi	8.33g	7.00h		
	T ₃	0.21cd	0.21bcd	0.31ef	0.31fg	10.00ef	10.00f		
	T ₄	0.21cd	0.21bcd	0.30fg	0.30gh	9.33fg	8.67g		
	T ₁	0.22bc	0.22ab	0.28hi	0.28ij	6.00h	5.67i		
	T ₂	0.22abc	0.21bcd	0.33de	0.32ef	10.33ef	11.33e		
50 ml	T ₃	0.23ab	0.20cd	0.35c	0.35cd	12.00d	14.67c		
	T ₄	0.23ab	0.21bcd	0.34cd	0.34de	11.00de	13.00d		
	T ₁	0.23abc	0.22abc	0.29ghi	0.28hig	6.33h	6.33hi		
100 ml	T ₂	0.22bc	0.20d	0.36bc	0.36bc	14.00c	16.00b		
100 III	T ₃	0.20d	0.20d	0.39a	0.39a	18.67a	18.67a		
	T ₄	0.21cd	0.21bcd	0.37ab	0.37ab	16.00b	16.67b		

 T_1 : Control (normal sandy soil), T_2 : cattle manure + sandy soil (1:2,v:v), T_3 : goat manure + sandy soil (1:2,v:v) and T_4 : compost + sandy soil (1:2,v:v). Means having the same letter (s) in each column, row or interaction are not significantly different at 5% level.

Table 8: Effect of EM application and different planting media on leaf potassium content (%) of Hayany date palm offshoots during 2012 and 2013 seasons.

		Leaves potassium content (%)						
Treatments		at p	at planting		at 12 month		Increasing rate	
		Season 2012	Season 2013	Season 2012	Season 2013	Season 2012	Season 2013	
Effect of EM a	pplication	<u>.</u>						
0 ml		0.74a	0.73a	0.85c	0.85c	10.83c	11.58c	
50 ml		0.73ab	0.72ab	0.88b	0.88b	15.42b	15.67b	
100 ml		0.72b	0.71b	0.93a	0.92a	20.75a	20.58a	
Effect of planti	ng media *		•	•	•	•	•	
T_1	T ₁		0.75a	0.81d	0.81c	7.00d	6.33d	
T ₂		0.73b	0.72b	0.90c	0.90b	16.67c	17.78c	
T ₃		0.72b	0.71b	0.93a	0.92a	20.33a	20.67a	
T ₄		0.72b	0.71b	0.91b	0.90b	18.67b	19.00b	
Effect of intera	ction between EM app	lication and pla	anting media					
EM			Le	eaves potassiu	ım content (%	6)		
ENI application	planting modia *	at pla	nting	at 12 month		Increasing rate		
upplication	pranting incura	Season 2012	Season 2013	Season 2012	Season 2013	Season 2012	Season 2013	
	T ₁	0.75a	0.75a	0.80i	0.80h	5.00j	4.33i	
0 ml	T ₂	0.74a-d	0.72cd	0.85g	0.85f	11.33h	12.67f	
	T ₃	0.73a-d	0.72cd	0.87ef	0.87e	14.00g	15.00e	
	T ₄	0.73bcd	0.72cd	0.86fg	0.86ef	13.00g	14.33e	
	T ₁	0.74ab	0.75ab	0.82hi	0.81gh	7.00i	6.00h	

50 ml	T ₂	0.73bcd	0.72cd	0.89de	0.89d	16.00f	17.33d
	T ₃	0.73b-e	0.71d	0.93c	0.92c	20.33d	21.00c
	T ₄	0.72de	0.72cd	0.90d	0.90d	18.00e	18.33d
100 ml	T ₁	0.74abc	0.73bc	0.83h	0.82g	8.67i	8.67g
	T ₂	0.72cde	0.72cd	0.95b	0.95ab	22.67c	23.33b
	T ₃	0.71e	0.71d	0.98a	0.97a	26.67a	26.00a
	T_4	0.72de	0.71d	0.97a	0.95b	25.00b	24.33b

*T₁: Control (normal sandy soil), T₂: cattle manure + sandy soil (1:2,v:v), T₃: goat manure + sandy soil (1:2,v:v) and T₄: compost + sandy soil (1:2,v:v). Means having the same letter (s) in each column, row or interaction are not significantly different at 5% level.

Table 9: Effect of EM application and different planting media on leaf iron content (%) of Hayany date palm offshoots during 2012 and 2013 seasons.

Treatments			Leaves iron content (%)							
		at planting	at planting		at 12 month		rate			
		Season 2012	Season 2013	Season 2012	Season 2013	Season 2012	Season 2013			
Effect of EM a	pplication									
0 ml		152.92a	152.33a	162.00c	162.16c	9.08c	9.83c			
50 ml		152.25b	151.58a	166.67b	165.92b	14.42b	13.58b			
100 ml		151.75b	151.92a	173.17a	173.00a	21.42a	21.08a			
Effect of planting media *										
T ₁		153.89a	152.89a	159.89d	159.00d	6.00d	5.11d			
T ₂		152.22b	152.11ab	167.11c	166.56c	14.89c	14.44c			
T ₃		151.56c	151.33b	172.56a	172.56a	21.00a	21.22a			
T ₄		151.56c	151.44b	169.56b	170.00b	18.00b	18.56b			
Effect of intera	ction between EM app	lication and pla	nting media							
EM					Leaves iron content (%)					
application	planting media *	at planting		at 12 month		Increasing rate				
approxim		Season 2012	Season 2013	Season 2012	Season 2013	Season 2012	Season 2013			
	T ₁	154.67a	154.33a	159.00i	158.33g	4.33j	4.00h			
0 ml	T ₂	153.00bc	152.67abc	161.33gh	162.00f	8.33h	9.33g			
	T ₃	152.00cd	151.33c	165.00f	165.00e	13.00f	13.67ef			

151.00c

150.33c

152.33abc

151.67bc

152.00abc

154.00ab

151.33c

151.00c

151.33c

162.67g

160.00hi

167.33e

170.67d

168.67e

160.67h

172.67c

182.00a

177.33b

10.67g

6.00ij

15.33e

19.00d

17.33d

7.67hi

21.00c

31.00a

26.00b

163.33ef

158.67g

167.00d

170.00c

168.00d

160.00g

170.67c

182.67a

178.67b

12.33f

5.33h

14.67de

18.33c

16.00d

6.00h

19.33c

31.67a

27.33b

*T₁: Control (normal sandy soil), T₂: cattle manure + sandy soil (1:2,v:v), T₃: goat manure + sandy soil (1:2,v:v) and T₄: compost + sandy soil (1:2,v:v). Means having the same letter (s) in each column, row or interaction are not significantly different at 5% level.

152.00cd

154.00ab

152.00cd

151.67d

151.33d

153.00bc

151.67d

151.00d

151.33d

 T_4

 T_1

 T_2

T₃

T₄ T₁

T₂

T₃

T₄

50 ml

100 ml

Table 10: Effect of EM application and different planting media on leaf zinc content (%) of Hayany date palm offshoots during 2012 and 2013 seasons.

	Leaves zinc content (%)						
Tr	reatments	at planting		at 12 month		Increasing rate	
		Season 2012	Season 2013	Season 2012	Season 2013	Season 2012	Season 2013
Effect of EM ap	plication						
0 ml		51.08a	51.33a	65.92c	65.83c	14.83c	14.50c
50 ml		50.33b	51.17a	70.00b	70.25b	19.67b	19.58b
100 ml		50.75ab	50.75a	74.33a	74.67a	23.58a	23.92a
Effect of planting media *							
T ₁		51.67a	52.22a	61.22d	61.44d	9.56d	9.22d
T ₂		50.78b	50.78b	71.33c	71.33c	20.56c	20.56c
T ₃		50.33bc	50.33b	74.67a	75.11a	24.33a	24.78a
T ₄		50.11c	51.00b	73.11b	73.11b	23.00b	22.78b
Effect of interac	ction between EM applic	ation and pla	nting media				
EM	planting media *	Leaves zinc content (%)					

application	n at planting		nting	at 12 1	nonth	Increasing rate	
		Season 2012	Season 2013	Season 2012	Season 2013	Season 2012	Season 2013
	T ₁	52.00a	52.33a	60.00j	60.331	8.00i	8.00k
0 ml	T ₂	51.33ab	51.33abc	65.33h	65.00i	14.00g	13.67i
	T ₃	51.00abc	51.00bcd	70.00f	70.00g	19.00f	19.00g
	T ₄	50.00c	50.67cd	68.33g	68.00h	18.33f	17.33h
	T ₁	51.00abc	52.33a	60.67j	61.00k	9.67hf	8.67k
	T ₂	50.33c	50.33cd	72.33e	72.00f	22.00hi	21.67f
50 ml	T ₃	50.00abc	50.00d	74.00d	75.00d	24.00e	25.00d
	T ₄	50.00bc	52.00ab	73.00de	73.00e	23.00e	23.00e
	T ₁	52.00bc	52.00ab	63.00i	63.00j	11.00cd	11.00j
100 ml	T ₂	50.67c	50.67cd	76.33c	77.00c	25.67de	26.33c
100 III	T ₃	50.00a	50.00d	80.00a	80.33a	30.00de	30.33a
	T_4	50.33bc	50.33cd	78.00b	78.33b	27.67h	28.00b

*T1: Control (normal sandy soil), T2: cattle manure + sandy soil (1:2,v:v), T3: Goat manure + sandy soil (1:2,v:v) and T4: Compost + sandy soil (1:2,v:v). Means having the same letter (s) in each Colum, row or interaction are not significantly different at 5% level.

Table 11: Effect of EM application and different planting media on leaf cupper content (%) of Hayany date palm offshoots during 2012 and 2013 seasons.

		Leaves cupper content (%)							
Tre	eatments	at pla	nting	at 12	month	Increasing rate			
		Season	Season	Season	Season	Season	Season		
		2012	2013	2012	2013	2012	2013		
Effect of EM a	pplication	I							
0 ml		27.75a	27.92a	35.25c	34.67c	7.50c	6.75c		
50 ml		27.67a	27.17b	38.17b	37.75b	10.50b	10.58b		
100 ml		27.25a	27.17b	44.17a	43.58a	16.92a	16.42a		
Effect of planti	ng media *								
T ₁		28.33a	28.44a	33.33d	31.89d	5.00d	3.44d		
T_2		27.56b	27.22b	39.78c	39.33c	12.22c	12.11c		
T ₃		27.11b	26.78c	42.56a	42.33a	15.44a	15.56a		
T_4		27.22b	27.22b	41.11b	41.11b	13.89b	13.89b		
Effect of intera	ction between EM app	lication and pla	nting media						
		Leaves cupper content (%)							
annlication	planting media *	at planting		at 12 month		Increasing rate			
approación		Season	Season	Season	Season	Season	Season		
		2012	2013	2012	2013	2012	2013		
	T ₁	28.67a	29.00a	33.00h	31.33j	4.33h	2.33j		
0 ml	T ₂	27.33cd	27.67c	35.67g	35.00h	8.33f	7.33h		
	T ₃	27.33cd	27.00d	36.33g	36.00g	9.00ef	9.00g		
	T_4	27.67bcd	28.00bc	36.00g	36.33g	8.33f	8.33g		
	T ₁	28.33ab	28.33b	33.33h	32.00i	5.00gh	3.67i		
	T ₂	28.33ab	27.00d	38.33f	38.00f	10.00e	11.00f		
50 ml	T ₃	27.00d	26.67d	41.00d	41.00d	14.00d	14.33d		
	T ₄	27.00d	26.67d	40.00e	40.00e	13.00d	13.33e		
	T ₁	28.00abc	28.00bc	33.67h	33.33i	5.67g	4.33i		
100 ml	T ₂	27.00d	27.00d	45.33c	45.00c	18.33c	18.00c		
100 III	T ₃	27.00d	26.67d	50.33a	50.00a	23.33a	23.33a		
	T ₄	27.00d	27.00d	47.33b	47.00b	20.33b	20.00b		

*T₁: Control (normal sandy soil), T₂. cattle manure + sandy soil (1:2,v:v), T₃: Goat manure + sandy soil (1:2,v:v) and T₄: Compost + sandy soil (1:2,v:v). Means having the same letter (s) in each Colum, row or interaction are not significantly different at 5% level.

			Le	aves mangan	ese content (%	6)			
Treatments		at planting		at 12 month		Increasing rate			
		Season 2012	Season 2013	Season 2012	Season 2013	Season 2012	Season 2013		
Effect of EM a	pplication								
0 ml		53.08a	53.25a	65.92c	65.33c	12.83c	12.08c		
50 ml		52.25ab	51.42b	72.67b	72.08b	20.42b	20.67b		
100 ml		51.33a	51.25b	78.00a	77.58a	26.67a	26.33a		
Effect of planti	ing media *	•	•						
T ₁		53.44a	53.33a	61.33d	61.00d	7.89d	7.67d		
T ₂		52.25b	51.89b	73.89c	73.11c	21.67c	21.22c		
T ₃		51.56c	51.11c	78.11a	77.67a	26.56a	26.56a		
T ₄	T ₄		51.56bc	75.44b	74.89b	23.78b	23.33b		
Effect of intera	action between EM app	lication and pla	anting media	•		•	1		
514		Leaves manganese content (%)							
EM application	nlanting modia *	at plar	nting	at 12 month		Increasing rate			
application	planting incura	Season 2012	Season 2013	Season 2012	Season 2013	Season 2012	Season 2013		
	T ₁	54.00a	54.00a	60.001	60.00k	6.001	6.00k		
0 ml	T ₂	53.00b	53.00b	65.67i	65.00i	12.67i	12.00h		
0 III	T ₃	53.00b	53.00b	70.67g	70.00g	17.67g	17.00f		
	T ₄	52.33bc	53.00b	67.33h	66.33h	15.00h	13.33g		
	T ₁	53.33ab	53.00b	61.00k	60.67k	7.67k	7.67j		
	T ₂	52.67b	51.00cd	75.00f	73.67f	22.33f	22.67e		
50 ml	T ₃	51.33d	50.00e	78.33d	78.00d	27.00d	28.00c		
	T ₄	51.67cd	51.67c	76.33e	76.00e	24.67e	24.33d		
	T ₁	53.00b	53.00b	63.00j	62.33j	10.00j	9.33i		
100 ml	T ₂	51.00de	51.67c	81.00c	80.67c	30.00c	29.00c		
100 mi	T ₃	50.33e	50.33de	85.33a	85.00a	35.00a	34.67a		
	Т.	51.00de	50.00e	82.67h	82 33h	31.67h	32 33h		

Table 12: Effect of EM application and different planting media on leaf manganese content (%) of
Hayany date palm offshoots during 2012 and 2013 season.

*T₁: Control (normal sandy soil), T₂: cattle manure + sandy soil (1:2,v:v), T₃: Goat manure + sandy soil (1:2,v:v) and T₄: Compost + sandy soil (1:2,v:v). Means having the same letter (s) in each Colum, row or interaction are not significantly different at 5% level.

CONCLUSION

IT can be concluding from the aforementioned results, that goat manure + sandy soil (1:2,v:v) with 100 ml EM is improving rooting offshoots and their growth characters of Hayany offshoots date palm cultivar in the nursery.

References

- [1]. Abd-El-Messeih, W.M., M. Amal El-Seginy and H. Kabeel, (2005). Effect of the EM Biostimulant on Growth and Fruiting of Le Conte Pear Trees in Newly Reclaimed Areas. Alex. Sci. Exchange Journal, 26O2 April-June. Adjusting-controlling soil fertility [J]. Plant Nutrition and Fertilizer Science 9, 406-410.
- Aisueni, N. O., Ikuenobe C. E., Okolo E. C. and Ekhator F.(2009) Response of date palm (Phoenix dactylifera) seedlings to [2]. organic manure, N and K fertilizers in polybag nursery African Journal of Agricultural Research Vol. 4 (3), pp. 162-165, March 2009 Available online at http://www.academicjournals.org/AJAR.
- Allan, B. and S. prince, 1965. Absorption and spectrophotometer. Univ., of Hampshire, Durham, Hampshire
- [3]. [4]. Al-Mana, F. A.; M. A. El-Hamady; M. A. Bacha and A. O. Abdelrahman (1996). Improving root development on ground and aerial date palm offshoots. Principes. 40: 4, 179-181, 217-219; 3 pl.; 11 ref.
- [5]. Amro S.M. Salama, Omima M. El- Sayed and Osama H.M. El Gammal (2014) Effect of Effective Microorganisms (EM) and Potassium Sulphate on Productivity and Fruit Quality of "Hayany" Date Palm Grown Under Salinity Stress IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS). Volume 7, Issue 6 Ver. I, PP 90-99 www.iosrjournals.org www.iosrjournals.org 90 | Page.
- Ayaga G, Todd A, Brookes PC (2006) Enhanced biological cycling of phosphorus increases its availability to crops in low-[6]. input sub-Saharan farming systems. Soil Biol. Bio chem., 38, 81-90.
- Brown, J. D. and O. Lilleland (1946). Rapid determination of potassium and sodium in plant material and soil extracts by [7]. flame photometer Proc. Amer. Soc. Hort. Sci, 48: 341-346.
- Easterwood GW, Sartain JB(1990). Clover residue effectiveness in reducing or thophosphate sorption on ferric hydroxide [8]. coated soil. Soil Sci. Soc. Am. J., 54. 1345-1350.
- Elias M. Gichangi; Pearson N. S. Mnkeni and Philip C. Brookes (2009) Effects of goat manure and inorganic phosphate [9]. addition on soil inorganic and microbial biomass phosphorus fractions under laboratory incubation conditions Soil Science and Plant Nutrition (2009) 55, 764-771.
- [10]. Duncan, D. B., 1955. Multiple range and multiple F Test. Biometrics, 11: 1-42.
- [11]. El-Kosary, S.; E. I. Bakr1; I. A. Hussien and A. H Sheren (2008). Effect of the irrigation system and soil components on the growth of date palm offshoots in the nursery. Egyptian Journal of Applied Sciences Zagazig folder 23 Number 8 (b) 602-620)

- [12]. El-Bahr, M. K. (2007). Micro propagation of three Egyptian Date Palm Cultivars. The Fourth Symposium on Date palm, Saudi Arabia King Faisal University, AL-Hassa, 5-8 May. P. 158.
- [13]. El-Khawaga A.S., (2013). Effect of anti-salinity agents on growth and fruiting of different date palm cultivars. Asian Journal of Crop Science 5(1):65-80.
- [14]. Formowitz, B.; Elango, F.; Okumoto, S.; Miiller, T. and Buerert, A., (2007). The role of effective microorganisms in the compositing of banana (Musa spp.) residues. J. of Plant Nutrition and Soil Sci., 170: Issue 5 pp 649 656.
- [15]. Hati KM, Mandal KG, Misra AK, Gosh PK, Bandyopadhyay KK (2006). Effect of inorganic fertilizer and farmyard manure on soil physical properties, root distribution and water-use efficiency of soybean in Vertisols of central India. Bioresour. Technol. 16: 2182 – 2188.
- [16]. Haynes RJ and Mokolobate MS (2001). Amelioration of Al toxicityand P deficiency in acid soils by additions of organic residues: a critical review of the phenomenon and the mechanisms involved. Nutr. Cycl. Agroecosyst., 59, 47–63.
- [17]. Higa, T. and Wididana, G.N., (1991). The concept and theories of Effective Microorganisms. In: Parr, J.F., S.B. Hornick and C.E. Whitman (eds.), Proc. First International Conference on Kyusei Nature Farming, US Department of Agriculture, Washington, D.C., pp: 118–124.
- [18]. Higa, T., (1991). Effective microorganisms: A biotechnology for mankind. In: Parr, J.F., S.B. Hornick and C.E. Whitman (eds.), Proc First International Conference on Kyusei Nature Farming, pp: 8–14. U.S. Department of Agriculture, Washington, DC.
- [19]. Hue NV (1992) Correcting soil acidity of a highly weathered Ultisol with chicken manure and sewage sludge Commun. Soil Sci. Plant Anal., 23, 241–264
- [20]. Huphries, E. C. (1959). Mineral components and ash analysis modern methods of plant analysis, edited by K. Peach and U. V. Tracey, Springer Verlag Berlin, 1: 468.
- [21]. Ibrahim, W. M. A., (2012). Behaviour of Taimour mango trees to inorganic and organic fertilization and application of EM. Ph. D. Thesis, Fac. of Agric. Minia Univ., Egypt. ISSN 1991-637X © 2009 Academic Journals
- [22]. Iyamuremye F, Dick RP, Baham J (1996) Organic amendment and phosphorus dynamics: II. Distribution of soil phosphorus fractions. J. Soil Sci., 161, 436–443.
- [23]. Jakubus, M., P. Gajewski and Z. Kaczmarek, (2012). Evaluation of the impact of effective microorganisms (EM) on the solubility of microelements in soil. Journal of Zeszyty Naukowe Uniwersytetu Przyrodniczego we Wrocławiu - Rolnictwo, 103(589): 93-102.
- [24]. John, J. K. (1970). Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid .Soil Sci., 109: 214-220.
- [25]. Lv WG, Huang QW, Shen QR (2005). The effect of organic fertilizer and organic-inorganic fertilizer application on soil enzymes activities during watermelon growing period. Journal of Nanjing Agricultural.
- [26]. Osman, S. O.A.; Moustafa, F. M. A.; Abd El- Galil, H. A. and Ahmed, A.Y.M., (2011). Effect of yeast and Effective Microorganisms (Em1) application on the yield and fruit characteristics of Bartamuda date palm under Aswan conditions. Assiut J. of Agric. Sci., 42 (Special Issue) (The 5th Conference of Young Scientists Fac. of Agric. Assiut Univ. May,8, 2011) (332-349).
- [27]. Ren ZG, Chen YS, Tang FQ (1996) Effect of inorganic fertilizer combined with organic manure on the microflora and enzyme activities in paddy soil. Plant Nutrition and Fertilizer Science 2, 279-283.
- [28]. Snedecor, G.W. and W.G. Cochran (1989). In "Statistical Methods". 7th ed., Iowa State Univ. Press. Ames. Iowa, U.S.A., pp 593.
- [29]. Steel, R. C. D. and J. H. Torrie (1980). Reproduced from principles and procedures of statistics. Printed with the permission of C. I. Bliss, pp. 448-449.
- [30]. Subba Rao, N.S., (2008). Biofertilizers in Agriculture. Oxford IBH Company, New Delhi
- [31]. Sun RL, Zhao BQ, Zhu LS (2003) Effects of long-term fertilization on soil enzyme activities and its role in University 28, 67-71.
- [32]. Zydlik, P. and Z. Zydlik, (2008). Impact of biological effective microorganisms (EM) preparations on some physic-chemical properties of soil and the vegetative growth of apple-tree rootstocks. Nauka Przyr. Technol., 2: 1, #4.