Effect of Salt and Water Stresses on Jujube Trees under Ras Sudr Conditions

Abdel-Hameed, A. A. and Ali, F. Sahar Desert Research Center, Cairo, Egypt

Abstract: This investigation was carried out during two successive seasons (2010 and 2011) on 5 years old Nabq (Zizyphus spina christi) trees at Ras Suder Research Station, Desert Research Center- South Sinai Governorate, Egypt. This investigation aimed to study the effect of saline water treatments, water regulation and water irrigation levels on vegetative growth, some fruit parameters, leaf mineral contents, yield and fruit quality. The treatments contained the combination of three main factors: The first factor: two wells as a saline water source (well I and well II with EC values 3.68 and 6.80 dS/m, respectively). The second factor: water regulation method (WR): DI= deficit irrigation and RDI = regulated deficit irrigation by partial root zone drying (PRD). The third factor: irrigation levels of ETc = crop evapotranspiration 50, 75 and 100% (IL)). The obtained results showed that well I X deficit irrigation (DI) & regulated deficit irrigation (RDI) X 100% gave the highest values of tree circumference, Number shoots/tree, leaf area, yield/tree, fruit length, fruit diameter, fruit weight, fruit volume, fruit flesh weight, fruit moisture% and leaf contents of N, P, Mg beside TSS and total sugars. Moreover, treatments with well I X deficit irrigation (DI) recorded the highest values of shoot length, shoot diameter, fruit set, fruit retention, K and Fe. We can be recommended by treatment of trees with well I under stresses with regulated deficit irrigation under 100 % ETc to get the best results of fruit quality. **Keywords:** deficit irrigation – crop evapotranspiration- regulated deficit irrigation- saline water -(Zizyphus spina christi).

I. Introduction

Zizyphus spina christi is an evergreen tree or shrub belongs to the family *Rhamnaceae* and its common name is Jujube or Nabq. The cultivated area of Nabq in Egypt amounted 90 feddans produced about 94 tons of fruits according to the statistics of Ministry of Agriculture, Egypt (2012).

The assessment of the suitability of saline water for crop production is an imperative need along with practical guidelines, especially for the water uses in agriculture. The water of much higher salinities than those customarily classified as "unsuitable for irrigation" can, in fact, be used effectively for production of selected crops under the right conditions (FAO 1992 & Sepaskhah and Ahmadi, 2010). The water quality assessment and guidelines for the use of saline waters assume vital importance. Available water resources are subjected to an ever-increasing pressure due to extensive agricultural water demand for irrigated lands. Expanding agricultural production in arid and semi-arid regions is faced by two main problems, water scarcity and water salinity. Agricultural activities in North Sinai mainly depend on groundwater which is brackish water because of its high level of salinity. Nabk are considered one of the best trees that successively grown under such conditions in North Sinai (especially at Ras Sudr) but its growth and yield depend on quantity and quality of water irrigation.

Lemon fruit and juice mean weight decreased significantly with increasing of soil salinity levels (1.67, 3.11, and 6.42 ds.m⁻¹). While this salinity caused an increase in fruits total soluble solids, and fruits total acidity, while it was not so for fruits juice percentage (**Al-Hayani** *et al.*, **2009**). High salinity levels induce ionic imbalance given higher Na⁺ and Cl⁻ concentration in olive trees leaves and roots. As a result of the accumulation of these ions, the K⁺ concentration decreased resulting in a low ratio of K⁺/Na⁺ (**Ruiz** *et al.*, **2011**).

Yield, fruit size and vegetative growth of olive trees were affected by salts. Shoot length was higher in plants treated with CaCl₂, although shoot growth was reduced at 50 mg L⁻¹ NaCl (**Lolaei** *et al.*, **2012**). Increasing soil salinity levels (0, 50, 100, 200 and 400 mM NaCl) resulted in progressive decrease of K⁺, K⁺/Na⁺ ratio and N content, along with increase in Na⁺ levels of date palm. Increasing salinity levels also decreased the net photosynthesis and chlorophyll levels. Also, **Dejampour Lolaei** *et al.*, **(2012)** indicated that increasing salinity level had significant negative effects on leaf chlorophyll content, leaf area, dry and fresh weight of root and shoot of *Prunus* rootstocks (**Al-Abdoulhadi** *et al.*, **2012**).

Partial root-zone drying (PRD) is a modified form of deficit irrigation (DI) which involves irrigating only one part of the root zone in each irrigation event, leaving another part to dry to certain soil water content before rewetting by shifting irrigation to the dry side; therefore, PRD is a novel irrigation strategy since half of

the roots is placed in drying soil and the other half is growing in irrigated soil (Loveys et al., 2000 & Ahmadi et al., 2010).

Chaves et al., (2007) decreased the amount of water applied by 50% (as in deficit irrigation, DI, and in partial root drying, PRD) in relation to full crop's evapotranspiration (ETc) with no negative effects on production and even get some gains of quality (in the case of PRD). Aganchich et al., (2007) observed that compared with RDI, PRD consistently resulted in a larger reduction of olive vegetative growth, expressed as shoot elongation, leaf number and leaf area in lateral shoots. Marsal et al., (2008) stated that PRD offered the possibility of slightly improving water conservation.

The aim of this investigation was studying the effect of two saline water sources, partial root-zone drying (PRD) and deficit irrigation on Nabq trees.

II. Materials and Methods

This study was conducted during two successive seasons of 2010 and 2011 on 5 years old Nabq (*Zizyphus spina christi*) trees planted at 4x5 meters and subjected to the same agriculture practices apart at Ras Suder Research Station, Desert Research Center- South Sinai Governorate, Egypt. Seventy two trees, uniform in growth and in good physical condition were selected and grouped under twelve treatments.

A drip irrigation system was designed with two drip lines and every drip line placed 1m distance from trunk tree. For partial root-zone drying (PRD) treatments, this irrigation system kept one side of the tree root zone irrigated, while the other was kept dry and switching sides was done every irrigation time. While irrigation water was supplied to both the sides of the regulated deficit irrigation (RDI) root zone trees. Trees were irrigated with amount of water based on the crop evapotranspiration (ETc), estimated from the potential evapotranspiration (ETo), calculated using the Penman–Monteith crop coefficients (Kc = 0.846) proposed by FAO (1992).

ETc =Kc ETo

where ETc crop evapotranspiration $[mm d^{-1}]$,

Kc crop coefficient,

ETo reference crop evapotranspiration [mm d⁻¹].

This investigation aimed to study the effect of water source (well 1 and well 2 with E.C of 3.68 and 6.80 dS/m, respectively), water regulation (DI= deficit irrigation and RDI= regulated deficit irrigation) and three irrigation levels (50, 75 and 100% of ETc).

Analysis of soil is tabulated in table 1. Also, Chemical analysis of water wells is in table 2.

1- Well 1 + DI + 100% ETc.

- 2- Well 1 + DI + 75% ETc.
- 3- Well 1 + DI + 50% ETc.
- 4- Well 1 + PDR + 100% ETc.
- 5- Well 1 + PDR + 75% ETc.
- 6- Well 1 + PDR + 50% ETc.
- 7- Well 2 + DI + 100% ETc.
- 8- Well 2 + DI + 75% ETc.
- 9- Well 2 + DI + 50% ETc.
- 10- Well 2 + PDR + 100% ETc.
- 11- Well 2 + PDR + 75% ETc.
- 12- Well 2 + PDR + 50% ETc

Table 1: Analysis of soil

Soil	Toyturo	pН	FC	Organic	Solu	ible catio	ons (mequi	iv./l)	So	luble anior	ns (mequiv.	/l)
depth (cm)	class	soil past	(dS/m)	matter %	Ca ⁺⁺	K^+	Na ⁺	Mg^{++}	Cl	So4	HCo3 ⁻	Co3
0-30	Sand	7.28	9.1	0.53	16.2	1.3	50.4	23.1	54.5	33.9	2.5	
30-60	Sand	7.16	8.6	0.55	15.3	1.23	47.7	21.9	51.5	32.1	2.4	

Table (2): Chemical analysis of wells water

Parameters	Well I	Well II
Total dissolved solids (mg/l)	1993.33	3989.00
Electric conductivity (dS/m)	3.68	6.80
pH	7.50	7.36
Sodium (Na ⁺ , mg/l)	30.27	58.13
Potassium (K ⁺ , mg/l)	0.22	0.27
Calcium (Ca ⁺⁺ , mg/l)	6.17	10.58
Magnesium (Mg ⁺⁺ , mg/l)	7.83	13.42
Carbonate (CO ₃ , mg/l)	0.33	0.26
Bicarbonate (HCO ₃ , mg/l)	2.73	2.87
Chloride (Cl ⁻ , mg/l)	22.09	41.71

DOI: 10.9790/2380-081192107

The experimental design was randomized complete block design split-split plots where irrigation source treatments (well I and well II with EC values 3.68 and 6.80 dS/m, respectively) represented in the main plots. Partial root-zone drying (PDR) and deficit irrigation (DI) methods represented in the sub-main plots. ETc levels (50, 75 and 100%) were in the sub-sub-main plots. Each treatment included three replicates and each replicate included two trees. This experiment contained 12 treatments as follows:

Shoot parameters: the following data were recorded:

Shoot length (cm), shoot diameter (cm), tree height (m), tree circumference (m), number shoots/tree, leaf area $(cm^{2}).$

Fruit set percentage: The percentage of fruit set was calculated using the following formula, four weeks after full bloom:

Number of set fruit

The percentage of fruit set = -----×100

Number of flowers

Retained fruit percentage: The retained fruit percentage was calculated after June drop as follows:

Total number of retained fruits The retained fruit percentage = ---

-----×100

Number of flowers

Yield: At harvest time of each season (2010&2011 years) the total yield was estimated as average weight of harvest mature fruits (kg/tree).

Fruit characters: Samples of forty fruits from each treated tree were collected randomly at harvest time and the following measurements were recorded:

Average fruit length (cm), average fruit diameter (cm), average fruit weight (g), average fruit volume (cm³), average flesh weight (g) and average fruit moisture (%) and total soluble solids (T.S.S.) were determined by Hand refractometer.

Leaf mineral content: some leaf mineral elements (N, P, K, Ca, Mg, Na, Fe, and Zn), were determined. Nitrogen analyses were determined by MicroKjeldahl method (Jakson, 1967). Phosphorus was determined by the method of (Trugo and Meyer, 1929). Potassium and sodium was determined by the method of the flame photometer according to the method of (Brown and Lilleland, 1946). Calcium and magnesium were determined by titration against versente solution (Na EDTA) according to Chapman and Pratt (1961). Iron and zinc were estimated by using Atomic Absorption spectrophotometer.

Statistical analysis: The obtained data were subjected to analysis of variance according to Clarke and Kempson (1997). Means were differentiated using multiple Range test at the 0.05 level (Duncan, 1955).

III. **Result and Discussion**

The following tables show the effect of water well source as a difference in salts content, water regulation method and irrigation level as a percentage on some parameters of Jujube trees as: shoot length, shoot diameter, tree height, tree circumference, number of shoot per tree, leaf area, fruit set, fruit retention yield, fruit length, fruit diameter, fruit weight, fruit volume, flesh weight, fruit moisture, leaf mineral contents and fruit quality. Data in table (3) showed the effect of well water source, water regulation, irrigation levels and their interaction on some vegetative parameters of Jujube trees (2010&2011) seasons.

Shoot length: concerning water source, there are insignificant differences between well I and well II in the first season but well I gave higher significant value than well II in the second season. Water regulation, there are insignificant differences between deficit irrigation (DI) and regulated deficit irrigation (RDI) in both seasons. Irrigation levels, the highest values in both seasons were found with 100% level.

The interaction between water source (WI & WII) and water regulation method (DI = deficit irrigation & RDI regulated deficit irrigation), in the first season, WI X DI and WI X RDI had higher significant shoot length values than WII X DI. The same results could be noticed in the second season. The interaction between: water source and irrigation levels (ETc = 50, 75 and 100%): in both seasons, the treatments of WI X 100% recorded highest significant shoot length values. The interaction between water regulation and irrigation levels: in the first season, DI X 100% and RDI X 100% treatments gave highest significant shoot length values. In the second season, DI X 100% treatment showed higher significant shoot length value than all other treatments except RDI X 100% treatment.

The interaction among: the three studied factors: the treatments of WI X DI X 100% had higher significant shoot length values than all other treatments except WI X RDI X 100% treatments in both seasons.

		Shoot lei	ngth (cm)	Shoot diame	eter (cm)	Tree height (m)		
	Treatme	ents	1 st season	2 nd season	1 st season	2 nd season	1 st season	2 nd season
V	N	WI	36.64 A	35.68 A	0.430 A	0.416 A	3.184 A	3.022 A
		WII	32.99A	30.84 B	0.364 A	0.364 B	2.937 B	2.973 A
W	/R	DI	34.38 A	32.82 A	0.393 A	0.383 B	3.039 A	2.954 A
		RDI	35.26 A	33.70 A	0.401 A	0.397 A	3.082 A	3.041 A
		50%	30.98 C	28.28 C	0.321 B	0.299 C	2.708 B	2.722 B
E	Тс	75%	34.46 B	33.38 B	0.423 A	0.419 B	3.188 A	3.154 A
		100%	39.02 A	38.12 A	0.447 A	0.453 A	3.286 A	3.117 A
Water s	source X	Water regu	ulation					
V	VI	DI	36.59 A	35.96 A	0.424 A	0.411 A	3.179 A	3.007 A
		RDI	36.70 A	35.41 A	0.436 A	0.421 A	3.189 A	3.038 A
W	/II	DI	32.17 B	29.69 B	0.361 B	0.356 C	2.900 B	2.902 A
		RDI	33.81 AB	31.99 AB	0.367 B	0.373 B	2.974 AB	3.043 A
Water s	source X	Irrigation l	levels					
		50%	32.13 C	30.73 C	0.355 D	0.320 D	2.930 B	2.817 AB
v	VI	75%	36.57 B	34.75 B	0.458AB	0.452 AB	3.293 A	3.187 A
			41.23 A	41.57 A	0.477 A	0.477 A	3.328 A	3.063 AB
		50%	29.82 C	25.83 D	0.287 E	0.278 E	2.487 C	2.627 B
W	/II	75%	32.35 C	32.02 BC	0.388 CD	0.387 C	3.082 AB	3.122 A
			36.80 B	34.67 B	0.417 BC	0.428 B	3.243 A	3.170 A
Water r	egulatio	n X Irrigati	on levels					
		50%	29.68 C	26.58 E	0.307 B	0.280 E	2.638 B	2.663 B
Ι	DI	75%	33.85 B	32.58 CD	0.417 A	0.410 C	3.178 A	3.158AB
		100%	39.60 A	39.30 A	0.455 A	0.460 A	3.302 A	3.042 AB
		50%	32.27 BC	29.98 DE	0.335 B	0.318 D	2.778 B	2.780AB
R	DI	75%	35.07 B	34.18 BC	0.430 A	0.428 BC	3.197 A	3.150AB
		100%	38.43 A	36.93 AB	0.438 A	0.445 AB	3.270 A	3.192 A
Water s	source X	Water regu	ulation X Irrigatio	n levels				
		50%	31.13 DE	29.33 CD	0.333 EF	0.300 FG	2.913 CD	2.927 AB
	DI	75%	36.33 BC	34.73 BC	0.453ABC	0.443 B	3.287ABC	3.177 A
WI		100%	42.30 A	43.80 A	0.487 A	0.490A	3.337A	2.917 AB
		50%	33.13 CD	32.13 CD	0.377 DE	0.340 EF	2.947 BCD	2.707 AB
	RDI	75%	36.80 BC	34.77 BC	0.463 AB	0.460AB	3.300AB	3.197 A
		100%	40.17 AB	39.33 AB	0.467AB	0.463 AB	3.320AB	3.210 A
		50%	28.23 E	23.83 E	0.280 F	0.260 G	2.363E	2.400 B
1	DI	75%	31.37 DE	30.43 CD	0.380 DE	0.377 DE	3.070ABC	3.140A
WII		100%	36.90 BC	34.80 BC	0.423ABCD	0.430 BC	3.267ABC	3.167A
1		50%	31.40 DE	27.83 DE	0.293F	0.297 FG	2.610DE	2.853AB
	RDI	75%	33.33 CD	33.60 BC	0.397 CDE	0.397 CD	3.093ABC	3.103AB
		100%	36.70 BC	34.53 BC	0.410 BCD	0.427 BC	3.220ABC	3.173A

 Table (3) Effect of well water source, water regulation, irrigation levels and their interaction on some vegetative parameters of Jujube trees (2010&2011).

Mean having the same letter (s) in each row, column or interaction are insignificantly different at 5% level. Water source = (WI, WII), water regulation (WR) = (deficit irrigation= DI, regulated deficit irrigation= RDI), irrigation levels = (ETc = crop evapotranspiration).

Shoot diameter: concerning water source, there are insignificant difference between well I and well II in the first season but well I gave higher significant value than well II in the second season. Water regulation, there are insignificant differences between (DI) and (RDI) in the first season but (RDI) gave higher significant value than (DI) in the second season. Irrigation levels, level 75% & 100% gave the highest value in first season but level (100%) gave the highest values in both seasons. The interaction between water source (WI & WII) and water regulation (DI & RDI). In the first season, WI X DI and WI X RDI had higher significant shoot diameter values than WII X DI. The same results could be noticed in the second season. The interaction between: water source and irrigation levels (ETc = 50, 75 and 100%): in both seasons, the treatments of WI X 100% recorded higher significant shoot diameter values than all other treatments except WI X 75% treatment.

The interaction between water regulation and irrigation levels: in the first season, DI X 75% &100% and RDI X (75% &100%) treatments gave highest significant shoot diameter values. In the second season, DI X 100% treatments showed higher significant shoot diameter value than all other treatments except RDI X 100% treatments. The interaction among: the treatments of WI X DI X 100% had higher significant shoot diameter values than most of other treatments.

Tree height: concerning water source, well I gave higher significant value than well II in the first season but there are insignificant difference between well I and well II in the second season. Water regulation, there are insignificant differences between DI and RDI in both season. Irrigation level 100% of ETc gave the highest significant values in both seasons.

The interaction between water source (WI & WII) and water regulation (DI & RDI) in the first season, WI with DI & RDI highest significant values but there are insignificant differences among all treatments in the second season. The interaction between: water source and irrigation levels (ETc = 50, 75 and 100%): in both seasons, the treatments of WI X 75%, WI X 100% and WII X 100% in the first season recorded higher significant tree height values than all treatments except WII X 75% treatments, while in the second season WI X 75%, WII X 75% & 100% recorded higher significant value than WII X 50%. The interaction between water regulation and irrigation levels: in the first season, DI X 75% &100% and RDI X 75% &100% in the first season, gave highest significant tree height values. In the second season RDI X 100% had higher significant value than DI X 50% treatment. The interaction among: the three studied factors: the treatments of WI X DI X 100%, had higher significant value than WI X RDI X 50% treatments in the first season. In the second season WII X DI X 50% had lower significant tree height values than most of other treatments.

Data in table (4) showed the effect of well water source, water regulation, irrigation levels and their interaction on some vegetative parameters of Jujube trees (2010&2011) seasons.

Tree circumference: concerning water source, well I gave higher significant value than well II in both seasons. Water regulation, there are insignificant differences between (DI) and (RDI) in the first season but (RDI) gave higher significant value than (DI) in the second season. Irrigation levels, level (100%) gave the highest values in both seasons.

The interaction between water source (WI & WII) and water regulation (DI & RDI), the treatments of WI X DI and WI X RDI showed highest significant values in both seasons. The interaction between: water source and irrigation levels (ETc =50, 75 and 100%): in both seasons, the treatments of WI X 100% recorded highest significant tree circumference values. The interaction between water regulation and irrigation levels: in in both seasons, the treatments of DI X 100% gave higher significant tree circumference values than all other treatments except RDI X 100% treatments. The interaction among: the three studies factor: in both seasons, the treatments of WI X DI X 100% and WI X RDI X 100% had higher significant tree circumference values than all other treatments except WI X RDI X 75% treatments.

Number shoots per tree: concerning water source, well I gave higher significant value than well II in the first season but there insignificant difference between well I and well II in the second season. Water regulation, RDI gave higher significant value than DI in both seasons. Irrigation levels, level 100% gave the highest significant values in both seasons.

The interaction between water source (WI & WII) and water regulation (DI & RDI). WI X RDI recorded the highest significant values in both seasons.

The interaction between: water source and irrigation levels (ETc =50, 75 and 100%): in both seasons, the treatments of WI X 100% recorded highest significant Number shoots per tree values. The interaction between water regulation and irrigation levels: in both seasons, the treatments of DI & RDI X 100% gave highest significant number shoots per tree values. The interaction among: water source, water regulation and irrigation levels: in both seasons, the treatments of WI X 100% had highest significant Number shoots per tree.

Leaf area: concerning water source, well I gave higher significant value than well II in both seasons. Water regulation, there are insignificant differences between DI and RDI in the first season but RDI gave higher significant value than (DI) in the second season. Irrigation levels, level 100% gave the highest significant values in both seasons.

The interaction between water source (WI & WII) and water regulation (DI & RDI), WI X (DI & RDI) recorded the highest significant values in both seasons. The interaction between: water source and irrigation levels (ETc =50, 75 and 100%): in both seasons, the treatments of WI X 100% recorded highest significant leaf area values. The interaction between water regulation and irrigation levels: in both seasons, the treatments of (DI & RDI) X 100% gave higher significant leaf area values.

The interaction among: the three studied factors: in both seasons, the treatments of WI X DI X 100% and WI X RDI X 100% had highest significant leaf area values.

These results was agreement with Lolaei *et al.*, (2012) who showed that salt stress caused a significant reduction in plant growth and leaf number and weight.

Data in table (5) showed the effect of well water source, water regulation, irrigation levels and their interaction on some fruit parameters of Jujube trees (2010&2011) seasons.

		Tree circun	nference (m)	Number sl	100ts/tree	Leaf area (m ²)		
	Freatme	ents	1 st season	2 nd season	1st season	2 nd season	1st season	2 nd season
V	N	WI	7.686 A	7.675 A	99.61 A	92.39A	7.437 A	7.389 A
		WII	6.658 B	6.636 B	83.17 B	81.83 A	6.794 B	6.819 B
W	/R	DI	7.046 A	7.036 B	86.67 B	84.28 B	7.052 A	7.006 B
		RDI	7.280 A	7.275 A	92.11 A	89.94 A	7.179 A	7.202 A
		50%	6.039 C	6.229 C	70.50 C	68.83 C	6.441 C	6.391C
E	Tc	75%	7.485 B	7.278 B	92.75 B	90.33 B	7.215 B	7.206 B
		100%	7.992 A	7.959A	104.9 A	102.2 A	7.692 A	7.716 A
Water s	source X	Water reg	ulation					
v	VI	DI	7.650A	7.597 A	93.89 B	90.00 B	7.374 A	7.359 A
		RDI	7.722 A	7.753 A	97.33 A	94.78 A	7.500 A	7.420 A
W	/II	DI	6.479 B	6.476 C	79.44 D	78.56 D	6.730 B	6.653 C
		RDI	6.838 B	6.797 B	86.89 C	85.11 C	6.859 B	6.984 B
Water s	source X	Irrigation	levels					
		50%	6.230 E	6.372 DE	73.50 D	70.67 D	6.700 E	6.492 E
v	VI	75%	8.212 B	8.075 B	99.00 B	97.17 B	7.432 B	7.505 B
		100%	8.617 A	8.578 A	114.3 A	109.3 A	8.180 A	8.172 A
		50%	5.848 F	6.087 E	67.50 E	67.00 D	6.182 F	6.290 F
W	/II	75%	6.758 D	6.482 D	86.50 C	83.50C	6.998 D	6.907 D
		100%	7.368 C	7.340 C	95.50 B	95.00 B	7.203 C	7.260 C
Water r	egulatio	n X Irrigat	ion levels			-	-	
		50%	5.903 D	6.058 D	65.67 E	64.33 E	6.273 D	6.250 E
L	DI	75%	7.212 C	6.993 C	87.83 C	85.83 C	7.163 B	7.042 C
		100%	8.078A	8.057A	106.5 A	102.7 A	7.720 A	7.727 A
		50%	6.175 D	6.400 D	75.33 D	73.33 D	6.608 C	6.532 D
R	DI	75%	7.758 B	7.563 B	97.67 B	94.83 B	7.267 B	7.370 B
		100%	7.907 AB	7.862 AB	103.3 A	101.7 A	7.663 A	7.705 A
Water s	source X	Water reg	ulation X Irrigation	levels	•			
		50%	6.207 D	6.223 GH	70.33 F	67.33 G	6.530 F	6.400 E
	DI	75%	8.033 B	7.853 BC	94.67 C	92.67 CD	7.367 BC	7.493 BC
WI		100%	8.710A	8.713 A	116.7 A	110.0 A	8.227 A	8.183 A
		50%	6.253 D	6.520 FG	76.67 DE	74.00 EF	6.870 E	6.583 E
	RDI	75%	8.390AB	8.297 AB	103.3 B	101.7 B	7.497 B	7.517 B
		100%	8.523A	8.443 A	112.0 A	108.7 A	8.133 A	8.160 A
		50%	5.600 E	5.893 H	61.00 G	61.33 H	6.017 G	6.100 F
	DI	75%	6.390 D	6.133 GH	81.00 D	79.00 E	6.960 DE	6.590 E
WII		100%	7.447 C	7.400 CD	96.33 C	95.33C	7.213 CD	7.270 CD
		50%	6.097 D	6.280GH	74.00 EF	72.67 FG	6.347 F	6.480 E
	RDI	75%	7.127 C	6.830 EF	92.00C	88.00 D	7.037F	7.223 D
		100%	7.290 C	7.280 DE	94.67 C	94.67 C	7.193CD	7.250 D

Table (4) Effect of well water source, water regulation, irrigation levels and their interaction on some vegetative parameters of Jujube trees (2010&2011).

Mean having the same letter (s) in each row, column or interaction are insignificantly different at 5% level. Water source = (WI, WII), water regulation (WR) = (deficit irrigation= DI, regulated deficit irrigation= RDI), irrigation levels = (ETc = crop evapotranspiration).

Fruit set: concerning water source, well I gave higher significant value than well II in both seasons. Water regulation, there are insignificant difference between DI and RDI in the first season but RDI gave higher significant value than (DI) in the second season. Irrigation levels, level (100%) gave the highest values in both seasons. The interaction between water source (WI & WII) and water regulation (DI & RDI). In the first season the treatment of WI X DI and WI X RDI but WI X RDI only in the second season recorded the highest significant values. The interaction between: water source and irrigation levels (ETc =50, 75 and 100%): in both seasons, the treatments of WI X 100% recorded highest significant fruit set values. The interaction between water source of DI X 100% and RDI X 100% in the first season gave highest significant fruit set values but DI X 100% had highest significant value in the second season. The interaction among: the three studied factors: in both seasons, the treatments of WI X DI X 100% had highert significant fruit set values than most of other treatments.

Fruit retention: concerning water source, well I gave higher significant value than well II in both seasons. Water regulation, RDI gave higher significant value than (DI) in the first season but there are insignificant difference between DI and RDI in the second season. Irrigation levels, level (100%) gave the highest significant values in both seasons. The interaction between water source (WI & WII) and water regulation (DI & RDI). The treatment of WI X DI and WI X RDI in both seasons recorded the highest significant values. The interaction between: water source and irrigation levels (ETc =50, 75 and 100%): in the first season the treatment of WI X 100% recorded highest significant fruit retention value in the first season but the same treatment had higher

significant value than all treatments except the treatment of WI X 75% in the second season. The interaction between water regulation and irrigation levels: in both seasons, the treatments of DI X 100% and RDI X 100% in the first season gave highest significant fruit retention value in the first season DI X 100% showed higher significant value than all other treatments except the treatment of RDI X 100% in the second season. The interaction among: the three studied factors: in the first season, the treatments of WI X DI X 100% had higher significant fruit retention value. than most of other treatments while in the second season, the treatments of WI X (DI&RDI) X (75% &100%) and WII X (DI&RDI) X 100% had highest significant fruit retention values.

		Frui	t set%	Fruit ret	ention%	Yield (kg/tree)		
	Treatme	nts	1 st season	2 nd season	1 st season	2 nd season	1 st season	2 nd season
V	V	WI	6.591 A	6.626 A	4.637 A	4.457 A	16.19 A	15.77 A
		WII	5.855 B	5.781 B	4.058 B	3.998 B	12.42 B	11.91 B
W	'R	DI	6.225 A	6.139 B	4.296 B	4.186 A	13.81 B	13.39 B
		RDI	6.221 A	6.267A	4.398 A	4.269 A	14.81 A	14.29 A
		50%	4.931C	5.037 C	3.516 C	3.478 C	11.20 C	10.88 C
E	Гс	75%	6.496 B	6.457 B	4.517 B	4.387 B	15.16 B	14.65 B
		100%	7.242 A	7.117 A	5.008A	4.818 A	16.57 A	16.00 A
Water s	ource X V	Vater regula	tion					
V	VI	DI	6.591 A	6.574 B	4.597 A	4.433 A	15.76 B	15.37 B
		RDI	6.590A	6.678 A	4.677 A	4.480 A	16.63 A	16.18 A
W	ΊI	DI	5.859 B	5.704 D	3.996 C	3.938 B	11.86 D	11.41 D
		RDI	5.851 B	5.857 C	4.120 B	4.059 B	12.99 C	12.41 C
Water s	ource X I	rrigation lev	/els			-		
		50%	5.110 D	5.235 E	3.658 E	3.582 D	12.37 D	12.40 D
V	VΙ	75%	7.130 B	7.190 B	5.018 B	4.818 AB	17.57 B	16.92 B
		100%	7.532 A	7.453 A	5.233 A	4.970 A	18.65 A	18.00 A
		50%	4.752 E	4.838 F	3.373 F	3.375 D	10.03 E	9.350 E
W	WII		5.862 C	5.723 D	4.017 D	3.955 C	12.75 D	12.38 D
		100%	6.952 B	6.780 C	4.783 C	4.665 B	14.48 C	14.00 C
Water re	egulation	X Irrigatior	levels			-		
		50%	4.847 C	4.915 F	3.430 D	3.437 D	10.28 E	10.52 D
L	DI	75%	6.487 B	6.272 D	4.413 C	4.262 C	14.93 C	14.27 C
		100%	7.342 A	7.232 A	5.045 A	4.858 A	16.20 B	15.38 B
		50%	5.015 C	5.158 E	3.602 D	3.520 D	12.12 D	11.23 D
R	DI	75%	6.505 B	6.642 C	4.622 B	4.512 BC	15.38 C	15.03 BC
		100%	7.142 A	7.002 B	4.972 A	4.777 AB	16.93 A	16.62 A
Water s	ource X V	Vater regula	tion X Irrigation l	evels		-		
		50%	5.067 E	5.103 FG	3.567GH	3.563 CD	11.33 G	12.07 E
	DI	75%	7.117 BC	7.103 BC	4970 BCD	4.720 A	17.53 B	16.70 B
WI		100%	7.590 A	7.517 A	5.253A	5.017 A	18.40 A	17.33 B
		50%	5.153 E	5.367 F	3.750 FG	3.600 CD	13.40 DE	12.73 DE
	RDI	75%	7.143 BC	7.277 ABC	5.067ABC	4.917 A	17.60 B	17.13 B
		100%	7.473 AB	7.390 AB	5.213 AB	4.923 A	18.90 A	18.67 A
		50%	4.627 F	4.727 H	3.293 I	3.310 D	9.237 H	8.967 F
	DI	75%	5.857 D	5.440 F	3.857 F	3.803 BC	12.33 F	11.83 E
WII		100%	7.093 BC	6.947 C	4.837 CD	4.700 A	14.00 D	13.43 CD
		50%	4.877 EF	4.950 GH	3.453 HI	3.440 CD	10.83 G	9.733 F
	RDI	75%	5.867 D	6.007 E	4.177 E	4.107 B	13.17 E	12.93 DE
		100%	6.810 C	6.613 D	4.730 D	4.630 A	14.97 C	14.57 C

 Table (5) Effect of well water source, water regulation, irrigation levels and their interaction on some fruit parameters of Jujube trees (2010&2011).

Mean having the same letter (s) in each row, column or interaction are insignificantly different at 5% level. Water source = (WI, WII), water regulation (WR) = (deficit irrigation= DI, regulated deficit irrigation= RDI), irrigation levels = (ETc = crop evapotranspiration).

Yield: concerning water source, well I gave highest significant value than well II in both seasons. Water regulation, RDI gave highest significant value in both seasons. Irrigation levels, level (100%) gave the highest values in both seasons. The interaction between water source (WI & WII) and water regulation (DI & RDI). In both seasons the treatment of WI X RDI recorded the highest significant values. The interaction between: water source and irrigation levels (ETc = 50, 75 and 100%): in both seasons, the treatments of WI X 100% recorded highest significant yield values. The interaction between water regulation and irrigation levels: in in both seasons, the treatments of RDI X 100% in both seasons gave highest significant yield values. The interaction among: the three studied factors: in the first season, the treatment of WI X 100% and in both seasons the treatments of WI X RDI X 100% had highest significant yield values.

Data in table (6) showed the effect of well water source, water regulation, irrigation levels and their interaction on some fruit parameters of Jujube trees (2010&2011) seasons.

Fruit length: concerning water source, well I gave higher significant value than well II in both seasons. Water regulation, RDI gave higher significant value than (DI) in the first season, there are insignificant difference between DI and RDI in the second season. Irrigation levels, level (100%) gave the highest significant values in both seasons. The interaction between water source (WI & WII) and water regulation (DI & RDI). In first season the treatments of WI X RDI recorded the highest significant values but in the second season WI X RDI showed higher significant value than all treatments except WI X DI treatment. The interaction between: water source and irrigation levels (ETc = 50, 75 and 100%): in both seasons, the treatments of WI X 100% recorded highest significant fruit length values. The interaction between water regulation and irrigation levels: in the first season (DI X 100%), (RDI X 75%) in the second season and in both seasons, the treatments of CRDI X 100%) gave highest significant fruit length values than all other treatments except the treatments of DI X 100% in the seasons and (RDI X 75%) in the first season. The interaction among: the three studied factors: in both seasons the treatments of WI X RDI X 100% had higher significant fruit length values than all other treatments except the treatments of WI X RDI X 100% in both seasons.

 Table (6) Effect of well water source, water regulation, irrigation levels and their interaction on some fruit parameters of Jujube trees (2010&2011).

Treatments		Fruit length (cr	m)	Fruit dian	neter (cm)	Fruit weight (g)		
Т	reatm	ents	1 st season	2 nd season	1 st season	2 nd season	1 st season	2 nd season
W		WI	1.983 A	1.917 A	1.894 A	1.822 A	2.517 A	2.506A
		WII	1.794 B	1.700 B	1.694 A	1.528 B	1.756 B	1.394 B
WR		DI	1.861 B	1.761 A	1.767 A	1.622 B	2.044 A	1.794 B
		RDI	1.917 A	1.856 A	1.822 A	1.728 A	2.228A	2.106A
		50%	1.683 C	1.575 C	1.708 B	1.492 B	1.533 C	1.217 C
ETc		75%	1.942 B	1.875 B	1.808 A	1.733 A	2.200 B	2.042 B
		100%	2.042 A	1.975 A	1.867 A	1.800 A	2.675 A	2.592 A
Water so	urce X	Water regula	tion					
WI		DI	1.967 A	1.856AB	1.856 A	1.756 B	2.400A	2.289 B
		RDI	2.000A	1.978 A	1.933 A	1.889 A	2.633 A	2.722 A
WII		DI	1.756 C	1.667 C	1.678 B	1.489 C	1.689 B	1.300 C
		RDI	1.833 B	1.733 BC	1.711 B	1.567 C	1.822 B	1.489 C
Water so	urce X	Irrigation lev	vels					
		50%	1.750 D	1.583 D	1.783 B	1.533 CD	1.550 CD	1.117 CD
WI		75%	2.050 B	1.983 B	1.900A	1.850 B	2.617 B	2.033 B
		100%	2.150A	2.183 A	2.000A	2.083A	3.383 A	3.117 A
		50%	1.617 E	1.567 D	1.633 C	1.450 D	1.517 D	0.933 D
WII		75%	1.833 D	1.767 C	1.717 BC	1.617 C	1.783 CD	1.267 C
		100%	1.933 C	1.767 C	1.733 BC	1.517 D	1.967 C	1.300 C
Water reg	gulatio	n X Irrigation	levels					
		50%	1.633 D	1.567 C	1.650 C	1.450 C	1.483 C	1.133 C
DI		75%	1.917 B	1.800 B	1.767 B	1.633 B	2.033 B	1.717 B
		100%	2.033 A	1.917 AB	1.883 A	1.783 A	2.617 A	2.533 A
		50%	1.733 C	1.583 C	1.767 B	1.533 C	1.583 C	1.300 C
RDI		75%	1.967 AB	1.950 A	1.850AB	1.833 A	2.367 AB	2.367 A
		100%	2.050A	2.033 A	1.850AB	1.817 A	2.733 A	2.650A
Water so	urce X	Water regula	tion X Irrigation	levels				
		50%	1.733 F	1.567 F	1.733 C	1.533 BC	1.567 D	1.067 DE
	DI	75%	2.033 BC	1.900 CD	1.833 BC	1.667 B	2.333 BC	1.567 C
WI		100%	2.133 AB	2.100 AB	2.000A	2.067A	3.300A	3.000 A
		50%	1.767 EF	1.600 EF	1.833 BC	1.533 BC	1.533 D	1.167 DE
	RDI	75%	2.067 AB	2.067 BC	1.967 AB	2.033A	2.900AB	2.500 B
		100%	2.167 A	2.267 A	2.000A	2.100A	3.467 A	3.233 A
		50%	1.533 G	1.567 F	1.567 D	1.367 D	1.400 D	0.8667 E
	DI	75%	1.800 EF	1.700 DEF	1.700 CD	1.600 BC	1.733 CD	1.200 CDE
WII		100%	1.933 CD	1.733 DEF	1.767 C	1.500 CD	1.933 CD	1.267 CD
		50%	1.700 F	1.567 F	1.700 CD	1.533BC	1.633 D	1.000 DE
	RDI	75%	1.867 DE	1.833 D	1.733 C	1.633 BC	1.833 CD	1.333 CD
		100%	1.933 CD	1.800 DE	1.700 CD	1.533 BC	2.000 CD	1.333 CD

Mean having the same letter (s) in each row, column or interaction are insignificantly different at 5% level.

Water source = (WI, WII), water regulation (WR) = (deficit irrigation= DI, regulated deficit irrigation= RDI), irrigation levels = (ETc = crop evapotranspiration).

Fruit diameter: concerning water source, there are insignificant difference between well I and well II in the first season but well I gave higher significant value than well II in the second season. Water regulation, there are

insignificant difference between DI and RDI in the first season but RDI gave higher significant value than DI in the second season. Irrigation levels, level 75% &100% gave the highest values in both seasons.

The interaction between water source (WI & WII) and water regulation (DI & RDI). In the first season the treatment of WI X DI and WI X RDI in both seasons recorded the highest significant values. The interaction between: water source and irrigation levels (ETc = 50, 75 and 100%): in the both seasons, the treatments of WI X 100% and in the second season, the treatments of WI X 75% recorded highest significant fruit diameter values. The interaction between water regulation and irrigation levels: in both seasons, the treatments of DI X 100% and RDI X (75% & 100%) in the second season gave higher significant fruit diameter values than all other treatments.

The interaction among: the three studied factors: in the first season the treatments of WI X DI X100% and WI X RDI X 100% had higher significant fruit diameter values than all other treatments except WI X DI X 75%. In the second season seasons the treatments of WI X DI X 100%, WI X RDI X75% & 100% had highest significant value.

Fruit weight: concerning water source, well I gave higher significant value than well II in both seasons. Water regulation, there are insignificant difference between DI and RDI in the first season but RDI gave higher significant value than (DI) in the second season,. Irrigation levels, level (100%) gave the highest significant values in both seasons. The interaction between water source (WI & WII) and water regulation (DI & RDI). In the first season the treatment of WI X DI and in both seasons the treatment of WI X RDI recorded the highest significant values. The interaction between: water source and irrigation levels (ETc = 50, 75 and 100%): in both seasons, the treatments of WI X 100% recorded highest significant fruit weight values. The interaction between water source and irrigation levels (ETc = 50, 75 and 100%): in both seasons, the treatments of WI X 100% recorded highest significant fruit weight values. The interaction between water regulation and irrigation levels: in both seasons, the treatments of DI X 100%, RDI X 75% in the second season and (RDI X 100%) in both seasons gave higher significant fruit weight values than all other treatments except the treatments of WI X DI X 100% and WI X RDI X 100% had higher significant fruit weight values than all other treatments of WI X DI X 100% and WI X RDI X 100% had higher significant fruit weight values than all other treatments weight values than all other treatments of WI X RDI X 100% and WI X RDI X 100% had higher significant fruit weight values than all other treatments weight values than all other treatments WI X RDI X 75% in the first season.

Data in table (7) showed the effect of well water source, water regulation, irrigation levels and their interaction on some fruit parameters of Jujube trees (2010&2011) seasons.

Fruit volume: concerning water source, well I gave higher significant value than well II in both seasons. Water regulation, RDI gave higher significant value than (DI) in both seasons, Irrigation levels, level (100%) gave the highest significant values in both seasons. The interaction between water source (WI & WII) and water regulation (DI & RDI). In both seasons the treatment of WI X RDI recorded the highest significant values.

The interaction between: water source and irrigation levels (ETc =50, 75 and 100%): in both seasons, the treatments of WI X 100% recorded highest significant fruit volume values. The interaction between water regulation and irrigation levels: in the second season, the treatments of (DI X 100%), (RDI X 75%) in the second season and (RDI X 100%) in both seasons gave higher significant fruit volume values than all other treatments except the treatments of DI X 100% in first season. The interaction among: the three studied factors: in second season the treatments of WI X DI X 100%, WI X RDI X 75%, and in both seasons the treatments of WI X RDI X 100% had higher significant fruit volume values than all other treatments except the treatments of WI X DI X 100%, WI X RDI X 75%, and in both seasons the treatments of WI X DI X 100% had higher significant fruit volume values than all other treatments except the treatments of WI X DI X 100%.

Flesh weight: concerning water source, well I gave higher significant value than well II in both seasons. Water regulation, there are insignificant difference between DI and RDI in the first season but RDI gave higher significant value than DI in the second season. Irrigation levels, level 100% gave the highest values in both seasons.

The interaction between water source (WI & WII) and water regulation (DI & RDI). In the first season the highest significant values were found by WI X DI and WI X RDI treatments but in the second season the treatment of WI X RDI recorded the highest significant value. The interaction between: water source and irrigation levels (ETc =50, 75 and 100%): in both seasons, the treatment of WI X 100% recorded highest significant flesh weight values. The interaction between water regulation and irrigation levels: in both seasons, the treatments of RDI X 100% gave higher significant fruit weight values than all other treatments except DI X 100% in both seasons, the treatments of WI X 100% and in both seasons, the treatments of WI X RDI X 100% had higher significant flesh weight values than all other treatments except WI X DI X 100% in the first season.

Fruit moisture: concerning water source, well I gave higher significant value than well II in both seasons. Water regulation, RDI gave higher significant value than DI in the first season while there are insignificant

difference between DI and RDI in the second season. Irrigation levels, level (75%) in the second and 100% in both season gave higher significant than the other treatment.

The interaction between water source (WI & WII) and water regulation (DI & RDI). WI X RDI in the first season recorded higher significant value while there are insignificant difference between DI and RDI in the second season.

			Fruit volu	ıme(cm ³)	Flesh w	eight (g)	Fruit moisture (%)		
Т	reatmen	ts	1st season	2 nd season	1 st season	2 nd season	1st season	2 nd season	
W	I	WI	3.066A	2.744 A	2.139A	2.089A	69.38A	71.06 A	
		WII	2.267 B	1.661 B	1.461 B	1.167 B	65.45 B	67.76 B	
W	R	DI	2.500 B	2.022 B	1.711 A	1.494 B	66.67 B	69.10 A	
		RDI	2.772 A	2.383 A	1.889 A	1.761 A	68.16 A	69.72 A	
		50%	2.125 C	1.442 C	1.250C	1.025C	63.56 C	65.69 B	
ET	°c	75%	2.683 B	2.367 B	1.833 B	1.650 B	68.03 B	70.54 A	
		100%	3.100 A	2.800A	2.317 A	2.208A	70.65 A	71.99 A	
Water source X Water regulation		on	•	•	•	•	•		
W	Ι	DI	2.833 B	2.500 B	2.022A	1.878 B	68.58 B	70.90 A	
		RDI	3.178 A	2.989A	2.256A	2.300A	70.18 A	71.22 A	
W	II	DI	2.167 C	1.544 C	1.400 B	1.111 C	64.76 C	67.30 B	
		RDI	2.367 C	1.778 C	1.522 B	1.222 C	66.14 C	68.21 B	
Water sou	rce X Irri	gation level	s						
		50%	2.367 CD	1.567 CD	1.283 CD	1.350 CD	64.95 D	68.02 C	
W	I	75%	3.067 B	2.900 B	2.150 B	2.550 B	70.55 B	72.18 A	
		100%	3.583 A	3.767 A	2.983 A	3.617 A	72.63 A	72.98 A	
			1.883 E	1.317 D	1.217 D	1.083 D	62.17 E	63.37 D	
W	П	75%	2.300 D	1.833 C	1.517 CD	1.533 C	65.52 D	68.90 BC	
			2.617 C	1.833 C	1.650 C	1.567 C	68.67 C	71.00 B	
Water regu	ulation X	Irrigation l	evels						
		50%	1.950 D	1.350C	1.200 D	0.967 D	62.92 D	65.23 B	
D	I	75%	2.533 C	22.000 B	1.883 C	1.383 C	67.35 C	70.30 A	
		100%	3.017AB	2.717 A	2.250AB	2.133 AB	69.73 AB	71.77 A	
		50%	2.300 C	1.533 C	1.300 D	1.083 D	64.20 D	66.15 B	
RD	DI	75%	2.833 B	2.733 A	1.983 BC	1.917 B	68.72 BC	70.78 A	
		100%	3.183 A	2.883A	2.383 A	2.283 A	71.57 A	72.22 A	
Water sou	rce X Wa	ter regulati	on X Irrigation lev	els					
		50%	2.167 F	1.500 CD	1.300 E	1.300 DE	64.23 EFG	67.83 C	
	DI	75%	2.867 C	2.267 B	1.900 CD	2.000 C	69.70 BC	72.13 AB	
WI		100%	3.467AB	3.733 A	2.867 AB	3.567 A	71.80 AB	72.73 A	
		50%	2.567 CDE	1.633 CD	1.267 E	1.400 DE	65.67 DE	68.20 BC	
	RDI	75%	3.267 B	3.533 A	2.400 BC	3.100 B	71.40 AB	72.23 AB	
		100%	3.700 A	3.800A	3.100A	3.667A	73.47 A	73.23 A	
		50%	1.733 G	1.200 D	1.100E	0.9667 E	61.60 G	62.63 D	
	DI	75%	2.200 EF	1.733 BCD	1.467 DE	1.433 DE	65.00 DEF	68.47 BC	
WII		100%	2.567 CDE	1.700 CD	1.633 DE	1.500 D	67.67 CD	70.80ABC	
		50%	2.033 FG	1.433 CD	1.333 E	1.200 DE	62.73 FG	64.10 D	
	RDI	75%	2.400 DEF	1.933 BC	1.567 DE	1.633 CD	66.03 DE	69.33ABC	
		100%	2.667 CD	1.967 BC	1.667 DE	1.633 CD	69.67 BC	71.20 ABC	

Table (7) Effect of well water source, water regulation, irrigation levels and their interaction on some fruit parameters of Juiube trees (2010&2011).

Mean having the same letter (s) in each row, column or interaction are insignificantly different at 5% level.

Water source = (WI, WII), water regulation (WR) = (deficit irrigation= DI, regulated deficit irrigation= RDI), irrigation levels = (ETc = crop evapotranspiration).

The interaction between: water source and irrigation levels (ETc =50, 75 and 100%): in second season, the treatments of (WI X 75%), in both seasons, the treatments of (WI X 75%) and in second season, the treatments of (WI X 100%) recorded higher significant fruit moisture values than all treatments. The interaction between water regulation and irrigation levels: in the second season, the treatments of (DI X 75%&100%), in the second season, the treatments of RDI X 75% and in both seasons (RDI X 100%) gave higher significant fruit moisture values than all treatments except (DI X 100%) in the first season. The interaction among: the three studied factors: in the second season the treatments of WI X DI X 100% and in both seasons WI X RDI X 100% had higher significant fruit moisture values than most other treatments.

Data in table (8) showed the effect of well water source, water regulation, irrigation levels and their interaction on leaf mineral content Jujube trees (2010&2011) seasons.

Nitrogen: concerning water source, there are insignificant differences between well I and well II in both seasons. Water regulation, there are insignificant difference between (DI) and (RDI) in the first season but

(RDI) gave higher significant value than (DI) in the second season. Irrigation levels, level (100%) gave the highest significant values in both seasons.

The interaction between water source (WI & WII) and water regulation (DI & RDI), in both seasons, WI X DI and WI X RDI had higher significant nitrogen values than all other treatments except WII X RDI in the first season. The interaction between water source and irrigation levels, in the first season, the treatments of WI X 75% and in both seasons, the treatments of WI X 100% recorded highest significant nitrogen values than the other treatments except WI X 75% in the second season. The interaction between water regulation and irrigation levels, in both seasons, RDI X 100% treatments gave highest significant nitrogen values than all other treatments except (DI & RDI) X 100% treatments in both seasons. The interaction among: the three studied factors: in both seasons, the treatments of WI X DI X 100% and WI X DI X 100% had higher significant nitrogen values than all other treatments except WI X RDI X RDI X 75% and WI X RDI X 100% had higher significant nitrogen values than all other treatments of WI X RDI X 75% and WI X RDI X 100% had higher significant nitrogen values than all other treatments except WI X RDI X RDI X RDI X 75% and WI X RDI X 100% had higher significant nitrogen values than all other treatments except WI X RDI X 75% and WI X RDI X 100% treatments.

Treatments 1 ⁴ season 2 nd season 1 ^a season 1 ^a season 1 ^a season 2 nd season 1 ^a season <th{< th=""><th></th><th colspan="2"></th><th>N</th><th>%</th><th>P</th><th>9%</th><th>K</th><th>%</th><th>Ca</th><th>a%</th></th{<>				N	%	P	9%	K	%	Ca	a%
W WI 1.406 A 1.373 A 0.1278 A 0.1306 A 0.1000 B 0.7256 A 0.4150 A 0.4089 A WI 1.200 A 1.248 A 0.0994 B 0.1022 B 0.1300 A 0.5650 B 0.3356 B 0.3278 B WR DI 1.323 A 1.295 B 0.11167 A 0.122 A 0.6372 A 0.3761 B 0.3529 B RDI 1.372 A 1.326 A 0.1167 A 0.1206 A 0.6228 A 0.6373 A 0.3944 A 0.3828 A ETC 50% 1.194 C 1.160 C 0.0875 C 0.1000 C 0.4408 C 0.4772 C 0.4475 A 0.4025 A 100% 1.446 A 1.414 A 0.1330 A 0.1600 A 0.7833 A 0.3944 A 0.4238 C WI DI 1.383 A 1.369 A 0.1244 A 0.1233 B 0.7167 A 0.7211 A 0.4056 B 0.3956 B WII DI 1.337 AB 1.214 C 0.0967 B 0.1011 C 0.5576 B 0.5767 B 0.3467 D 0.3122 D RDI	Т	reatme	nts	1st season	2 nd season	1 st season	2 nd season	1 st season	2 nd season	1 st season	2 nd season
WII 1.290 A 1.248 A 0.0994 B 0.1022 B 0.1300 A 0.5650 B 0.3556 B 0.3278 B WR D1 1.323 A 1.295 B 0.1106 A 0.1122 A 0.6372 A 0.6372 A 0.3761 B 0.33539 B RDI 1.372 A 1.326 A 0.1167 A 0.1206 A 0.6228 A 0.6533 A 0.3944 A 0.3828 A 50% 1.194 C 1.160 C 0.0875 C 0.1000 C 0.4408 C 0.4772 C 0.4475 A 0.4025 A 75% 1.403 B 1.357 B 0.1183 B 0.1300 B 0.6667 B 0.3750 B 0.3742 B Water source X Water regulation WI D1 1.283 A 1.369 A 0.1244 A 0.1233 B 0.7167 A 0.7211 A 0.4056 B 0.3956 B WI D1 1.263 B 1.221 C 0.0967 B 0.1011 C 0.5578 B 0.5533 B 0.3467 D 0.3122 D WI D1 1.263 C 1.240 D 0.0966 D 0.1030 C 0.4533 F 0.4533 A 0.3644 C <td< td=""><td>V</td><td>V</td><td>WI</td><td>1.406 A</td><td>1.373 A</td><td>0.1278 A</td><td>0.1306 A</td><td>0.1000 B</td><td>0.7256 A</td><td>0.4150 A</td><td>0.4089 A</td></td<>	V	V	WI	1.406 A	1.373 A	0.1278 A	0.1306 A	0.1000 B	0.7256 A	0.4150 A	0.4089 A
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			WII	1.290 A	1.248 A	0.0994 B	0.1022 B	0.1300 A	0.5650 B	0.3556 B	0.3278 B
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	W	'R	DI	1.323 A	1.295 B	0.1106 A	0.1122 A	0.6372 A	0.6372 A	0.3761 B	0.3539 B
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			RDI	1.372 A	1.326 A	0.1167 A	0.1206 A	0.6228 A	0.6533 A	0.3944 A	0.3828 A
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			50%	1.194 C	1.160 C	0.0875 C	0.1000 C	0.4408 C	0.4792 C	0.4475 A	0.4025 A
Indom 1.446 A 1.414 A 0.1350 A 0.1600 A 0.7833 A 0.7900 A 0.3333 C 0.3283 C Water source X Water regulation I 1.369 A 0.1244 A 0.1233 B 0.7167 A 0.7211 A 0.4056 B 0.3956 B WI DI 1.428 A 1.378 A 0.1311 A 0.1378 A 0.6700AB 0.7200 A 0.4244 A 0.4222 A WI DI 1.263 B 1.221 C 0.0967 B 0.1011 C 0.5578 B 0.5553 B 0.3467 D 0.3122 D WI DI 1.317 AB 1.274 B 0.1022 B 0.1033 C 0.5756 B 0.55767 B 0.3644 C 0.3433 A Water source X Irrigation levels 50% 1.263 C 1.240 D 0.0966 D 0.1050 B 0.4250 D 0.5050 E 0.4417 A 0.4333 A 75% 1.460 A 1.412 AB 0.1350 B 0.1417 A 0.7500 B 0.4253 A 0.3683 B WI 75% 1.347 B 1.303 CD 0.1017 D 0.1050 B 0.5867 C 0.5833 D <	EI	Гс	75%	1.403 B	1.357 B	0.1183 B	0.1300 B	0.6658 B	0.6667 B	0.3750 B	0.3742 B
Water source X Water regulation Image: Constraint of the system of the sys			100%	1.446 A	1.414 A	0.1350 A	0.1600 A	0.7833 A	0.7900 A	0.3333 C	03283 C
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Water	source	X Water	regulation		•	•	•	•		•
RDI 1.428 A 1.378 A 0.1311 A 0.1378 A 0.6700AB 0.7300 A 0.4244 A 0.4222 A WII DI 1.263 B 1.221 C 0.0967 B 0.1011 C 0.5578 B 0.5533 B 0.3467 D 0.3122 D WII DI 1.317AB 1.274 B 0.1022 B 0.1033 C 0.5756 B 0.5767 B 0.3644 C 0.3433 C Water source X Irrigation levels 50% 1.263 C 1.240 D 0.0966 D 0.1050 B 0.4250 D 0.5050 E 0.4417 A 0.4333 A WI 75% 1.460 A 1.412AB 0.1350 B 0.1417 A 0.7450 B 0.7500 B 0.4283 A 0.4250 A WII 50% 1.125 D 1.080 E 0.0783 E 0.0833 C 0.4567 D 0.4533 F 0.4333 A 0.3717 B WII 75% 1.347 B 1.303 CD 0.1017 D 0.1050 B 0.5867 C 0.5833 D 0.3217 C 0.3233 C Water regulation X Irrigation levels 50% 1.132 C 0.0833 D 0.0883 B	W	/I	DI	1.383 A	1.369 A	0.1244 A	0.1233 B	0.7167 A	0.7211 A	0.4056 B	0.3956 B
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			RDI	1.428 A	1.378 A	0.1311 A	0.1378 A	0.6700AB	0.7300 A	0.4244 A	0.4222 A
RDI 1.317AB 1.274 B 0.1022 B 0.1033 C 0.5756 B 0.5767 B 0.3644 C 0.3433 C Water source X Irrigation levels 50% 1.263 C 1.240 D 0.0966 D 0.1050 B 0.4250 D 0.5050 E 0.4417 A 0.4333 A WI 75% 1.460 A 1.412AB 0.1350 B 0.1417 A 0.7450 B 0.7500 B 0.4283 A 0.4250 A 100% 1.493 A 1.468 A 0.1517 A 0.1450 A 0.9100 A 0.9217 A 0.3750 B 0.3683 B WI 50% 1.125 D 1.080 E 0.0783 E 0.0833 C 0.4567 D 0.4533 F 0.4533 A 0.3717 B WII 75% 1.347 B 1.303 CD 0.1017 D 0.1050 B 0.567 BC 0.6583 C 0.2917 D 0.2883B Water regulation X Irrigation levels 1.398 B 1.360 BC 0.1183 C 0.1183 B 0.6667 D 0.4633 F 0.4417 A 0.3817 B D1 75% 1.339 B 1.343 B 0.1150 B 0.1217 A 0.6217 C <td>W</td> <td>ΊI</td> <td>DI</td> <td>1.263 B</td> <td>1.221 C</td> <td>0.0967 B</td> <td>0.1011 C</td> <td>0.5578 B</td> <td>0.5533 B</td> <td>0.3467 D</td> <td>0.3122 D</td>	W	ΊI	DI	1.263 B	1.221 C	0.0967 B	0.1011 C	0.5578 B	0.5533 B	0.3467 D	0.3122 D
Water source X Irrigation levels 50% 1.263 C 1.240 D 0.0966 D 0.1050 B 0.4250 D 0.5050 E 0.4417 A 0.4333 A WI 75% 1.460 A 1.412AB 0.1350 B 0.1417 A 0.7450 B 0.7500 B 0.4283 A 0.4250 A 100% 1.493 A 1.468 A 0.1517 A 0.1450 A 0.9100 A 0.9217 A 0.3750 B 0.3683 B WI 50% 1.125 D 1.080 E 0.0783 E 0.0833 C 0.4567 D 0.4533 F 0.4533 A 0.3717 B WII 75% 1.347 B 1.303 CD 0.1017 D 0.1050 B 0.5867 C 0.5833 D 0.3217 C 0.3233 C Water regulation X Irrigation levels 1.398 B 1.360 BC 0.1183 C 0.1183 B 0.6567 BC 0.6583 C 0.2917 D 0.2883 D DI 75% 1.338 D 1.132 C 0.0833 D 0.0883 B 0.4667 D 0.4633 F 0.4417 A 0.3817 B DI 75% 1.393 B 1.343 B 0.1150 B 0.1217 A			RDI	1.317AB	1.274 B	0.1022 B	0.1033 C	0.5756 B	0.5767 B	0.3644 C	0.3433 C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Water	source	X Irrigat	tion levels							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			50%	1.263 C	1.240 D	0.0966 D	0.1050 B	0.4250 D	0.5050 E	0.4417 A	0.4333 A
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	W	/I	75%	1.460 A	1.412AB	0.1350 B	0.1417 A	0.7450 B	0.7500 B	0.4283 A	0.4250 A
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			100%	1.493 A	1.468 A	0.1517 A	0.1450 A	0.9100 A	0.9217 A	0.3750 B	0.3683 B
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			50%	1.125 D	1.080 E	0.0783 E	0.0833 C	0.4567 D	0.4533 F	0.4533 A	0.3717 B
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	W	Π	75%	1.347 B	1.303 CD	0.1017 D	0.1050 B	0.5867 C	0.5833 D	0.3217 C	0.3233 C
Water regulation X Irrigation levels DI 50% 1.138 D 1.132 C 0.0833 D 0.0883 B 0.4667 D 0.4633 F 0.4417 A 0.3817 B DI 75% 1.393 B 1.343 B 0.1150 B 0.1217 A 0.6217 C 0.6167 D 0.3617 C 0.3600BC 100% 1.438AB 1.410AB 0.1333 A 0.1267 A 0.8233 A 0.8317 A 0.3250 D 0.3200 D RDI 50% 1.250 C 1.188 C 0.0917 C 0.1000 B 0.4150 D 0.4950 E 0.4533 A 0.4233 A RDI 75% 1.413AB 1.372AB 0.1217 B 0.1250 A 0.7100BC 0.7167 C 0.3883 B 0.3883 B 100% 1.453 A 1.418 A 0.1267 A 0.1367 A 0.7433 B 0.3417 CD 0.3367 CD Water source X Water regulation X Irrigation levels 50% 1.193 E 1.220 E 0.0933FG 0.1000DEF 0.4867 E 0.4867 G 0.4300 A 0.4100ABC VII DI 50% 1.193	100		100%	1.398 B	1.360 BC	0.1183 C	0.1183 B	0.6567 BC	0.6583 C	0.2917 D	0.2883 D
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Water	regulat	ion X Irr	igation levels							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			50%	1.138 D	1.132 C	0.0833 D	0.0883 B	0.4667 D	0.4633 F	0.4417 A	0.3817 B
100% 1.438AB 1.410AB 0.1333 A 0.1267 A 0.8233 A 0.8317 A 0.3250 D 0.3200 D RDI 50% 1.250 C 1.188 C 0.0917 C 0.1000 B 0.4150 D 0.4950 E 0.4533 A 0.4233 A 75% 1.413AB 1.372AB 0.1217 B 0.1250 A 0.7100BC 0.7167 C 0.3883 B 0.3883 B 100% 1.453 A 1.418 A 0.1267 A 0.1367 A 0.7433AB 0.7483 B 0.3417CD 0.3367CD Water source X Water regulation X Irrigation levels DI 50% 1.193 E 1.220 E 0.0933FG 0.1000DEF 0.4867 E 0.4867 G 0.4300 A 0.4100ABC WI	D	DI	75%	1.393 B	1.343 B	0.1150 B	0.1217 A	0.6217 C	0.6167 D	0.3617 C	0.3600 BC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			100%	1.438 AB	1.410 AB	0.1333 A	0.1267 A	0.8233 A	0.8317 A	0.3250 D	0.3200 D
RDI 75% 1.413AB 1.372AB 0.1217 B 0.1250 A 0.7100BC 0.7167 C 0.3883 B 0.3883 B 100% 1.453 A 1.418 A 0.1267 A 0.1367 A 0.7433AB 0.7483 B 0.3417CD 0.3367CD Water source X Water regulation X Irrigation levels DI 50% 1.193 E 1.220 E 0.0933FG 0.1000DEF 0.4867 E 0.4867 G 0.4300 A 0.4100ABC WI DI 50% 1.193 E 1.220 E 0.0933FG 0.1000DEF 0.4867 E 0.4807 A 0.4100ABC 0.01 0.1300CD 0.1333ABC 0.6733 C 0.6700 C 0.4200 A 0.4167ABC 0.100 0.1277 AB 0.0207 A 0.1207 C 0.2207 D 0.2207 D			50%	1.250 C	1.188 C	0.0917 C	0.1000 B	0.4150 D	0.4950 E	0.4533 A	0.4233 A
100% 1.453 A 1.418 A 0.1267 A 0.1367 A 0.7433 AB 0.7483 B 0.3417 CD 0.3367 CD Water source X Water regulation X Irrigation levels DI 50% 1.193 E 1.220 E 0.0933 FG 0.1000 DEF 0.4867 E 0.4867 G 0.4300 A 0.4100 ABC WI DI 75% 1.447 AB 1.407 AB 0.1300 CD 0.1333 ABC 0.6733 C 0.6700 C 0.4200 A 0.4167 ABC WI 100 1.407 AB 0.1300 CD 0.1333 ABC 0.6733 C 0.6700 C 0.4200 A 0.4167 ABC	RI	DI	75%	1.413 AB	1.372 AB	0.1217 B	0.1250 A	0.7100 BC	0.7167 C	0.3883 B	0.3883 B
Water source X Water regulation X Irrigation levels DI 50% 1.193 E 1.220 E 0.0933FG 0.1000DEF 0.4867 E 0.4867 G 0.4300 A 0.4100ABC VII 75% 1.447AB 1.407AB 0.1300CD 0.1333ABC 0.6733 C 0.6700 C 0.4200 A 0.4167ABC			100%	1.453 A	1.418 A	0.1267 A	0.1367 A	0.7433 AB	0.7483 B	0.3417 CD	0.3367 CD
DI 50% 1.193 E 1.220 E 0.0933FG 0.1000DEF 0.4867 E 0.4867 G 0.4300 A 0.4100ABC DI 75% 1.447AB 1.407AB 0.1300CD 0.1333ABC 0.6733 C 0.6700 C 0.4200 A 0.4167ABC 100% 1.510 A 0.1500AB 0.1267 AB 0.0200 A 1.007 A 0.2677 BC 0.2670 D	Water	source	X Water	regulation X I	rrigation levels	3				-	-
DI 75% 1.447AB 1.407AB 0.1300CD 0.1333ABC 0.6733 C 0.6700 C 0.4200 A 0.4167ABC			50%	1.193 E	1.220 E	0.0933 FG	0.1000 DEF	0.4867 E	0.4867 G	0.4300 A	0.4100ABC
		DI	75%	1.447 AB	1.407 AB	0.1300 CD	0.1333ABC	0.6733 C	0.6700 C	0.4200 A	0.4167ABC
W1 100% 1.510 A 1.480 A 0.1500 AB 0.1367 AB 0.9900 A 1.007 A 0.3667 BC 0.3600 D	WI		100%	1.510 A	1.480 A	0.1500AB	0.1367 AB	0.9900 A	1.007 A	0.3667 BC	0.3600 D
50% 1.333 D 1.260 DE 0.1000 F 0.1100 CDE 0.3633 F 0.5233 F 0.4533 A 0.4567 A			50%	1.333 D	1.260 DE	0.1000 F	0.1100 CDE	0.3633 F	0.5233 F	0.4533 A	0.4567 A
RDI 75% 1.473 A 1.417 AB 0.1400 BC 0.1500 A 0.8167 B 0.8300 B 0.4367 A 0.4333 AB		RDI	75%	1.473 A	1.417 AB	0.1400 BC	0.1500 A	0.8167 B	0.8300 B	0.4367 A	0.4333 AB
100% 1.477 A 1.457 A 0.1533 A 0.1533 A 0.8300 B 0.8367 B 0.3833 B 0.3767 CD			100%	1.477 A	1.457 A	0.1533 A	0.1533 A	0.8300 B	0.8367 B	0.3833 B	0.3767 CD
50% 1.083 F 1.043 F 0.0733 H 0.0767 F 0.4467 E 0.4400 H 0.4533 A 0.3533 D			50%	1.083 F	1.043 F	0.0733 H	0.0767 F	0.4467 E	0.4400 H	0.4533 A	0.3533 D
DI 75% 1.340 D 1.280CDE 0.1000 F 0.1100CDE 0.5700 D 0.5633 E 0.3033 D 0.3033EF	** ***	DI	75%	1.340 D	1.280 CDE	0.1000 F	0.1100 CDE	0.5700 D	0.5633 E	0.3033 D	0.3033 EF
WII 100% 1.367BCD 1.340BCD 0.1167 E 0.1167BCD 0.6567 C 0.6567 C 0.2833 D 0.2800 F	WII		100%	1.367 BCD	1.340 BCD	0.1167 E	0.1167 BCD	0.6567 C	0.6567 C	0.2833 D	0.2800 F
50% 1.167 E 1.117 F 0.0833GH 0.0900EF 0.4667 E 0.4667GH 0.4533 A 0.3900BCD			50%	1.167 E	1.117 F	0.0833 GH	0.0900 EF	0.4667 E	0.4667 GH	0.4533 A	0.3900 BCD
RDI 75% 1.353CD 1.327BCD 0.1033 F 0.1000DEF 0.6033 D 0.6033 D 0.3400 C 0.3433DE		RDI	75%	1.353 CD	1.327 BCD	0.1033 F	0.1000 DEF	0.6033 D	0.6033 D	0.3400 C	0.3433 DE
100% 1.430 ABC 1.380 ABC 0.1200 DE 0.1200 BCD 0.6567 C 0.6600 C 0.3000 D 0.2967 E			100%	1.430ABC	1.380ABC	0.1200 DE	0.1200 BCD	0.6567 C	0.6600 C	0.3000 D	0.2967 EF

 Table (8) Effect of well water source, water regulation, irrigation levels and their interaction on leaf mineral contents of Jujube trees (2010&2011).

Mean having the same letter (s) in each row, column or interaction are insignificantly different at 5% level. Water source = (WI, WII), water regulation (WR) = (deficit irrigation= DI, regulated deficit irrigation= RDI), irrigation levels = (ETc = crop evapotranspiration).

Phosphorus: concerning water source, well I gave higher significant value than well II in both seasons. Water regulation, there are insignificant differences between (DI) and (RDI) in both seasons. Irrigation levels, level (100%) gave the highest significant value in both seasons.

The interaction between water source (WI & WII) and water regulation (DI & RDI). WI X DI X RDI had highest significant values in the first season. In the second season, WI X RDI showed highest significant value. The interaction between: water source and irrigation levels (ETc = 50, 75 and 100%): in the second season, the treatments of WI X 75% and in both seasons, the treatments of WI X 100% recorded highest

significant Phosphorus values. The interaction between water regulation and irrigation levels: in the second season, (DI & RDI) X 75% and (DI & RDI) X 100% in both seasons treatments gave highest significant Phosphorus values. The interaction among: the three studied factors: in the second season, RDI X 75% and RDI X 100% in both seasons treatments gave highest significant Phosphorus values than all other treatments except WI X DI X 75% in the second season and WI X DI X 100% in both seasons.

Potassium: concerning water source, in the first season well II had higher significant value than well I but well I gave higher significant value than well II in the second season. Water regulation, there are insignificant difference between DI and RDI in both season. Irrigation levels, level 100% gave the highest significant values in both seasons.

The interaction between water source (WI & WII) and water regulation (DI & RDI), WI X DI had higher significant valuethan last two treatments in the first season. In the second season WI X DI &RDI showed highest significant value.

The interaction between: water source and irrigation levels (ETc = 50, 75 and 100%): in both seasons, the treatments of WI X 100 recorded highest significant Potassium values.

The interaction between water regulation and irrigation levels: in both seasons, DI X 100% treatments gave highest significant Potassium values except RDI X 100% treatment in the first season.

The interaction among: the three studied factors: the treatments of WI X DI X 100% in both seasons had highest significant Potassium values.

Calcium: concerning water source, well I gave higher significant value than well II in both seasons. Water regulation, (RDI) gave higher significant value than DI in both seasons. Irrigation levels, level 50% gave the highest values in both seasons.

The interaction between water source (WI & WII) and water regulation: WI X RDI gave highest significant value in both seasons.

The interaction between: water source and irrigation levels (ETc = 50, 75 and 100%): in both seasons, the treatments of WI X (50%&75%) and WII X 50% in the first season recorded highest significant Potassium values.

The interaction between water regulation and irrigation levels: in season, DI X 50% and in both seasons, RDI X 50% treatments gave highest significant Calcium values. The interaction among: the three studied factors: in the first season, the treatments of WI X (DI&RDI) X (50% &75%) and WII X (DI&RDI) X 50% also in the second season WII X RDI X 50% and WII X (DI&RDI) X 50% had higher significant Calcium values than most of other treatments in the first season. WI X RDI X

50% showed higher significant calcium value than most of other treatments.

Data in table (9) showed the effect of well water source, water regulation, irrigation levels and their interaction on leaf mineral content Jujube trees (2010&2011) seasons.

Magnesium: concerning water source, well I gave higher significant value than well II in both seasons. Water regulation, there are insignificant differences between (DI) and (RDI) in both seasons. Irrigation levels, level (100%) gave the highest values in both seasons.

The interaction between water source (WI & WII) and water regulation (DI & RDI), in the first season, WI X DI and in both seasons, WI X RDI had higher magnesium values than all other treatments except WI X DI in the second season. The interaction between water source and irrigation levels, in both season, the treatments of WI X 100% recorded highest significant magnesium values than all treatments.

The interaction between water regulation and irrigation levels, in the first season, DI X 100% and in both seasons, RDI X 100% treatments gave highest significant magnesium values than all other treatments.

The interaction among: the three studied factors: in the first season, WI X DI X 100% and in both seasons, the treatments of WI X RDI X 100% had higher significant magnesium values than all other treatments.

Sodium: concerning water source, well II gave higher significant value than well I in both seasons. Water regulation, DI gave higher significant value than RDI in both seasons. Irrigation levels, level (100%) gave the highest value in both seasons.

The interaction between water source (WI & WII) and water regulation (DI & RDI). In both seasons, (WII X DI) and in the second season, (WII X RDI) gave higher significant values.

The interaction between: water source and irrigation levels (ETc = 50, 75 and 100%): in both seasons, the treatments of WII X 100% recorded highest significant sodium values.

The interaction between water regulation and irrigation levels: in the both seasons, DI X 100% and RDI X 100% in the second season treatments gave highest significant sodium values.

The interaction among: the three studied factors: in both seasons, WII X DI X 100% and WII X RDI X 100% in the second season treatments gave highest significant sodium values than all other treatments.

Ferry: concerning water source, well I gave higher significant value than well II in both seasons. Water regulation, RDI gave higher significant value than DI in both seasons. Irrigation levels, level 100% gave the highest values in both seasons.

The interaction between water source (WI & WII) and water regulation (DI & RDI), there are insignificant differences between WI X (DI & RDI) in both seasons.

The interaction between: water source and irrigation levels (ETc =50, 75 and 100%): in both seasons, the treatments of WI X 100% recorded highest significant ferry values.

The interaction between water regulation and irrigation levels: in both seasons, (DI&RDI) X 100% treatments gave highest significant ferry values. The interaction among: the three studied factors: the treatments of WI X DI X 100% in both seasons had higher significant ferry values than other treatments.

			Mg%		Na (ppm)		Fe (ppm)		Zn (ppm)	
Treatments		ents	1 st season	2 nd season						
V	N	WI	0.2500 A	0.246 A	355.2 B	348.6 B	431.8 A	416.1 A	25.67 A	23.89A
		WII	0.2105 B	0.2050 B	398.8 A	399.1 A	367.7 B	358.7 B	19.06 B	18.00 B
W	/R	DI	0.2261 A	0.2178 A	384.1 A	381.8 A	395.6 B	383.5 A	24.28 A	22.83 A
		RDI	0.2344 A	0.2333 A	369.8 B	365.9 B	404.0 A	391.3 A	20.44 B	19.06 B
		50%	0.1975 C	0.1950 C	330.4 C	318.5 C	334.0 C	332.6 C	23.50A	22.17 A
E	Тс	75%	0.2258 B	0.2183 B	385.3 B	379.0 B	412.1 B	400.8 B	22.58 A	21.00 A
		100%	0.2675 A	0.2633 A	415.2 A	424.0 A	453.3 A	438.8 A	21.00 B	19.67 B
Water	Water source X Water regulation									
v	VI	DI	0.2433 A	0.234 AB	360.1 C	358.4 B	435.6 A	421.6 A	27.56 A	25.89 A
		RDI	0.2567 A	0.258A	350.2 C	338.8 C	428.1 A	410.7 A	23.78 B	21.89 B
W	/II	DI	0.2089 B	0.201 B	408.1 A	405.1 A	355.6 C	345.4 C	21.00 C	19.78 C
		RDI	0.2122 B	0.209 B	389.4 B	393.0 A	379.9 B	372.0 B	17.11 D	16.22 D
Water	Water source X Irrigation levels									
		50%	0.1983 D	0.1983 CD	324.0 E	300.2 E	358.8 D	342.5 E	26.83 A	25.33 A
v	VI	75%	0.2433 B	0.2317 B	360.3 D	357.8 CD	447.0 B	431.8 B	26.00 AB	23.83 AB
		100%	0.3083 A	0.3083 A	381.2 C	387.8 BC	489.7 A	474.0 A	24.17 B	22.50 B
		50%	0.1967 D	0.1917 D	336.8 E	336.8 D	309.2 E	302.7 F	20.17 C	19.00 C
WII		75%	0.2083 CD	0.2050 CD	410.3 B	400.2 B	377.2 D	369.8 D	19.17 CD	18.17 CD
		100%	0.2267 BC	0.2183 BC	449.2 A	460.2 A	416.8 C	403.7 C	17.83 D	16.83 D
Water regulation X Irrigation levels										
			0.1983 C	0.1917 D	334.2 D	330.7 C	320.0 D	306.5 D	25.50A	24.00A
I	DI	75%	0.2200 BC	0.2167 C	387.2 BC	381.8 B	406.5 B	396.2 B	24.83 A	23.00 AB
		100%	0.2600 A	0.2450 B	431.0 A	432.8 A	460.2 A	447.8 A	22.50 B	21.50 BC
		50%	0.1967 C	0.1983 CD	326.7 D	306.3 C	348.0 C	338.7C	21.50 BC	20.33 CD
R	DI	75%	0.2317 B	0.2200 C	383.5C	376.2 B	417.7 B	405.5 B	20.33 CD	19.00 DE
		100%	0.2750 A	0.2817 A	399.3 B	415.2 A	446.3 A	429.8 A	19.50 D	17.83 E
Water	source	X Water	regulation X Irr	igation levels			n			
		50%	0.2000 D	0.1967 DE	325.3 F	318.7 DE	348.0 DE	332.0 FG	29.33 A	27.67 A
	DI	75%	0.2367 BC	0.2300 CD	362.3 DE	361.7 BCD	437.3 B	428.0 B	28.33 A	26.33 A
WI		100%	0.2933 A	0.2767 B	392.7 C	395.0 B	521.3 A	504.7 A	25.00 B	23.67 B
		50%	0.1967 D	0.2000 CDE	332.7 F	281.7 E	369.7 CD	353.0 EFG	24.33 BC	23.00 B
	RDI	75%	0.2500 B	0.2333 C	358.3 DE	354.0 BCD	456.7 B	435.7 B	23.67 BCD	21.33 BC
		100%	0.3233 A	0.3400 A	369.7 D	380.7 BC	458.0 B	443.3 B	23.33 BCD	21.33 BC
		50%	0.1967 D	0.1867 E	343.0 EF	342.7 CD	292.0 F	281.0 H	21.67 CDE	20.33 C
	DI	75%	0.2033 CD	0.2033 CDE	412.0 BC	402.0 B	375.7 CD	364.3 DEF	21.33 DEF	19.67 CD
WII		100%	0.2267 BCD	0.2133 CDE	469.3 A	470.7 A	399.0 C	391.0 CD	20.00 EF	19.33 CD
		50%	0.1967 D	0.1976 DE	330.7 F	331.0 CD	326.3 E	324.3 G	18.67 FG	17.67 DE
	RDI	75%	0.2133 CD	0.2067 CDE	408.7C	398.3 B	378.7 CD	375.3 DE	17.00 GH	16.67 EF
		100%	0.2267 BCD	0.2233 CD	429.0 B	449.7 A	434.7 B	416.3 BC	15.67 H	14.33 F

 Table (9) Effect of well water source, water regulation, irrigation levels and their interaction on leaf mineral contents of Jujube trees (2010&2011).

Mean having the same letter (s) in each row, column or interaction are insignificantly different at 5% level. Water source = (WI, WII), water regulation (WR) = (deficit irrigation= DI, regulated deficit irrigation= RDI), irrigation levels = (ETc = crop evapotranspiration).

Zinc: concerning water source, well I gave higher significant value than well II in both seasons. Water regulation, (DI) gave higher significant value than (RDI) in both seasons. Irrigation levels, level (50%&75%) gave the highest values in both seasons.

The interaction between water source (WI & WII) and water regulation: (WI X DI) gave the highest significant value in both seasons. The interaction between: water source and irrigation levels (ETc = 50, 75 and

100%): in both seasons, the treatments of WI X 50% recorded higher significant zinc values than all treatments except WI X 75% in both seasons. The interaction between water regulation and irrigation levels: in season, DI X 50% and in both seasons and DI X 75% in the first season treatments gave highest significant values except DI X 75% in the first season. The interaction among: in both seasons, the treatments of WI X DI X (50%&75%) had higher significant values than all treatments.

These results was agreement with **Dejampour Lolaei** *et al.*, (2012) who found that the potassium (K^+), magnesium (Mg^{2+}), calcium (Ca^{2+}), sodium (Na^+) and chloride (CI^-) ion concentrations of the leaves and roots were significantly affected due to different salinity levels. The concentration of Mg^{2+} , CI^- and Na^+ as well as the Na^+/K^+ ratio in the leaves of *Prunus* rootstocks were increased by the salinity stress, whereas it had no significant effect on the Ca^{2+} and K^+ concentrations as well as the Na^+/Ca^{2+} ratio. Also, Lucena *et al.*, (2012) who noticed a significant reduction of N, P, K⁺, Ca^{+2} and Mg^{+2} in the leaves of mango cultivars 'Haden', 'Palmer' and 'Uba' with increasing salinity levels.

Data in table (10) showed the effect of well water source, water regulation, irrigation levels and their interaction on fruit quality of Jujube trees (2010&2011) seasons.

 Table (10) Effect of well water source, water regulation, irrigation levels and their interaction on fruit quality of Jujube trees (2010&2011).

			Acidit	y%	TSS	%	Total sugars %		
T	reatm	ents	1 st season	2 nd season	1 st season	2 nd season	1 st season	2 nd season	
V	N	WI	0.2039A	0.1944 A	20.48A	20.68A	14.98 A	15.48 A	
		WII	0.2350A	0.2256A	18.96 B	18.46 B	13.34 B	13.57 B	
W	/R	DI	0.2239A	0.2161A	19.42 A	19.24 A	13.86 A	14.09 B	
		RDI	0.2150 B	0.2039A	20.02 A	19.89 A	14.46 A	14.95 A	
		50%	0.2492A	0.2450A	17.42 B	16.58 C	11.98 B	12.51 B	
E	Тс	75%	0.2133 B	0.1983 B	20.45A	20.35 B	14.99 A	15.33 A	
		100%	0.1958 C	0.1867 B	21.28 A	21.77 A	15.52 A	15.73 A	
Water	source	X Water	regulation						
V	VI	DI	0.2078C	0.2000AB	20.16A	20.29A	14.63 A	15.23 A	
		RDI	0.2000 C	0.1889 B	20.80A	21.08A	15.32 A	15.72 A	
W	/II	DI	0.2400 A	0.2322A	18.68 A	18.20 B	13.09 B	12.96 C	
		RDI	0.2300 B	0.2189AB	19.24 A	18.71 B	13.60 B	14.18 B	
Water	source	X Irrigat	ion levels						
		50%	0.2417AB	0.2333 B	17.93 D	17.65 D	13.05 D	14.22 C	
WI WII		75%	0.1950 DE	0.1817 D	21.15 B	21.63 AB	15.55 AB	15.80 AB	
		100%	0.1750 E	0.1683 D	22.35 A	22.77 A	16.33 A	16.42 A	
		50%	0.2567A	0.2567A	16.92 E	15.52 E	10.90 E	10.80 D	
		75%	0.2317 BC	0.2150 BC	19.75 C	19.07 C	14.43 C	14.87 BC	
		100%	0.2167 CD	0.2050 C	20.22 C	20.78 B	14.70 BC	15.03 BC	
Water regulation X Irrigation levels									
		50%	0.2533A	0.2550A	17.05 B	16.10 C	11.40 C	11.48 C	
I	DI	75%	0.2183 B	0.2000 C	20.25 A	20.03 B	14.85 A	15.18 A	
		100%	0.2000 BC	0.1933 C	20.95 A	21.60A	15.33 A	15.62 A	
		50%	0.2450A	0.2350 B	17.80 B	17.07 C	12.55 B	13.53 B	
R	DI	75%	0.2083 BC	0.1967 C	20.65 A	20.67 AB	15.13 A	15.48 A	
		100%	0.1917 C	0.1800 C	21.62 A	21.95 A	15.70 A	15 83 A	
Water	source	X Water	regulation X Irrigation	on levels	-				
		50%	0.2433ABC	0.2433ABC	17.60 DE	16.97 FG	12.63 FG	13.93 CD	
	DI	75%	0.2033 DEF	0.1833 EF	21.10ABC	21.37 ABC	15.33BCD	15.57 ABC	
WI		100%	0.1767 EF	0.1733 EF	21.77 AB	22.53 AB	15.93 AB	16.20 AB	
		50%	0.2400ABC	0.2233 BCD	18.27 CDE	18.33 EF	13.47 EF	14.50 BC	
	RDI	75%	0.1867 EF	0.1800 EF	21.20ABC	21.90 AB	15.77 ABC	16.03 AB	
		100%	0.1733 F	0.1633 F	22.93 A	23.00 A	16.73 A	16.63 A	
		50%	0.2633 A	0.2667A	16.50 E	15.23 G	10.17 H	9.033 E	
	DI	75%	0.2333ABCD	0.2167 CD	19.40 BCDE	18.70 DEF	14.37DE	14.80 ABC	
WII		100%	0.2233 BCD	0.2133 CD	20.13ABCD	20.67 BCD	14.73 BCDE	15.03 ABC	
		50%	0.2500AB	0.2467AB	17.33 DE	15.80 G	11.63 G	12.37 D	
	RDI	75%	0.2300ABCD	0.2133 D	20.10ABCD	19.43 CDE	14.50 CDE	14.93ABC	
		100%	0.2100 CDE	0.1967 DE	20.30ABCD	20.90ABC	14.67 BCDE	15.03ABC	

Mean having the same letter (s) in each row, column or interaction are insignificantly different at 5% level.

Water source = (WI, WII), water regulation (WR) = (deficit irrigation= DI, regulated deficit irrigation= RDI), irrigation levels = (ETc = crop evapotranspiration).

Acidity: concerning water source, there are insignificant differences between well I and well II in both seasons. Water regulation, (DI) had higher significant acidity value than RDI while there are insignificant differences

between (DI) and (RDI) in the second season. Irrigation levels, level (50%) gave the highest values in both seasons. The interaction between water source (WI & WII) and water regulation (DI & RDI), in both seasons, WII X DI had higher significant acidity values than all other treatments except WI X DI and WII X RDI in the second season. The interaction between water source and irrigation levels, in both season, the treatments of WII X 50% recorded higher significant acidity values than all treatments except WI X 50% in the first season.

The interaction between water regulation and irrigation levels, in both seasons, DI X 50% treatments and RDI X 50% in the first season, gave highest significant acidity values than all other treatments. The interaction among: in both seasons, the treatments of WII X RDI X 50%, had higher significant acidity values than the most of other treatments.

TSS: concerning water source, well I gave higher significant value than well II in both seasons. Water regulation, there are insignificant differences between (DI) and (RDI) in both seasons. Irrigation levels, level (75%) in the first season and level (100%) in both seasons. gave the highest significant values. The interaction between water source (WI & WII) and water regulation (DI & RDI). In both seasons, there are insignificant differences between (DI) and (RDI) in both seasons (WII X DI&RDI) in the first season, (WII X RDI) gave higher significant values than the second season. The interaction between: water source and irrigation levels (ETc =50, 75 and 100%): in both seasons, the treatments of WI X 100% recorded higher significant TSS values than the other treatments except WI X 75% in the second season. The interaction between water regulation and irrigation levels: in the both seasons, (DI& RDI) X 75% in the first season and (DI&RDI) X 100% in both seasons treatments gave highest significant TSS values. The interaction among: in both seasons, WI X RDI X 100% treatments gave higher significant TSS values than the most of other treatments.

Total sugars: concerning water source, well I gave higher significant value than well II in both seasons. Water regulation, there are insignificant differences between (DI) and (RDI) in the first season but RDI gave higher significant value than DI in second season. Irrigation levels, level (75% &100%) gave the highest values in both seasons. The interaction between water source (WI & WII) and water regulation (DI & RDI), there are insignificant differences between WI X (DI & RDI) in both seasons.

The interaction between: water source and irrigation levels (ETc =50, 75 and 100%): in both seasons, the treatments of WI X 100% recorded higher significant total sugars values than all treatments except WI X 75% in both seasons. The interaction between water regulation and irrigation levels: in both seasons, (DI&RDI) X (75% &100%) treatments gave highest significant total sugars values.

The interaction among: the treatments of WI X RDI X 100% in both seasons had higher significant total sugars values than the most of other treatments.

These results were agreement with **Chaves** *et al.*, (2007) who found that fruit quality characters were mediated by a reduction in vigour, leading to an increase on light interception in the cluster zone. Because plant water status during most of the dates along the season was not significantly different between PRD and DI, and when different, PRD even exhibited a higher leaf water potential than DI vines.

It could be concluded that: irrigation with well I (with EC values 3.68 dS/m) through PRD at 100% of ETc increased fruit quality of Jujube trees. Under limited water resources (where trees supplied with 75 or 50% of ETc), PRD is a viable irrigation option to give the highest Jujube yield and fruit quality comparing with DI.

References

- Aganchich B.; Tahil H.; Wahbil S.; Elmodaffar C. and R. Serraj (2007). Growth, water relations and antioxidant defence mechanisms of olive (*Olea europaea* L.) subjected to partial root drying (PRD) and regulated deficit irrigation (RDI). Plant Biosystems, 141 (2): 252-264.
- [2]. Ahmadi S.H.; M.N. Andersen; F. Plauborg; R.T. Poulsen; C.R. Jensen; A.R. Sepaskhah; and S. Hansen (2010). Effects of irrigation strategies and soils on field grown potatoes: Gas exchange and xylem [ABA]. Agricultural Water Management, 97: 1486-1494.
- [3]. Al-Abdoulhadi I. A.; H. A. Dinar; G. Ebert and C. Buttner (2012). Influence of salinity stress on photosynthesis and chlorophyll content in date palm (Phoenix dactylifera L.) cultivars. African Journal of Agricultural Research; 7: 22, 3314-3319.
- [4]. Al-Hayani A. M. and I. A. Manar (2009). Effect of soil salinity on some physical and chemical parameters of lemon (Citrus limon Burm) fruits. Diyala Agricultural Sciences Journal, 1: (2): 25-29.
- [5]. Brown J.D. and O.Lilleland 1946. Rapid determination of potassium and sodium in plant material and soil extract by flame photometry. Proc. Amer. Soc. Hort. Sci. 48:341-346.
- [6]. Chapman , H. D. and P. F. Pratt 1961. Method of Analysis for Soils , Plants and Waters , Univ. California, Div. Agric. Sci. Priced Pub. 4034.
- [7]. Chaves M.M.; T.P. Santos; C.R. Souza; M.F. Ortun; M.L. Rodrigues; C.M. Lopes; J.P. Maroco and J.S. Pereira (2007). Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Annals of Applied Biology, 150: 237–252.
- [8]. Clarke G.M. and R.E. Kempson (1997). Introduction to the design and analysis of experiments. Arnold, a Member of the Holder Headline Group, 1st Edt. London, UK.

- [9]. Dejampour J.; N. Aliasgarzad; M. Zeinalabedini; M. R. Niya; E. M. Hervan (2012). Evaluation of salt tolerance in almond [*Prunus dulcis* (L.) Batsch] rootstocks. African Journal of Biotechnology; 11: 56, 11907-11912. 31 ref.
- [10]. Duncan D.B. (1955). Multiple range and multiple F Test. Biometrics, 11: 1-42.
- FAO Food and Agriculture Organisation (1992). The use of saline waters for crop production. Rhodes JD, Kandiah A, Mashak AM. FAO Irrigation and Drainage Paper 48. FAO, Rome.
- [12]. Jakson, M. L. (1967). Soil Chemical Analysis pp. 183, , New Delhi, India.
- [13]. Lolaei A.; M. A. Rezaei; M. K. Raad; and B. Kaviani (2012). Effects of salinity and calcium on the growth, ion concentration and yield of olive (Olea europaea L.) trees. Annals of Biological Research, 3: 10, 4675-4679.
- [14]. Loveys B. R.; P. R. Dry; M. Stoll; M. G. McCarthy (2000). Using plant physiology to improve the water use efficiency of horticultural crops. Acta Horticulturae 537:187 – 199.
- [15]. Lucena C. C.; Siqueira D. L.; Martinez H. E. P. and P. R. Cecon (2012).Salt stress effect on nutrient absorption in mango tree. Revista Brasileira de Fruticultura, 34 (1): 297-308.
- [16]. Marsal J.; M. Mata; J. del Campo; A. Arbones; X. Vallverdú; J. Girona; and N. Olivo (2008). Evaluation of partial root-zone drying for potential filed use as a deficit irrigation technique in commercial vineyards according to two different pipeline layouts. Irrigation Science 26:347–356.
- [17]. Ministry of Agriculture, A.R.E. (2012). Agriculture Directorates of Governorates- Economic Affairs Sector.
- [18]. Ruiz, M.; G. Olivieri; and F.Vita Serman (2011). Effects of saline stress in two cultivars of Olea europea L: 'Arbequina' and 'Barnea'. Acta Horticulturae, 924: 117-124.
- [19]. Sepaskhah A.R. and Ahmadi, S.H. (2010). A review on partial root-zone drying irrigation. International Journal of Plant Production, 4 (4): 241-258.
- [20]. Trugo, E. and A.H.Meyer, (1929). Improvement of the Denige, s colorimetric method for phosphorus and arsenic. Ind. Eng. Chem. Asnal. Ed. 1:136-139.