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Abstract: The present study empirically investigates and examine seven models of volatility forecasting, 

namely unconditional standard deviation (also written as Long Term Moving Volatility), Standard GARCH 

(Generalized Autoregressive Conditional Heteroscedasticity) model, GJR-GARCH model, Exponential GARCH 

model (eGARCH), Asymmetric Power GARCH model (apGARCH), Component Standard GARCH model 

(csGARCH) , and Option Implied Volatility model to gauge the most appropriate model of volatility forecasting 

in Nifty constituent companies. The assessment of risk and determination of price of the asset class is primarily 

dependent on the volatility calculated for the class of asset. In view of obtaining precision in the process of 

determining the price of the option and making hedging most effective, it’s imperative to have the most 

appropriate method of calculating the volatility.  The present study finds option implied volatility as the best 

performing model except in few categories of option data where VIX outperformed. Similarly on empirical 

performance of Black-Scholes (BS) model the present study finds that performance is not same across various 

maturities which indicate volatility is not constant as assumed by BS model during the tenure of the study in 

Indian market.  
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I. Introduction 

One of the fundamental issues within finance is the valuation of future returns and the most proximate 

valuation of expected return from an asset. While there are various alternatives but a basic paradigm for 

valuation, in both academic and in practice, is assumption of competitive market equilibrium: The price that will 

apply in the market is that price which equates total demand to total supply. The Black-Scholes (1973) [3] was 

the first one who derived the valuation formula for call option rely on the notion of market equilibrium in only 

the weakest possible sense, known as “arbitrage reasoning.” If, under their respective assumptions, the market 

price does not equate to actual price, then market participants would have an opportunity to create an 

“arbitrage,” that is, to trade securities so as to make unbounded profits with no initial investment and no 

subsequent risk of loss. Their valuation approach was based on creating a hedged portfolio whose value is 

completely deterministic over a short span of time (dt). The idea of hedging option with the underlying stock 

was first coined by Thorp and Kassouf (1967) [14].  But Black and Scholes found that elimination of risk in this 

way leads to restriction on the relationship between the price of an option and the price of the underlying assets. 

They found, if portfolio is completely hedged (no risk involved), then expected return on the position must be 

the riskless interest rate (also as per CAPM). Even though the CAPM does not rely on arbitrage reasoning, it 

also played a key role in the development of the Black-Scholes formula. Under the assumption that stock 

follows Geometric Brownian Motion and using Ito Lemma, Black and Scholes lead to following partial 

differential equation :- 
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where,VisthepriceoftheoptionasafunctionofstockpriceSandtimet,ristherisk-

freeinterestrate,andσisthevolatilityofthestock.Solving the equation subject to boundary condition 

 c(S,T)=max{S−K,0} (2) 

leads to famous B-S formula for call option   :- 
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wherectispriceofeuropeancalloption,Kisthestrikepriceandτ=(T−t)isthe maturityofacalloption. 

Many investors and major corporations use these methods for planning, purchasing, pricing, or 

accounting purposes. In addition, to valuing straight put and call options, corporations use Black-Scholes 

modeling to value executive stock compensation plans, real production options, warrants, convertible, securities, 

debt, and so on. (In fact, for many of these applications, the methods are at times applied inappropriately.)  

BS model is based on many assumptions. Various authors have tested the performance of BS model in 

the past. Fischer Black (1972) [2] compared option prices calculated from BS equation with actual market 

prices. They observed that “the model tends to overestimate the value of an option on a high variance security; 

market traders tend to underestimate the value, and similarly, while the model tends to underestimate the value 

of an option on a low variance security, market traders tend to overestimate the value” (Fischer Black, 1972, pg 

416-417). Part of the deviations of the observed market prices from the model prices is thought by Black and 

Scholes, to be due to errors in measurement of the variance of stock returns. The measure of stock return 

variance used in their study was the sample variance of historic stock returns. Black and Scholes found that a 

strategy of selling options which are overvalued and buying undervalued options could yield substantial profits. 

However, when they included the transaction cost of trading in options, they found that the implied profits from 

this strategy vanished.   

MacBeth and Merville (1979) [9] examined daily prices of options on six underlying securities over a 

one year time period. Their results were exactly opposite to those reported by Black wherein he stated that deep 

in the money (out of the money) options generally have B-S model prices which are greater (less) than market 

prices. They proposed that these conflicting empirical observations may, at least in part, be the result of a non-

stationary variance rate in the stochastic process generating stock prices. McBeth and Mervile (1979) [9] also 

suggested trading strategy which involves selling deep in the money options and buying deep out of the money 

options. Whether or not this strategy yields abnormally high returns were not tested by Beth and Mervile. 

Lauterbach and Schultz (1990) [7] examined a sample of over 25,000 daily warrant prices to empirically 

investigate potential problems with the commonly used warrant pricing model proposed by Black and Scholes 

as an extension of their call option model. They found Black- Scholes cause biases in model prices for almost all 

warrants and over the entire sample period because of assumption of constant volatility. They further showed 

that forecast could be better if constant elasticity of variance is used. 

 

II. Relevance Of The Study 
Among all the variables in the BS model, volatility is most crucial variable in the BS model. Unlike 

other variables, volatility cannot be observed directly from the market. Therefore, various model has been 

developed in the past to accurately forecast the volatility and price option accordingly. The present study test the 

empirical performance of BS model under various volatility models namely, namely Unconditional Standard 

Deviation (also written as Long Term Moving Volatility), Standard GARCH (Generalized Autoregressive 

Conditional Heteroscedasticity) model, GJR-GARCH model, Exponential GARCH model (eGARCH), 

Asymmetric Power GARCH model (apGARCH), Component Standard GARCH model (csGARCH) , and 

Option Implied Volatility model including Volatility Index (VIX). The present study  serve two dual objectives, 

one to test the empirical performance of BS model under various volatility models, and another to test the 

performance of various volatility models (assuming BS model is correctly specified). 

 

III. Data Description And Various Input Calculation 
To forecast volatility and evaluate the performance of Black-Scholes models, this study used secondary 

data of daily closing value of S&P CNX Nifty Index, daily data of Nifty Option contracts, daily closing value of 

India Volatility Index (VIX), Nifty future prices, and MIBOR. Details about the data given below in the Table 1:  

 

Table1: Data Description 
Series Frequency Beginning End Observations 

Nifty Daily 1stApr2002 31stMar2015 3242 

VIX Daily 1stApr2009 31stMar2015 1490 
NiftyOption Daily 1stApr2009 31stMar2015 23155 

NiftyFuture Daily 1stApr2009 31stMar2015 - 

MIBOR Daily 1stApr2009 31stMar2015 1509 
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The data prior to 1st April 2002 is not considered because trading in Nifty future was introduced on 

June 4, 2001 and many empirical studies, for example, Raju and Karande (2003)[11], Bandivadekar and Ghosh 

(2003) [1] and Singh and Kansal (2011)[12] etc. found significant decline in market volatility after the 

introduction of derivative product especially future and option contracts. 

 

3.1 Input Calculation 

3.1.1 Exclusion of Outliers 

Following exclusion criteria has been used on the option pricing data. 

1. Expiry:Only those contracts expiring on the same month or immediate next month have been considered for 

the study. This same exclusion criterion is used by NSE on option contracts to calculate VIX. So, toensure 

consistency between VIX and other volatility model, all option contracts expiring beyond next immediate 

month have not been considered in this study. Further, contracts having maturity less than 6 days [trading 

days] to maturity are excluded. Short term option contracts are very sensitive to the non-synchronous price 

issues and driven by market sentiments. 

2. Moneyness(m): Option moneyness (m) is defined as ratio of future price of underlying security to option 

strike price. 

  
      

 
 

where,        is future price of NIFTY at time t of expiry τ years and K is the option strike price. Option 

contracts trading at highly deep in-the-money contains very less information about volatility. Therefore, in 

the present study highly deep in-the-money option contracts            has not been considered for the 

empirical investigation. Similarly, option contracts trading at deep-out-money, for         , has not been 

considered for empirical investigation. 

3. Volume: Options having turnover less than 100 Lacs has not been considered. Again this is done to ensure 

that only actively traded option is considered and closing value of index is synchronized with option closing 

value. 

4. Arbitrage Opportunities: European call option is said to provide arbitrage opportunity, if 

                              (4) 

where,        is the option price at time t, F(t, τ) is future price of NIFTY having same maturity as option 

contract, and τ is expiry period. So, option contracts not satisfying arbitrage condition have excluded from the 

study. 

Based on these criteria only 23155 observations (approximately 3% of original samples) were left for 

analysis in the database. The selected observations were divided into several categories according to their 

moneyness and maturity. Various categories on the basis of moneyness and number of observations therein have 

been shown in the Table 2.  

 

Table 2: Options categories and number of observations 
Moneyness Category Name No. of Observations 

         Deep out of the money (Deep OTM) 3308 

            OTM 4502 

            Near OTM 3570 

            Near In the Money (ITM) 3362 

            ITM 4122 

       Deep ITM 4291 

 

Similarly, on the basis of maturity, contracts have been partitioned into 4 categories: (i) Contracts 

having maturity less than or equal to 10 days [trading days], (ii) maturity exceed 10 days but less than or equal 

to 22 days, (iii) maturity exceed 22 days but less than 34 days, and (iv) maturity more than 34 days. To make 

more comprehensive analysis, all the contracts have further been divided on the basis of both moneyness and 

maturity.  The number of contracts in each subcategory is shown in Table 3. 

 

Table3: Number of observations in each sub option categories 
Categories τ≤10 10<τ≤22 22<τ≤34 τ>34 

m<0.95 97 844 1611 756 
0.95<m≤0.98 471 1732 1684 615 

0.98<m≤1.00 665 1375 1130 400 

1.00<m≤1.02 650 1279 1048 385 
1.02<m≤1.05 781 1502 1354 485 

1.05<m 609 1842 1471 369 
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3.1.2 Strike Price of the Option 

The exercise or the strike price is the price at which the call option contract gets executed. It is well-known by 

both the buyer and the seller of the option at the time of entering into the contract. 

 

3.1.3 Time to Maturity 

Time to maturity is the time period left for the expiration of the option contract. It is expressed in a 

year. Empirical work suggests that it is trading that cause volatility not the information. Thus, to estimate time to 

maturity, we have only considered trading days between option trading date and its expiration date. Not only 

weekend but any other days on which market remain closed is not considered for estimating time to maturity 

(List of holidays are available on the NSE website and declared in advance). 

 

3.1.4 Interest Rate 

Black-Scholes (BS) model uses risk-free rate of interest as an input to estimate current option price. 

The BS formula assumes both lending and borrowing is possible at risk- free interest rate. Use of 91 days 

treasury rate is primary choice among scholars but it must be noted that borrowing cannot be made at risk-free 

interest rate until and un- less the investor is government itself. Therefore, instead of using T-Bill, we have used 

MIBOR as a proxy of interest rate. So, where option maturity is less than 14days [calendar days, not trading] we 

have used 14 days MIBOR. Where option maturity is between 15 days to 30days, we have used 30days MIBOR 

rate. 3Months MIBOR is used for Option having maturity more than 30days. Moreover, NSE also uses MIBOR 

rate to calculate VIX index which uses option data. Thus, the use of MIBOR is not only logical choice but also 

consistent with the VIX. 

 

3.1.5 Volatility Estimation 

Volatility forecasted from various models has been used an input into the BS model. But, before using 

as an input, the daily forecasted volatilities are first converted into annualized volatilities. We multiplied the 

daily volatility from the square root of number of trading days in a year to get annualized volatility. So, 

 Annualized Volatility = Daily Volatility  Number of trading days in year  

                                     = Daily Volatility      (5) 

                                     =           

where,  σ̂tisthedailyforecastedvolatilityfortimetforecastedat(t−1).Whereas,no 

adjustmentismadeinVIXbecauseitisalreadyexpressedinannualizedvolatility. 

 

3.1.6 Future Price 

In our study, we have used Modified Black-Scholes (BS) model which require Future Price (of NIFTY) 

to compute option price. Future price is directly observable and can be downloaded from NSE website. It 

doesn’t require any adjustment before using in BS model. 

 

IV. Methodology 
To forecast volatility, present study considered seven models, namely Unconditional Standard 

Deviation (also written as Long Term Moving Volatility), Standard GARCH (Generalized Autoregressive 

Conditional Heteroscedasticity)(see Bollerslev, 1986) [4] model, GJR-GARCH model (see, Glosten,Jagannathan, 

andRunkle, 1993) [6], Exponential GARCH model (eGARCH) (see, Nelson, 1991) [10] , Asymmetric Power 

GARCH model (apGARCH) (see, Ding,Granger,andEngle,   1993; Taylor,  2012)[5] [13], Component Standard 

GARCH model (csGARCH) (see, LeeandEngle,1993) [8] , and Option Implied Volatility model (see, 

BlackandScholes,1973) [3]. 
 

4.1 Forecasting Volatility 

Volatility for NSE Nifty 50 from all models of volatility are forecasted, period from 1st April 2009 to 

31st March 2015 (Backtesting Period) using in-sample-period (estimation period) of 1st April 2002 to 31st 

March 2009, on rolling basis. It involve re-estimating the parameters of the model as more recent data become 

available. The parameters of every GARCH-family models have been updated after every 15 days [trading days] 

and for historical volatility models parameters are revised for each trading day. For example, first, model 

parameters are estimated using in-the-sample data, period from 1st April 2002 to 31st March 2009, then 

forecasting is made for next 15 trading days ie from 1st April 2009 to 22nd April 2009 ( include only 15 trading 

days). After that in- the-sample period data is forwarded by 15 trading days from behind (now in-the-sample 

period span from 22nd April 2002 to 22nd April 2009) and parameters are re-estimated including recent 

observations, ensuring that number of observations remain same every time in-the-sample period. Now, again 

forecasting will be made for next 15 trading days and procedure will be repeated till the entire out-of-sample 
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period is covered. Similar procedure has been followed for every GARCH-Family model for forecasting 

volatility. 

 

4.2 Performance Evaluation 

Three loss functions are being used to assess the performance of BS model with different volatility models. 

1. Root Mean Square Error (RMSE) 

 

      
 

 
          

 

 

   

 (6) 

 

2. Mean Absolute Error (MAE) 

 
    

 

 
         

 

   

 (7) 

 

3. Mean Absolute Percent Error (MAPE) 
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Where ctistheactualcalloptionpriceandĉtisBSmodelpriceforcalloption. 

Thehigherthevalueofthestatistics, worstistheperformanceofthemodel. 

 
V. Analysis And Results 

The analysis of the study reveals the mean absolute error, mean absolute percent error, and root mean 

square error for difference between actual call option price and model price which is examined to determine the 

most sought after model to estimate volatility of the option in Indian stock market.  

 

5.1 Moneywise Performance 

Table4: Mean Absolute Error by Moneywise for Option Price 
Model m<0.95 0.95<m≤0.98 0.98<m≤1.00 1.00<m≤1.02 1.02<m≤1.05 m>1.05 

sGARCH 19.02339 18.22642 19.59589 18.455635 17.214508 13.96194 

gjrGARCH 19.74524 19.61175 21.12412 20.019929 18.484276 14.46348 
eGARCH 21.16267 21.43449 22.79687 21.498984 19.245715 14.37911 

csGARCH 17.82532 17.23180 18.94941 18.277061 17.64245 14.46168 

apARCH 21.57316 21.36936 22.57701 21.145122 19.092332 14.49146 
LTMV 42.68346 63.02125 68.92104 64.732335 49.142405 27.85709 

IV 10.37281 8.55084 8.10675 8.086648 9.840104 10.27023 

VIX 18.14773 16.87600 15.26421 11.525228 6.276568 5.18794 

 

Table5: Mean Absolute Percent Error by Moneywise for Option Price 
Model m<0.95 0.95<m≤0.98 0.98<m≤1.00 1.00<m≤1.02 1.02<m≤1.05 m>1.05 

sGARCH 0.5770461 0.3424147 0.1967293 0.1062995 0.06279494 0.0338851 

gjrGARCH 0.6299252 0.3744518 0.211188 0.1150277 0.067232 0.035007 
eGARCH 0.7115772 0.4205594 0.2314673 0.1256188 0.07052184 0.0346921 

csGARCH 0.5306338 0.3154472 0.1859678 0.1042496 0.06422492 0.0350937 

apARCH 0.717253 0.4160338 0.2286952 0.1231391 0.06992369 0.0350469 
LTMV 1.9685123 1.7924982 0.9518303 0.4447979 0.19562611 0.0687578 

IV 0.362087 0.1864304 0.0911411 0.0481359 0.03569996 0.0245494 

VIX 0.6891325 0.4052397 0.2031343 0.0805774 0.02512093 0.0122087 

 

Table 4 shows mean absolute error for Black-Scholes (BS) model for different volatility models. 

Analysis of Table 4 revealed that Mean Absolute Error (MAE) is minimum when implied volatility is used as an 

input into the model for option with moneyness less than 1.02. For option with moneyness more than 1.02, 

MAE is minimum for Volatility Index (VIX). Results show no single model produce minimum MAE for all 

categories of option. Long Term Volatility Model (LTMV) is worst model for pricing option as it produces 

highest MAE for all categories of option. If moneyness-wise absolute errors are analysed, then, for Deep out-of-

money (OTM) option (m < .95), Implied Volatility leads to minimum error and LTMV model leads to 

maximum error by applying the BS model. In the GARCH family models, csGARCH has minimum MAE for 

Deep OTM but MAE is far away from the IV model. For example, for Deep OTM, MAE for Implied Volatility 

(IV) model is 10.373 whereas it is 17.8253 for csGARCH. For OTM options (.95 < m ≤ 0.98), again IV model 

is best performer followed by VIX and LTMV model is worst model. For Near ITM and OTM options, again IV 
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model is best performer and LTMV model is the worst model. But for option ITM (1.02 < m ≤ 1.05) and Deep 

in-the-money (m > 1.05), MAE is minimum when VIX is used as an input for volatility in the model. In 

GARCH family model, MAE is minimum for standard GARCH model for same moneyness but still far away 

from the best performer. For example, MAE is for Deep in-the-money (m > 1.05) for VIX is 5.1879 while it is 

13.96 by sGARCH. 

Talking in terms of the percentage errors, shown in Table 5, that Implied Volatility model lead to 

minimum Mean Absolute Percent Error (MAPE) for all categories of option out-of-money (m <= 1) and near in-

the-money (ITM). But for option ITM (1.02 < m < 1.05) and deep in-the-money (m > 1.05), MAPE is minimum 

when VIX is used as an input for volatility in the model. MAPE gets reduce for all the volatility models as 

option moves in the money. For example, MAPE for VIX for options deep out-of-money (OTM) is 68.91% 

while it reduces to 1.2% for Option Deep ITM. Such consistent improvement in the performance of the model 

indicates towards the biasness in the volatility. Empirical studies suggest smile pattern in the volatility ie market 

participants do not use same volatility for price options having distinct moneyness. Again, LTMV model is the 

worst performer model. In GARCH family model, csGARCH is best performer for all categories of option out 

of money (m <= 1) and near in the money. But for option ITM (1.02 < m < 1.05) and Deep in the money (m > 

1.05), MAPE is minimum when sGARCH model is used as an input for volatility in the model. But still, the 

performance of GARCH family model are far away from the overall best performer model.  For example, 

MAPE for sGARCH model for option deep ITM is 3.39% while it is 1.2% for best performer model ie VIX. 

Similarly, MAPE for csGARCH model for option deep OTM is 53.06% (lowest among GARCH family model) 

while it is 36.21% for IV model (best performer model). 

 

Table6: Root Mean Square Error by Moneywise for Option Price 
Model m<0.95 0.95<m≤0.98 0.98<m≤1.00 1.00<m≤1.02 1.02<m≤1.05 m>1.05 

sGARCH 32.07427 31.08861 33.40886 31.34922 30.215612 24.772608 

gjrGARCH 29.28762 31.43858 34.12968 32.18549 30.41045 23.65111 

eGARCH 29.46172 32.69246 35.54282 33.53034 31.065594 23.344015 

csGARCH 30.76778 30.17689 32.91079 31.21013 30.447865 25.039095 

apARCH 30.5398 32.85055 35.2818 33.08532 31.079577 23.732349 

LTMV 50.23246 71.68611 78.03052 73.95974 58.095272 35.183048 

IV 17.73215 15.49185 15.57933 14.37952 16.386855 16.158365 

VIX 21.16113 19.27341 17.665 14.15589 9.537102 8.493018 

 

Similar results were found when Root Mean Square Error (RMSE) is used and exhibited in Table 6. 

RMSE penalize higher deviations more than smaller deviation. For all categories of OTM options (m <1), 

RMSE is lower for Implied Volatility (IV) model, while for all categories of option ITM (m > 1), RMSE is 

lower for VIX. Again, as option moves in-the-money, RMSE gets reduce for all model of volatility. LTMV 

model is the worst performer model. 

In conclusion, it seems IV model in absolute and percentage terms is the best input for the BS to price 

OTM(m < 1) and Near ITM call option, while VIX is best input to price call option ITM(1.02 < m <= 1.05) and 

deep in the money(m > 1.05). Further, in the absence of VIX, IV model is best performing model. The 

performance of no other model is near to implied volatility. 

 

5.2 Maturity Wise Performance 

Table 7 shows the Mean Absolute Error (MAE) for option price for various volatility models. Options 

has been categorized on the basis of maturity. Analysis of results from Table 7 shows that in absolute terms the 

pricing errors are minimized only when the Implied Volatility (IV) is used as an input into the model for all the 

maturities. Absolute error increases as maturity increase for all the models.  

 

Table7: Mean Absolute Error by Maturity-wise for Option Price 
Model τ≤10 10<τ≤22 22<τ≤34 τ>34 

sGARCH 9.00547 15.82900 21.32408 21.83351 

gjrGARCH 8.87427 16.91885 22.85958 23.51759 

eGARCH 9.22868 17.73469 24.06581 26.32541 
csGARCH 8.77164 15.57066 21.04249 21.12785 

apARCH 9.45823 17.57599 24.25334 25.65870 

LTMV 30.48937 45.47842 59.95653 74.23707 
IV 5.69138 6.93594 12.03663 11.82440 

VIX 8.98515 9.55415 13.73286 17.30963 

 

For example, MAE for IV model when maturity is less than 10 is 5.6914 while it increases to 11.824 

when maturity exceeds 34 days. It shows the ability of the Black-Scholes (BS) model to price near the maturity 
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option more efficiently than options far away the maturity. As expected, LTMV volatility is the worst 

performer. csGARCH is second best model for option having maturity less than 10 days, otherwise, VIX is 

second best model for all maturities. 

 

Table8: Mean Absolute Percent Error by Maturity-wise for Option Price 
Model τ≤10 10<τ≤22 22<τ≤34 τ>34 

sGARCH 0.1584925 0.2054765 0.2312739 0.2374589 

gjrGARCH 0.1555284 0.2230333 0.2598614 0.2524659 

eGARCH 0.1651872 0.2422947 0.2900882 0.3024035 

csGARCH 0.1497268 0.1924197 0.2173515 0.2198504 

apARCH 0.1693011 0.2402641 0.2917153 0.2923268 

LTMV 0.6400195 0.8072769 0.9658643 1.1778748 

IV 0.1019059 0.1067696 0.1336625 0.1390977 

VIX 0.1970614 0.2013772 0.2465923 0.2784894 

 

Talking in terms of the percentage errors (results are shown in Table 8), Implied Volatility (IV) model 

lead to minimum Mean Absolute Percent Error (MAPE) for all categories of option. Again LTMV model is 

worse performing model. Interestingly, second best model after IV model is csGARCH for all categories of 

maturity. Further, the difference in the performance of various GARCH family model is not quite large. For 

example, MAPE for csGARCH model for options maturity less than 10 days is 14.97% while it is 15.85% for 

sGARCH model, and 15.55% for gjrGARCh model. Implied volatility performs best even when RMSE is used. 

Results for RMSE are shown in Table 9. 

 

Table9:RootMeanSquareErrorbyMaturity-wiseforOptionPrice 
Model τ≤10 10<τ≤22 22<τ≤34 τ>34 

sGARCH 17.19043 27.040732 36.00372 33.83928 

gjrGARCH 15.54556 27.482031 34.85922 35.48726 

eGARCH 15.7422 27.937075 35.5245 37.85916 

csGARCH 17.28807 26.537485 35.81926 32.71561 

apARCH 16.38775 27.753126 36.07599 37.28117 

LTMV 37.4675 54.337281 69.25374 83.77617 

IV 10.55271 9.871307 21.5354 16.91426 

VIX 12.58853 11.952443 17.32507 21.5012 

 

It seems that Implied Volatility (IV) model is the best input for Black-Scholes (BS) model to price call 

option for all maturities of option. But each category of maturity has mixture of option with varying moneyness. 

As we have seen in the results of previous section, IV model performed best only for option out-of-money and 

near in-the-money (ITM) options, whereas, Volatility Index (VIX) was the best performer for pricing ITM (1.02 

< m <= 1.05) and deep ITM (m > 1.05) option. 

 

VI. Conclusion 
The present study finds option implied volatility as the best performing model except in few categories 

of option data where VIX outperformed. Among GARCH family models only, there is not a single model which 

consistently leads to minimized percentage and absolute error for all categories of option. Component sGARCH 

model is the best model for pricing either out-of-money option or near ITM option, whereas, sGARCH is best 

performing model for pricing option out of money. Overall, no single model perform best for all categories of 

options. Results found long term moving volatility (an unconditional measure of volatility), most widely used 

measure of volatility, as a worst model among all category of models. These results are consistent with the past 

studies that favour implied volatility for pricing option rather than GARCH derived volatility. The effectiveness 

of hedging primarily depend on accuracy of volatility forecasting. Therefore, the study recommend the use of 

implied volatility to hedge market risk effectively. The use of implied volatility also serve another advantage. It 

does not require the entire past history of option data to forecast volatility unlike GARCH models. It is pertinent 

to note that applying the best performing model to forecast volatility and thereafter pricing leads to close 

approximation of value of underlying asset which is worthy to be followed by both investors and institutions 

involved in financial markets. Empirical performance of BS models found that performance is not same across 

various maturities that indicate volatility is not constant as assumed by BS model. Further, results show 

systemic decline in MAE and MAPE for all volatility model as option moves into the money and as maturity 

decrease. This shows BS model is more efficient in estimating price of options which are near at-the-money and 
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near the maturity. In this way, present study provide rationale for using more advanced model for pricing 

options and cautious to the investors who use BS model to price options. 
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