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Abstract: In this paper, we introduce a new compound Poisson process with truncated negative binomial 

compounding distribution, which we will call as the Generalized Polya-Aeppli Process. We derived expressions 

for its probability mass function (p.m.f) and discuss several properties. We develop a new risk model with the 

Generalized Polya-Aeppli process as the counting process. Also, we derived the joint distribution of the time to 

ruin and deficit at the time of ruin. The differential equation of the ruin probability is given. As an example, we 

consider the case where the claim size follows the exponential distribution. We derive distributions of aggregate 

claims and gain (loss) from the Generalized Polya-Aeppli risk model and compute the stop loss premium. 
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I. Introduction 

 
Recently  statistical distributions and counting processes are widely used in risk modeling and analysis.  

Mao and Lia (2005) developed a  risk model and ruin probability with compound Poisson - geometric process. 

Minkova (2004) introduced compound Polya-Aeppli process as a compound Poisson process with the truncated 

geometric distribution. They showed that Polya-Aeppli process provides greater flexibility in modeling count data 

when it possesses overdispersion property. Minkova (2011) developed I-Polya Process and discussed its 

applications. Chukova and Minkova (2013) obtained some characterizations. Stefanka and Minkova (2015) 

developed a risk model with Pólya–Aeppli  distribution of order k . Lazarova and  Minkova (2017)  introduced 

I-Delaporte process and disccussed its applications. 

The Poisson process is a stochastic counting process that has applications in a large variety of daily life 

situations. But it is a good fit only when the count data at hand is equi-dispersed, that is, when the mean of the data 

is equal to the variance. It is found that for many count data, the sample variance is smaller or greater than the 

sample mean. It  is known as under dispersion and over dispersion, respectively. This motivated the researchers 

to search for alternative models. Accordingly, there are two ways in which the Poisson process be generalized 

namely, by  means of compounding or by mixing of distributions.  

Starting from the parameterized distribution )/( xg  of a random variable X  with unknown 

parameter  , we may obtain a new family of distributions if we allow parameter   to be a random variable with 

cumulative distribution function )(H . Then the unconditional distribution of X  is said to be a mixture 

distribution and is given by  

 ).()/(=)(  dHxgxg   

Usually, )/( xg  is called the mixed distribution and the distribution of parameter namely, )(H  is called the 

mixing distribution. Mixtures are usually considered as alternative models that offer more flexibility. For discrete 

distributions "compounding" is commonly used in place of "mixing". The process of compounding creates a wider 

class of distributions. 

The compound distributions can be constructed as follows. Let M be a counting random variable and 

...,, 321 XXX  be i.i.d random variables independent of M. Then the distribution of MXXXS  ...= 21  

is called a compound distribution and is given by  

 ,  )()=(=)(
0=

zgkMPzP k

k

S




  
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where 
kg 

 is the k-fold convolution of distribution of X. In this regard, the distribution of X is called the 

compounding distribution, while that of M is the compounded distribution. 

 

        The compound Poisson process is a generalization of the Poisson process obtained by compounding with 

a suitable distribution. It has wide applications in various fields such as transport, ecology, radiology, quality 

control, telecommunications etc. The compound Poisson process assures a better description for clustering of 

events. 

The compound Poisson process  0),( ttM  is given by the sum  

 ,   =)(
)(

1=

i

tN

i

XtM   

where )(tN  is a homogeneous Poisson process and 
...,, 321 XXX

 is a sequence of i.i.d random variables 

independent of 
)(tN

. The distribution of X is called compounding distribution. If the compounding random 

variable X has truncated geometric distribution,  we get the Polya-Aeppli process. 

 

Gerber (1979) gave a detailed account of Mathematical Risk Theory. Johnson  et al (2005) discussed in 

detail various discrete statistical distributions and their applications in risk analysis.  Panjer (1981) as well as 

Willmot and Lin (2001) obtained Lundberg approximation for compound distributions with insurance 

applications. Geber (1982) obtained the distribution of aggregate claims and its stop-loss premium.Dufresne and 

Gerber (1989) and Dickson (2007) considered ruin problems and computed  the probability of ruin. Rufresne et 

al. (1991) considered  risk analysis with Gamma process.  Willmot and Lin (2010) considered risk modeling 

with mixed Erlang distribution. 

 

The negative binomial model is one of the most popular models to count data. Among specific fields 

where negative binomial distribution have been found to provide useful representations may be mentioned in 

accident statistics, Econometrics, quality control and biometrics. In many cases, however, the entire distribution 

of counts is not observed. In particular, more often zeros are not observed. The negative binomial distribution 

often arises in practice where the zero group is truncated. Since the truncated geometric distribution is a special 

case of the truncated negative binomial distribution, we consider the truncated negative binomial as compounding 

distribution. As a result,the Generalized Polya-Aeppli process will be obtained. 

 

Generalized Polya-Aeppli Distribution 

Consider a random variable  

 
,...= 21 NXXXM 

 

where N has a Poisson distribution with parameter  , independent of the i.i.d random variables ...,, 321 XXX

. Suppose that ...,, 321 XXX  are truncated negative binomial with parameters r  and [0,1] ,1    and 

0>r . 

 

The PMF and the PGF of the compounding random variable X  are given by  

0.> 1,<<0 1,2,...,= ,
)(11

)(1
1

=)=( rx
x

xr

xXP
r

rx















 
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1)(1
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EssP
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Then, we obtain the PGF of the random variable N  as  

,

)
1)(1
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)(1
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Similarly, PMF is obtained as  
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The  above distribution will be called  the Generalized Polya-Aeppli distribution withparameters rand  ,  

and is denoted by ),,( rGPA  . 

The cumulative distribution function of N  is given by  
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Generalized Polya-Aeppli Process 

 

 Let )(tM  denotes the number of occurrence in the interval ](0,t . For the Generalized Polya-Aeppli process, 

)(tM  has a Generalized Polya-Aeppli distribution, ),,( rtGPA   and is given by  




















 



















 1,2,=,
!

1
)

1))(1
(1)(

0=,

=)=)((

1=1=

m
i

m

mrkt

k

i

e

me

mtMP
i

r

ki

i

k

m

i

mt

t









 (3) 

To express 0}),({ ttM  is a Generalized Polya-Aeppli process with parameters ,  and r , we use the 

notation ),,(GPAP)( rtM   ~ .   

Remark 1.Taking into account the equality ,
1

1
1)(=

1
1)(
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 when 1=r , the 

Generalized Polya-Aeppli process ,1),( GPAP  reduces to the Polya-Aeppli process. If 1=r  and 0=

, then it is a homogeneous Poisson process with intensity  . Thus the Poisson process and the Polya-Aeppli 

process are the special cases of the Generalized Polya-Aeppli process.  

Definition 1.A counting process  0),( ttM  is called a Generalized Polya-Aeppli process with parameters 

,  and r if it satisfies  (i) M(0)= 0, i.e, it starts at zero;  (ii) M(t) has independent increments; (iii) For each 

0>t , the number of occurrence )(tM  in any interval of length t has Generalized Polya-Aeppli distribution 

with parameters randt    ,  . We have  

     
))(1)(1(1

=)(
r

tr
tEM
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                                                                     (4)
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using (4) and (5) it can be shown that autocovariance between )(sN  and tstN <),(  is  
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The Fisher index of dispersion is given by  
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If 0=r  the Generalized Polya-Aeppli process is over dispersed, which offer more flexibility in modeling count 

data compared to the standard Poisson process. 

 

Alternate Definition of Generalized Polya-Aeppli process 

 

 In this section we define Generalized Polya-Aeppli process as a pure birth process. 

 

Definition 2. 

 A counting process 0}),({ ttM  is called a Generalized Polya-Aeppli process with parameters ,  and 

r  if  0=(0)M and )(tM  has stationary independent increments; and the state transition probabilities are 

defined as follows:  
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for every 0,1,=n  where 0)( ho  as 0h . 

Let 0,1,2,=   ),=)((=)( mmtMPtPm .  

 

From the above postulates we get the following Kolmogorov forward equations:  
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with initial conditions.  

 1,2,=   0,=(0)and1=(0)0 mPP m  

The equations in (7) yield to the following differential equation for 
)(tM  

 ).())((1=)( )()( ssPs
t

tMtM  



 

With 1,=(1))(tM  the above differential equation admit of the solution  

 
))((1

)( e=)( sPt

tM s   

But this is the PGF of the GPAP ),,( r , which leads to (3). 

Therefore two definitions of the Generalized Polya-Aeppli Process are equivalent. 

 

Properties of GPAP ),,( r  

 In this section, we discuss some properties of GPAP ),,( r . 

 

Interarrival Times Distributions 

Theorem 1. For the Generalized Polya-Aeppli process GPAP ),,( r
,
time interval 1Z to the first occurrence 

follows exponential distribution  with parameter and the time between first and second occurrences  of the 

process  namely 2Z ,  takes value 0 with probability 
1)(1

1
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
r

r




 and follows exponential distribution 

with parameter  ,with probability 
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
.  
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Proof. Let kZ  be the time of the 
thk arrival, for 1,2,=k . Let i

n

in ZW  1=
=  be the waiting time up to the 

thn occurrence and )(tM  denote the number of occurrence up to the instant t. For any 0t  and 0n , we 

have the following relation.  

 0,1,=),()(=)=)(( 1 ntWPtWPntMP nn                                         (8) 

 For 0=n , equation (8) yields  

 ),(1=)(1=0)=)((
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1 tFtZPtMP Z                                                (9) 

where )(
1

tFZ  is the distribution function of 1Z . 

According to (3), .e=0)=)(( ttMP 

                                                                  (10)
  

From (9) and (10), we get  
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Hence the density function of 1Z  is  
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Hence 1Z  is an exponential random variable with parameter  . 

Now from (8), for 1=n , we have,  
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Then taking Laplace transform on both sides of above equation, we get  
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On simplification, we get  
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Itfollows that 1Z  and 2Z  are independent. Furthermore, 2Z  has an exponential distribution with parameter 

  and takes value zero with probability 
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
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Thus, the P.D.F of of 2Z  is given by  

0,,e
1)(1

)(
1)(1

1=)( 0
2






















 


t

r
t

r
tf t

rrZ










 

where )(0 t  is the dirac delta function.  

The Waiting Time Distribution 

Theorem 2.The distribution function of the waiting time up to the 
thn  occurrence is given by  
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Proof. Let nZ  denotes the time between 
th1)( n  and 

thn  occurrence of the process, 2,3,=n . Then for 

any given integer 1n  and time 0>t , the relation between waiting time up to the 
thn  occurrence nW  and 

counting random variable M(t), is given by  
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})({=}{ ntMtWn   

Hence  

).(=))(( tWPntMP n   

The  cumulative distribution function is                  

 

Martingale Property 

Theorem 3.For ~)(tM GPAP ),,( r , the process 
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Therefore, 0}),({ ttN is a martingale.   

Relation between GPAP ),,( r  and Uniform distribution 

Theorem 4.If the Generalized PolyaAeppli process, 0}),({ ttM  has occurredonly once  in ][0,t , then 

the distribution of the time interval of that occurrence is uniform in ][0,t .  
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Application to Risk Theory 

 

 Consider the standard risk model 0}),({ ttX  of an insurance company given by  
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Here, we assume that c is a premium income per unit time.The claim size sequence 


1=}{ iiY  are i.i.d random 

variables having common distribution function F  such that 0=(0)F , with mean value   and


1=}{ iiY are 

independent of the counting process 0}),({ ttM . 

 

 We have established that the counting process 0}),({ ttM  in the risk model given in (11) is a 

Generalized Polya-Aeppli process and the resulting risk model obtained is called the Generalized Polya-Aeppli 

risk model. 

The relative safety loading   is given by  
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and in relation to positive safety loading 
))(1)(1(1
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r
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. 

Suppose that the time of ruin of the company with the initial capital u  is  so that 0}<)(:{inf= utXt  . 

Here by convention we take .=inf   

Then the ruin probability of a company having initial capital u  is defined as  

 ).<(=)(  Pu                                                                          (12) 

Then the probability ofnon ruin  is given by )(1=)( uu  . 

The joint probability distribution ),( zuW  of the time to ruin   and deficit at the time of ruin 

|)(=| XuD   is given by  

 0,),,<(=),(  zzDPzuW                                                         (13) 

It is obvious that  

 ).(=),(lim uzuW
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                                                                         (14) 

We can obtain the following equation by using the postulates in (6).  
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where 1,2,=),()* kxF k
 is the distribution function of kYYY  21 . 

Equivalently, 
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 In the limit, as 0h ,  
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where  
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is the nondefective distribution function of the claims with  

 1.=)(0,=(0) GG  

Related to safety loading, the above equation can be written as  
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From (14) and (15) we get the integro differential equation for ruin probability as 

 0.,))((1)()()(=)(
0






   uuGxdGxuu

c
u

du

d u
 

Theorem 5. The function )(0, zW  is given by  
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Proof. Integrating (15) from 0 to   and then using 0=),( zW  , we have  
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Substitution in the double integral and after simplification, we get  
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Hence  
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Theorem 6. The ruin probability with no initial capital satisfies  
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Proof. From (14) and (17) we obtain,  
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Suppose that )(xG  be the distribution function of a random variable X . Using the result 

dxxGXE ))((1=)(
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, (19) becomes.  
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Considering the definitions of )(xG  and =EY , we get  
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From the equations (20) and (21), we get the result. 
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Exponentially Distributed claims 

 Suppose that the claim sizes have an exponential distribution with mean  . i.e., 


x
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0> . Now the density function )(=)( xG
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xg obtained is an Erlang mixture and is given by  
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 is the mixing distribution, for details  see Willmot and 

Lin (2001) . 

The survival function corresponding to the above density is given by  
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Applying theorem 5, for the case when claim sizes have an exponential distribution with mean  , )(0, yW  is 

given by  
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where dueuyj uj
y
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0
=),(  is the incomplete gamma function.  

 

Derivation of Total Claims Distribution, Total Loss(gain) Distribution and Stop Loss Moment 

 

A central problem in risk theory is the modeling of the probability distribution of the aggregate claims. The 

aggregate claims distribution and its components, the claim count and claim amount distributions are used to 

compute ruin probabilities and to provide other information of interest to the decision makers. Panjer(1981) found 

that a compound Poisson process approximately modeled the aggregate claims distribution, based on the 

collective risk assumption. 

 

Here we concentrate on the case where the aggregate claims distribution has a compound Generalized 

Polya-Aeppli process. This is equivalent to assuming that the counting process is the Generalized Polya-Aeppli 

process. We assume that the claim sizes have a continuous distribution with cumulative distribution function F 

such that 0=(0)F , and mean value  .  

Denote by )(tN  the number of claims, by iZ  the 
thi  claim amount and by )(tS  the aggregate claim 

amount in a time period of length t  given by .=)(
)(

1=

i

tM

i

ZtS   

In this case )(tES  corresponds to the pure premium and is given by  
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Let ),( txH  denotes the cumulative distribution function of the aggregate claims and )(* xF k
is the k -fold 

convolution of claim amount distribution function which can be calculated recursively as  
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Recalling that the number of claims has Generalized Polya-Aeppli distribution, We have  
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the set A . 

 

Finding the cumulative distribution function of the aggregate gain(loss) is one of the principal problems in the 

collective risk theory. Here we derive the distribution function of aggregate loss (gain) from Generalized 

Polya-Aeppli risk model using the distribution function of aggregate claims. 

 

Consider the Generalized Polya-Aeppli risk model  

 ),(=)( tScttX   

mentioned in (11) , where )(tX  denotes the aggregate gain (loss) and )(tS  is the aggregate claims in a time 

period of length t. In this model, the number of claims occurring in a period of length t  has the Generalized 

Polya-Aeppli distribution. 

 

Then the cumulative distribution function ),( txG  of )(tX  is given by  
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where )(
*

xF
k

 is the survival function of )(* xF k
. 

 

Stop-loss moment of any positive order can be obtained using (22) and is given by  
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where 
kf *

 is the k-fold convolutions of pdf of claims. 

Note that the case 0=m  we get )(aF , the tail function of the aggregate claim amount. When 1=m , the 

stop-loss premium results and is given by  
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*  , is the integrated tail distribution of 
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. 

 

Now we discuss a particular case in which the claim sizes have an exponential distribution with mean  . i.e, 
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. 

 

In this case, the k fold convolution of claim sizes is given by  
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where k  is the gamma function and dtetxa ta
x
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=),(  is the incomplete gamma function. 

Hence the cumulative distribution function of aggregate claims with respect to Generalized Polya-Aeppli risk 

model with exponential claims is  
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Similarly, the cumulative distribution function of aggregate loss(gain) is given by  
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Based on (24), for exponential claims, the stop loss moment is  
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From (25) we can obtain stop-loss premium as  
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II. Conclusions 
 

In this paper, we introduced a new compound Poisson process, called the Generalized Polya-Aeppli 

process, by compounding with truncated negative binomial distribution. We have shown that it is a generalization 

of Polya-Aeppli process andestablished that this model is capable of handling over-dispersed count data. We 

introduced a new risk model with Generalized Polya-Aeppli counting process. We have developed ruin theory, the 

probability of ruin for this model and as a special case, we have derived an expression for the ruin probability with 

zero initial capital. This model can be applied in insurance, business and acturial sciences as  a  more versatile 

one than existing models.   
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