
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 16, Issue 5, Ver. II (Sep – Oct. 2014), PP 10-18
www.iosrjournals.org

www.iosrjournals.org 10 | Page

Task Allocation in heterogeneous Distributed Real Time System

for Optimal Utilization of Processor’s Capacity

Shipra Singh
*
and M. L. Garg

Department of Computer Science, DIT University, Dehradun, India

Abstract: In Distributed Real Time System (DRTS), systematic allocation of the tasks among processors is one

of the important parameter, which determine the optimal utilization of available resources. If this step is not

performed properly, an increase in the number of processing nodes results in decreasing the total system
throughput. The Inter-Task Communication (ITC) is always the most costly and the least reliable parameter in

the loosely coupled DRTS. In this paper an efficient task allocation algorithm is discussed, which performs a

static allocation of a set of “m” tasks T = {t1,t2,…tm} of a program to a set of “n” processors P = {p1,p2,….pn},

(where, m >> n) to minimize the application program’s Parallel Processing Cost(PPC) with the goal to

maximize the overall throughput of the system through and allocated load on all the processors should be

approximately balanced. While designing the algorithm the Execution Cost (EC) and Inter Task Communication

Cost (ITCC) have been taken into consideration.

Keywords: Distributed Real time System, Execution Cost, Inter Task Communication Cost, Task Allocation,

Load Balancing

I. Introduction
The increasing complexity of various real life problems results in greater demand for faster computer

components. One of the approaches to meet this growing demand is the use of parallel processing. An

alternative and closely related to parallel computers is the concept of DRTS. Distributed real time system is a

computer system in which multiple processors connected together through a high-bandwidth communication

link. These links provides a medium for each processor to access data and programs on remote processors.

A user-oriented definition of distributed computing is reported by [1,2] that " The Multiple Computers

utilized cooperatively to solve problems i.e. to process and maintained the large scale database of the programs

which are to be executed on these type of computing environment”. The assignment of task to processors is an
essential step in exploiting the capabilities of a DRTS and may be done in a variety of ways (i) Static Allocation

and (ii) Dynamic Allocation. In static allocation, when a task is assigned to processor, it remains there while the

characteristic of the computation change and a new assignment must be computed. These problems may be

categorized in static [3 -10]. In order to make the best use of resources in a distributed real time computing

environment, it is essential to reassign the tasks dynamically during program execution, so as to the benefit of

changes in the local reference patterns of the program [11-18]. Although the dynamic allocation has potential

performance advantages, Static allocation is easier to realize and less complex to operate.

Several other methods have been reported in the literature, such as, Integer programming [19, 21],

Branch and bound technique [22-23], Matrix reduction technique [7], and reliability evaluation to deal with

various design and allocation issues in a DRTS by [24-30]. In this paper we introduce an algorithm which

performs static allocation of such program tasks in a heterogeneous DRTS to minimize the application
program‟s Parallel Processing Cost with the goal to maximize the overall system throughput and allocated load

on all the processors should be approximately balanced. Because strictly balanced load distribution may not be

possible to achieve, a system is considered to be balanced if the load on each processor is equal to the average

load, within a reasonable tolerance. A tolerance of 10-15% of average load is generally chosen. We assume that

the number of program modules is much larger than the number of processors, so that no processor remains idle.

Several sets of input data are considered to test the efficiency and complexity of the algorithm. It is found that

algorithm is suitable for arbitrary number of processors with the random program structure and is workable in

all the cases.

II. Definitions
Execution Cost: The eij, is the amount of the work to be performed by the executing task ti on the processor pj

where 1 ≤ i ≤ m, 1 ≤ j ≤ n. If a task is not executable on any of the processor due to absence of some resources,

execution cost of same task on that processor is taken to be (∞) infinite. The process of allocation of the

problem can be formulated by a function Aalloc, for the task assign to processors j. Aalloc: T→P, where Aalloc

(i) = j, if the task ti is assigned to processor pj, the overall EC of a given assignment Aalloc is then computed by

equation (1).

Task Allocation in heterogeneous Distributed Real Time System for Optimal ….

www.iosrjournals.org 11 | Page

 EC Aalloc = ei,Aalloc (i)

1≤i≤m

 1

and the per processor EC for processor pj is defined to be

 EC(Aalloc)j = ei,Aalloc i

1≤i≤m
i∈TS j

 2

where TSj is the set of tasks allocated to processor pj

TSj= {i: Aalloc (i) =j, j=1, 2…n}

Inter Task Communication Cost: The ITCC cij is incurred between tasks, where cij = g > 0 if tasks ti

communicates with task tj for some cost g when Aalloc (i) Aalloc (j). Whenever a group of tasks is assigned to
the same processor, the cij = 0. The overall ITCC of a given assignment Aalloc can be expressed by equation (3).

ITCC Aalloc = CAalloc i ,Aalloc (k)
1≤i≤m

i+1≤k≤m
Aalloc i =j≠Aalloc (k)

 3

and the per processor ITCC is given by equation (4)

ITCC(Aalloc)j = CAalloc i ,Aalloc (k)
1≤i≤m

i+1≤k≤m
Aalloc i =j≠Aalloc (k)

 4

III. Mathematical Model
Considered a application program that consists of “m” communicating tasks, t1, t2….tm, and a

heterogeneous distributed real time system with “n” processors, p1, p2,….pn, unified by communication

relations. It has processors as nodes and there is a weighted edge between two nodes if the corresponding

processors can communicate with each other. The weight wij on the adjoin between processors pi and pj

represent the time lag involved in sending or receiving the message of unit length from one processor to another.

In order to have an approximate estimate of this time lag, irrespective of the two processors, we use the average
of the weights on all the edges in the processor graph. This is called the average unit time lag. The load

balancing, which involves sending load from over utilized processors to underutilized processors, should be

carried out with due regard for communication overhead so that it is completed as speedily as possible. It

becomes essential to optimize the overall throughput of the processors by allocating the tasks in such a way that

the allocated load on all the processors should be approximately balanced. Therefore, the systematic allocation

of tasks in a DRTS is the fundamental requirement for optimal utilization of processor‟s capacity. While

developing the algorithm, it is assumed that the processing cost of these tasks on all the processors is given in

the form of Execution Cost Matrix [ECM] of order m x n and the ITCC incurring between two communicating

when they are assigned to two distinct processors is taken in the form of a symmetric matrix named as Inter

Task Communication Cost Matrix [ITCCM], which is of order m.

The proposed methodology will work as follow:

 Computation of Average Load must be assigned to each Processor

Select ECM (,) and compute the average load must be assigned to each processor pj by using the

equation 5 and total load to be assigned on the system by equation 6.

Lavg p j =
Wj

n
, j = 1,2, …… n 5

 where Wj = ecij

1≤i≤m

http://www.shabdkosh.com/translate/completed/completed-meaning-in-Hindi-English
http://www.shabdkosh.com/translate/speedily/speedily-meaning-in-Hindi-English

Task Allocation in heterogeneous Distributed Real Time System for Optimal ….

www.iosrjournals.org 12 | Page

Tlod = Lavg

n

1

 pj (6)

 Determination of Average Minimum Link

First concentrate on those “n” tasks which have the average minimum link between the tasks using

equation (7). The average minimum link is stored in a two dimensional array AML (,) the first column of the

array represents the task number and second column represents the average minimum link between the tasks.

The array is sorted in ascending order by assuming second column as sorting key.

 ITCCavg ti =
CC i

m
 , where CCi = ci 7 1≤i≤m

 Determination of Initial Assignment

Select first “n” task from AML (,) and apply the Yadav et al Algorithm [28] on these “n” tasks in ECM

(,). Store these assignment in Tass{ }and also store the processors position in Aalloc{ }. The total number of task

allocated to the processor is than stored in TTASK (j) which can be computed by adding the values of Aalloc (j)
if a task ti is assigned to processor pj otherwise continue. Remaining unassigned (m-n) task are then store in

Tnon-ass{ }.

 Clustering of remaining unassigned task

Remaining (m-n) tasks store in Tnon-ass{ } are clustered based on their communication requirement.

Highly communicating tasks are clustered together to reduce communication delays. Usually number of tasks

clusters should be equal to the number of processor so that one to one mapping may result.

These clusters will be fixed throughout their execution. Since we have „n‟ number of processors in

DRTS, therefore we will make „n‟ number of tasks clusters. A cluster may contain up to maximum number C =

(m−n)

n
 of tasks. Store the ITCCM (,) in NITCCM (,) and reduce NITCCM (,) by removing the Tasks Store in

Tass{ } and the upper diagonal k=[{(m-n)*((m-n)-1)}/2]/-1 values of NITCCM (,) are stored in a array CCMAX

(,) of order k x 3 the first column represents first task (say rth task), second column represent the second task (say

sth task) and third column represent the ITCC (crs) between these rth and sth tasks. The CCMAX (,) is sorted in

descending order by assuming third column as sorting key. Initially each task is treated like a cluster Ci={ti }for

i=1 to m-n. Store these clusters in a linear array CLS= {Ci, 1 i m-n }. Select the first tasks pair say (tr , ts)

(say tr ε Cr and ts ε Cs) from CCMAX (,). If the sum of number of tasks for clusters Cr and Cs is ≤ C, than fuse

the clusters Cr with Cs otherwise select the next tasks pair from CCMAX (,). Modify CLS= {} by replacing

the cluster Cr as Cr ← Cr Cs = {tr , ts} and deleting the cluster Cs. Modify the CCMAX (,) by

deleting this tasks pair (tr , ts) and replace the value between tr and ts to zero in NITCCM (,) also reduce the
matrix by add the rth row with sth and rth column with sth. Some of the tasks may not involve in any cluster may

be treated as independent task. The above procedure is repeated until and unless we do not get number of tasks

clusters equal to number of processors

 Identification of Final Assignment

The ECM (,) is also radiuses by summing the corresponding row and apply the Yadav et al Algorithm

[28] on these “n” cluster for their allocation.

 Computation of overall EC, ITCC and per processor EC, ITCC

The overall EC, ITCC and per processor EC, ITCC for processor pj of a given assignment Aalloc is

then computed by equation (1), equation (2) equation (3) and equation (4) respectively.

 Identification the Service Rate and Throughput of each processor

The Service Rate (SR) and Throughout (TRP) of the processors are calculated by using the equation (8)

and (9) respectively.

SRj =
1

 EC (Aalloc)j
 (8)

 TRPj =
TTASK (j)

 EC(Aalloc)j

 (9)

Task Allocation in heterogeneous Distributed Real Time System for Optimal ….

www.iosrjournals.org 13 | Page

 Identification of Parallel Processing Cost (PPC)

The PPC is a function of the amount of computation to be performed by each processor and the

communication load. This function is defined by considering the processor with the heaviest aggregate
computation and communication loads. PPC for a given assignment Aalloc is defined guardedly by assuming

that computation cannot be overlapped with communication) calculated by using the equation (10)

PPC Aalloc = max
1≤j≤n

 EC Aalloc j + ITCC Aalloc j 10

 Computation of Overall System Cost (OSC)

Overall OSC of the DRTS for the given assignment Aalloc is calculated by using the equation (11)

 OSC(Aalloc) = EC Aalloc + ITCC Aalloc (11)

Procedure

Step-1 Input m, n, ECM (,) and ITCCM (,)

Step-2 AVERAGE_LOAD(:)// Select ECM (,)and Compute the average load must be assigned to each

processor pj also determine the total load can be allocated to the system

Step-3 AVERAGE_ MINIMALLY_ LINKED(:) Select ITCCM (,) and Determine the average minimally

linked between the tasks and store these link in a two dimensional array AML (,) the first column of the array

represents the task number and second column represents the average minimum link between the tasks. The

array is sorted in ascending order by assuming second column as sorting key.

Step-4 TASK_MAPPING ():// Select ECM (,) and apply Yadav et al Algorithm [28] in respect of first “n”

tasks of ALM (,)

Store these assignment in Tass{ }and also store the processors position in Aalloc{ }

Stored in TTASK (j) which can be computed by adding the values of Aalloc (j)

Step-4.1 Remaining unassigned (m -n) task are then store in T n o n - a s s{ }.

Step-5 TASK_CLUSTER ():// Select ITCCM (,)and store NITCCM (,)ITCCM(,)

Step-5.1 Reduce NITCCM (,) by removing the Tasks Store in Tass{ }

Prepared “n” Cluster of the remaining (m-n) tasks

Compute maximum number of tasks in cluster C =
(m−n)

n

Step-5.2 k= [{(m-n)*((m-n)-1)}/2]/-1 Upper diagonal values of NITCCM (,) are stored in a array CCMAX (,) of

order k x 3 the first column represents first task (say r–th task), second column represent the second task (say s-

th task) and third column represent the ITCC (crs)

Step-5.3 The CCMAX (,) is sorted in descending order by assuming third column as sorting key

Step-5.4 Initially each task is treated like a cluster Ci = {ti } for i=1 to m-n.

Store these clusters in a linear array CLS= {Ci, 1 i m-n)
Select the first tasks pair say (tr , ts) (say tr ε Cr and ts ε Cs) from CCMAX (,)

Step-5.5 If number of tasks for clusters Cr and Cs is ≤ C, than fuse the clusters Cr with Cs otherwise select the

next tasks pair from CCMAX (,)

Step-5.6 Modify CLS= {} by replacing the cluster Cr as Cr ← Cr Cs={tr , ts} and deleting the cluster Cs.
Modify the CCMAX (,) by deleting this tasks pair (tr , ts) and replace the value between tr and ts to zero in

NITCCM (,) also reduce the matrix by add the rth row with sth and rth column with sth

Step-6 Modify the ECM (,) by summing the rth row with sth

Step-7 If CinThen Go to step 5.4 Otherwise

Task Allocation in heterogeneous Distributed Real Time System for Optimal ….

www.iosrjournals.org 14 | Page

Step-8 FINAL_TASK_MAPPING ():// Yadav et al Algorithm [28]

Store these assignment in Tass{ }and also store the processors position in Aalloc{ }

Stored in TTASK (j) which can be computed by adding the values of Aalloc (j)

Step-9 COST_COMPUTATION ()://Compute overall EC , per processor EC for processor pj of a given

assignment Aalloc

Compute overall ITCC, per processor ITCC for processor pj of a given assignment Aalloc

Compute overall OSC of the DRTS for the given assignment Aalloc

Compute PPC of a given assignment Aalloc

Compute Service Rate (SR) and Throughout TRP of the processors

Step-10 Stop

IV. Result & Discussions
To justify the application and usefulness of the present algorithm, a DTRS have been taken which

consist of a set of “n = 3” processors P = {p1, p2, p3} connected by an arbitrary network. The execution cost

matrix, ECM (,) of order m x n is considered. A typical program graph of a set of “m = 9” tasks T = {t1, t2, t3, t4,

t5, t6, t7, t8, t9} has been taken from the literature as considered by Yadav et al [31], Younes [32] and Elsadek [3].

Example: Input m = 9, n = 3 ECM (,) and ITCCM (,)
 p1 p2 p3

 t1 174 156 110

 t2 95 15 134

 t3 196 79 156

 t4 148 215 143

ECM(,)= t5 44 234 122

 t6 241 225 27

 t7 12 28 192

 t8 215 13 122

 t9 211 11 208

 t1 t2 t3 t4 t5 t6 t7 t8 t9

 t1 0 8 10 4 0 3 4 0 0

 t2 8 0 7 0 0 0 0 3 0

 t3 10 7 0 1 0 0 0 0 0

 t4 4 0 1 0 6 0 0 8 0

ITCCM(,)= t5 0 0 0 6 0 0 0 0 0

 t6 3 0 0 0 0 0 0 0 12

 t7 4 0 0 0 0 0 0 0 10

 t8 0 3 0 8 0 0 0 0 5

 t9 0 0 0 0 0 12 10 5 0

Average and total load to be assigned on each processor is shown in table 1 after calculating by using the

equation 5 and 6.

Table-1: Average and total load to be assigned on each processor
 Load p1 p2 p3 Total Load

Actual Load 445 325 405 1175

Tolerance of 10 45 33 40 118

Total 490 358 445 118

Compute the Average Minimally Linked between the Tasks using equation (7)

Original ALM(,) Sorted ALM(,)

 t1 3.22 t5 0.67

 t2 2.00 t7 1.56

 t3 2.00 t6 1.67

 t4 2.11 t8 1.78

ALM(,)= t5 0.67 ALM(,)= t2 2.00

 t6 1.67 t3 2.00

 t7 1.56 t4 2.11

 t8 1.78 t9 3.00

 t9 3.00 t1 3.22

 Initial Allocation obtained by applying Yadav et el [28] Algorithm are given in Table-2

Task Allocation in heterogeneous Distributed Real Time System for Optimal ….

www.iosrjournals.org 15 | Page

Table-2
Tasks Processor Initial allocated Load

t5 p1 44

t6 p2 27

t7 p3 28

Tass ={ t5, t7, t6}, Aalloc(j) = (p1, p3, p2) and TTASK (j) = (1,1,1)

Tnon-ass= { t8, t2, t3, t4, t9, t1}

Clustering of remaining unassigned task

Maximum number of tasks in cluster c = 2

Store the ITCCM (,) in NITCCM (,) and reduce NITCCM (,) by removing the Tasks Store in Tass ={ t5, t7, t6}

 t1 t2 t3 t4 t8 t9

 t1 0 8 10 4 0 0

 t2 8 0 7 0 3 0

NITCCM(,)= t3 10 7 0 1 0 0

 t4 4 0 1 0 8 0

 t8 0 3 0 8 0 5

 t9 0 0 0 0 5 0

Upper diagonal k=[{(m-n)*((m-n)-1)}/2]/-1= 14 values of NITCCM (,) are stored in a array CCMAX (,) of

order k x 3

Original CCMAX (,) Sorted CCMAX (,)

 t1 t2 8 t1 t3 10

 t1 t3 10 t1 t2 8

 t1 t4 4 t4 t8 8

 t1 t8 0 t2 t3 7

 t1 t9 0 t4 t9 5

CCMAX(,) = t2 t3 7 CCMAX(,) = t1 t4 4

 t2 t4 0 t2 t8 3

 t2 t8 3 t3 t4 1

 t2 t9 0 t1 t8 0

 t3 t4 1 t1 t9 0

 t3 t8 0 t2 t4 0

 t3 t9 0 t2 t9 0

 t4 t8 8 t3 t8 0

 t4 t9 5 t3 t9 0

Flowing three clusters are form and shown in Table-3

Table-3 Final Clusters
C1 t1+t3

C2 t4+t8

C3 t2+t9

After implementation of full procedure the final assignments and EC, ITCC, PPC, Service Rate and Throughput

of different processors achieved by the model are shown in Table 4.

Table -4 Final Results Obtained by the Algorithm
Task Processor EC ITCC PPC Service

Rate

Throughput

(1) (2) (3) (4) (5) (6) (7)

t5+ t2+t9 p1 350 51 401 0.00249 0.0075

t6+ t1+t3 p2 263 33 296 0.00340 0.0101

t7+ t4+t8 p3 292 34 326 0.00307 0.0092

Total allocated Lode 905 118 1023

Table 4 and Figure 1 shows the results of the proposed model from the table and figure it is concluded

that the Parallel Processing Cost of the system is 401 which is related to processor p1. Figure 2 shows the
through put and services rate of the processor. From the figure it is concluded that both are the ideally linked.

The Figure 3 depicted the comparisons between calculated load and allocated load form the figure concluded

that the allocated load assigned to the processors is much less than the calculated load.

Task Allocation in heterogeneous Distributed Real Time System for Optimal ….

www.iosrjournals.org 16 | Page

Fig. 1: Results of the proposed model

Fig. 2: Processor‟s Services Rate and Throughput

Fig. 3: Comparisons between Allocated Load and Calculated Load

The present paper deals with a simple, yet efficient mathematical and computational algorithm to

identify the optimal busy cost of the system. The performance of the algorithm is compared with the algorithm

reported by Yadav et al [31], Elsadek et al [3] and Younes [32]. The figure 4 and table 5 shows the comparisons

of optimal cost of the system reported by the [31, 32] and the present method. From the figure it is concluded

that the PPC of the system is much less obtained by the present method.

Table -5: Comparisons of PPC of the system
Yadav et al [31] 528

Elsadek [3] 479

Younes [32]. 459

Present Model 401

It can also be perceived from the example presented here that wherever the algorithm of better

complexity is encountered Kumar et al [6] present technique gets an upper hand by producing better optimal

results with slight enhancement in the cost due to minor in complexity factor. The worst case run time

complexity of the algorithm suggested by Kumar et al [6] is O (m2n+n2 + 2mn) , Elsade et a [3] is O (n2+ m2+

m2n+2mn) and the run complexity of the algorithm presented in this paper is O (m2n+mn+ n2). Table 6 and

Figure 4 shows the run time complexity of Kumar et al [6], Elsade el al [3] and Present Method considering
different cases of tasks and processors.

Task Allocation in heterogeneous Distributed Real Time System for Optimal ….

www.iosrjournals.org 17 | Page

Table- 6: Run time complexity compression
m.n Elsade el al [3] Kumar el al [6] Present Algorithm

O (n
2

+ m
2

+ m
2
n+m+n) O (m

2
n+2mn+ n

2
) O (m

2
n+mn+ m(m+n))

n
2
 m

2
 m

2
n m+n Total m

2
n 2mn n

2
 Total m(m+n) m*n

2
 m*n

1 2 3 4 (1+2+3+4) 5 6 7 (5+6+7) 8 9 10 (8+9+10)

5,3 9 25 75 30 139 75 30 9 114 40 45 15 100

6,3 9 36 108 36 189 108 36 9 153 54 54 18 126

7,4 16 49 196 56 317 196 56 16 268 77 112 28 217

8,4 16 64 256 64 400 256 64 16 336 96 128 32 256

9,5 25 81 405 90 601 405 90 25 520 126 225 45 396

10,5 25 100 500 100 725 500 100 25 625 150 250 50 450

11,6 36 121 726 132 1015 726 132 36 894 187 396 66 649

12,6 36 144 864 144 1188 864 144 36 1044 216 432 72 720

13,7 49 169 1183 182 1583 1183 182 49 1414 260 637 91 988

13,7 49 196 1372 196 1813 1372 196 49 1617 294 686 98 1078

15,8 64 225 1800 240 2329 1800 240 64 2104 345 960 120 1425

15,8 64 256 2048 256 2624 2048 256 64 2368 384 1024 128 1536

Fig. 4: Run time complexity compression

References
[1] K.K. Bhutani, Distributed Computing, The Indian Journal of Telecommunication, 1994, pp. 41-44.

[2] B.R. Sitaram, Distributed Computing – A User‟s View Point, CSI Communication, vol.-18 No. 10, 1965, pp. 26-28.

[3] A. A. Elsadek and B. E. Wells, A Heuristic model for task allocation in heterogeneous distributed computing systems, The

International Journal of Computers and Their Applications, Vol. 6, No. 1, 1999, pp 0-35

[4] D.W. Coit, and A.E. Smith, Reliability Optimization of Series Parallel Systems using a Genetic Algorithm. IEEE Transactions on

Reliabilit,. vol. R-45, 1996, pp. 254-260.

[5] P. K. Yadav and Nadeem Ahmad, Performance Analysis of Heterogeneous Distributed Processing System through Systematic

Allocation of Task, International Journal of Intelligent Information Processing, Vol. 5(1), 2011. ,pp. 19– 24.

[6] V. Kumar, M. P. Singh, and P.K. Yadav, An Efficient Algorithm for Allocating Tasks to Processors in a Distributed System. Proc.

of the 19th National system conference, SSI, Coimbatore, India, 1995, pp. 82-87.

[7] V. Kumar, P.K. Yadav and K. Bhatia, Optimal Task Allocation in Distributed Systems owing to Inter Tasks Communication

Effects. Proc. of the 33rd Annual convention of system society of India, New Delhi, India, 1998, pp. 369-378.

[8] M.P Singh,., V. Kumar and A. Kumar, An Efficient Algorithm for Optimizing Reliability Index in Tasks-Allocation. Acta Ciencia

Indica. 1999, pp. 437-444.

[9] Srinivasan, Santhanam and K. Niraj Jha, Safety and Reliability Driven Task Allocation in Distributed System, IEEE Transactions

on Parallel and Distributed Systems. vol. 10, 1999, pp. 238-250.

[10] P. K.Yadav, M. P Singh and Harendra Kumar, Scheduling Algorithm: Tasks Scheduling Algorithm for Multiple Processors with

dynamic Reassignment. International Journal of Computer System, Network and Communication,2008, pp. 1-9

[11] S.H. Bokhari, Dual Processor Scheduling with Dynamic Re-Assignment, IEEE Transactions on Software Engineering. vol.

SE-5, 1979, pp. 341-349.

[12] T.L. Casavent and J. G Kuhl, A Taxonomy of Scheduling in General Purpose Distributed Computing System, IEEE Transactions on

Software Engineering, vol. SE-14, 1988, pp. 141-154.

[13] Avanish Kumar, Optimizing for the Dynamic Task Allocation, Proceedings of the III Conference of the International Academy of

Physical Sciences, Allahabad, 1999, pp. 281-294.

[14] V. Kumar, M. P. Singh, and P.K. Yadav, An Efficient Algorithm for Multi-processor Scheduling with Dynamic Reassignment,

Proc. of the 6th National seminar on theoretical Computer Science, Banasthally Vidyapeeth, India, 1996, pp. 105-118.

[15] H.G. Rotithor, Taxonomy of Dynamic Task Scheduling in Distributed Computing System., IEEE Proc. Computer Digit Tech., vol.

14, , 1994, pp. 1-10.

[16] K. B. Misra and U. Sharma, An Efficient Algorithm to solve Integer Programming Problem arising in System Reliability

Design, IEEE Transactions on Reliability, vol. R-40, 1991, pp. 81-91.

[17] R. L. Bulfin, and C. Y. Liu, Optimal Allocation of Redundant Components for large Systems, IEEE Transactions on Reliability,

vol. R-34, 1985, pp. 241-247.

[18] W.W. Chu, Optimal File Allocation in a Multiple Computing System. IEEE Transactions on Computer, vol. C-18,1969, pp. 885-

889.

Task Allocation in heterogeneous Distributed Real Time System for Optimal ….

www.iosrjournals.org 18 | Page

[19] R.Y. Richard, E.Y.S Lee, and M. Tsuchiya, A Task Allocation Model for Distributed Computer System, IEEE Transactions on

Computer, vol. C-31, 1982, pp. 41-47.

[20] O.I. Dessoukiu-EI, and W. H. Huna, Distributed Enumeration on Network Computers. IEEE Transactions on Computer, Vol. C-29,

1980, pp. 818-825.

[21] Kent Fitzgerald, Shahram Latifi and Pradip K. Srimani, Reliability Modeling and Assessment of the Star-Graph Networks. IEEE

Transactions on Reliability, vol. R-51, 2002, pp. 49-57.

[22] P. K. Yadav, M. P Singh and Harendra Kumar, Scheduling of Communicating Modules of Periodic Tasks in Distributed Real

Time Environment, International Journal of Applied Mathematics & Engineering Sciences, vol. 2(2), 2008, pp. 193- 200.

[23] M.P. Singh, Monika and P.K. Yadav, Queuing discipline to reduce the connection tracking flaws in protocols that uses quantum

periodicity for scalable network services. International Transactions in mathematical Sciences & Computer, vol. I, 2008, pp. 102-

122.

[24] Avanish Kumar, An Algorithm for Optimal Index to Tasks Allocation Based on Reliability and cost, Proceedings of International

Conference on Mathematical Modeling, Roorkee, 2001, pp. 150-155.

[25] Min-Sheng Lin, A Linear-time Algorithm for Computing K-terminal Reliability on Proper Interval Graphs, IEEE Transactions

Reliability, vol. R-51, 2002, pp. 58-62.

[26] Michael R.Lyu, Sampath Rangarajan, and Aad P. A. Van Moorsel, Optimal Allocation of test Resources for Software Reliability

growth modeling in Software Development, IEEE Transactions on Reliability, vol. R-51, 2002, pp. 183-192.

[27] P. K.Yadav, Jumindera Singh and M. P Singh, An efficient method for task scheduling in computer communication network,

International Journal of Intelligent Information Processing, Vol. 3(1),2009, pp. 81-89

[28] P. K. Yadav, Kumar, Avanish Kumar and M. P. Singh, An Algorithm for Solving the Unbalanced Assignment Problems.

International Journal of Mathematical Sciences, Vol. 12(2), 2004, pp. 447-461.

[29] K. Bhatia, P. K. Yadav, and Sagar Gulati, Design and Simulation of a Reliable Distributed System Based on Fault Tree Analysis,

CiiT International Journal of Networking and Communication Engineering, Vol 4 (11), 2012, pp. 684-688.

[30] M.P. Singh, P.K. Yadav and A. Aggarwal, Tasks Scheduling in a Distributed Processing Environment: A Genetic Approach,

International Journal of Information & Computation Technology, Vol. 3(2), 2013, pp. 93-97.

[31] P.K. Yadav, M. P. Singh and Kuldeep Shama, An Optimal Task Allocation Model for System Cost analysis in Hetrogeneous

Distributed Computing Systems: A Heuristic Approach, International Journal of Computer Applications, Vol. 28, No. 4, 2011, pp.

30-37.

[32] Younes Hamed Ahmed, Task Allocation for Minimizing Cost of Distributed Computing Systems Using Genetic Algorithms,

International Journal of Advanced Research in Computer Science and Software Engineering, Vol 2(9), 2012, pp.202-209.

