
IOSR Journal of Computer Engineering (IOSR-JCE) 

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 16, Issue 6, Ver. VII (Nov – Dec. 2014), PP 73-78 
www.iosrjournals.org   

www.iosrjournals.org                                                    73 | Page 

 

Improved Frequent Pattern Mining Algorithm with Indexing 
 

Prof. Paresh Tanna
1
, Dr. Yogesh Ghodasara

2
 

1(Research Scholar, School of Computer Science, RK University, Rajkot, India) 
2(College of Information Tech., Anand Agriculture University, Anand, Gujarat, India) 

 

Abstract: Efficient frequent pattern mining algorithms are decisive for mining association rule. In this paper, 

we examine the matter of association rule mining for items in a massive database of sales transactions. Finding 

large patterns from database transactions has been suggested in many algorithms like Apriori, DHP, ECLAT, 

FP Growth etc. But here we have introduced newer algorithm called Improved Frequent Pattern Mining 
Algorithm with Indexing (IFPMAI), which is efficient for mining frequent patterns. IFPMAI uses subsume 

indexes i.e. those itemsets that co-occurrence with representative item can be identified quickly and directly 

using simple and quickest method. This will become beneficial like (i) avoid redundant operations of itemsets 

generation and (ii) many frequent items having the same supports as representative item, so the cost of support 

count is reduced hence the efficiency is improved. Then an example is used to illustrate this proposed algorithm. 

The results of the experiment show that the new algorithm in performance is more remarkable for mining 

frequent patterns. 
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I. Introduction 
Association rules are if/then statements that help uncover relationships between seemingly unrelated 

data in a relational database or other information repository [1, 2]. An example of an association rule would be 

"If a customer buys a dozen eggs, he is 80% likely to also purchase milk." An association rule has two parts, an 

antecedent (if) and a consequent (then). An antecedent is an item found in the data. A consequent is an item that 

is found in combination with the antecedent. Association rules are created by analyzing data for frequent if/then 

patterns and using the criteria support and confidence to identify the most important relationships. Support is an 

indication of how frequently the items appear in the database. Confidence indicates the number of times the 

if/then statements have been found to be true. The problem of association rule mining is defined as: Let I = {i1, 

i2,.....,in} be a set of n binary attributes called items. Let D = {t1, t2,....., tm} be a set of transactions called the 

database. Each transaction in D has a unique transaction ID and contains a subset of the items in I. A rule is 

defined as an implication of the form X==>Y where X, Y I and X ∩ Y = θ. The sets of items (for short 
itemsets) X and Y are called antecedent (left-hand-side or LHS) and consequent (right-hand-side or RHS) of the 

rule respectively. Example: The set of items is I = {milk, bread, butter, beer}. An example rule for the 

supermarket could be {butter, bread} ==> {milk} meaning that if butter and bread are bought, customers also 

buy milk[7]. In data mining, association rules are useful for analyzing and predicting customer behavior. They 

play an important part in shopping basket data analysis, product clustering, catalog design and store layout[7]. 

Programmers use association rules to build programs capable of machine learning. Machine learning is a type of 

artificial intelligence (AI) that seeks to build programs with the ability to become more efficient without being 

explicitly programmed.  In general, association rule mining can be viewed as a two step process: (i) Find all 

frequent patterns and (ii) Generate strong association rules from the frequent patterns[2]. In (i), we can use some 

mining algorithms like Apriori, DHP, ECLAT, FP Growth etc. that we discussed later. Also we proposed newer 
algorithm for frequent pattern mining. In (ii), all frequent pattern rules are checked for minimum support and 

minimum confidence to generate association rules. 

 

II. Existing System  : Frequent Pattern Mining Algorithms 
Many algorithms have been proposed for transactional database having many rows/columns. Among 

these we can filter out most useful methods which we can categorize them as efficient methods for mining 

frequent patterns. Four major frequent pattern mining approaches are: Apriori[2], Direct Hashing and Pruning 

(DHP)[3], Frequent pattern growth (FP-Growth)[4], Vertical data format approach (ECLAT)[5]. Apriori is the 

most classical and important algorithm for mining frequent itemsets. This is used to find all frequent itemsets in 
a given database DB. The key idea of Apriori algorithm is to make multiple passes over the database. Apriori 

algorithm fairly depends on the apriori property which states that “All non empty itemsets of a frequent itemset 

must be frequent”[2]. It also described the anti monotonic property which says if the system cannot pass the 

minimum support test, all its supersets will fail to pass the test [2, 3]. But Apriori having lots of challenges like 

huge number of database scan for generating large itemset and doing support count, large number of candidate 
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generation. Apriori behaves like - Generate Candidate Set and Perform Count Support from Database. While 

DHP behaves in a sequence – Generate candidate set, perform count support from the database and make new 

hash table using database for the next stage. Apriori - don’t prune database but prune Ck  by support counting on 
the original database, while DHP -Its more efficient support counting can be achieved on pruned database[3]. 

Eclat algorithm is a depth first search based algorithm. It uses a vertical database layout i.e. instead of explicitly 

listing all transactions; each item is stored together with its cover (also called tidlist) and uses the intersection 

based approach to compute the support of an itemset [5]. It requires less space than apriori if itemsets are small 

in number [5]. It is suitable for small datasets and requires less time for frequent pattern generation than apriori. 

FP Growth is another important frequent pattern mining method, which generates frequent itemset without 

candidate generation[4]. It uses tree based structure. The problem of Apriori, DHP and ECLAT algorithms were 

dealt with, by introducing a novel, compact data structure, called frequent pattern tree, or FP-tree then based on 

this structure an FP-tree-based pattern fragment growth method was developed[4]. It constructs conditional 

frequent pattern tree and conditional pattern base from database which satisfy the minimum support[4]. FP-

growth traces the set of concurrent items[4]. It suffers from certain disadvantages: FP tree may not fit in main 
memory and Execution time is large due to complex compact data structure[6]. 

 

III. Proposed System: IFPMAI 
In this paper we proposed new improved frequent pattern mining algorithm with indexing. This 

algorithm makes effective use of indexing. IFPMAI can be used for efficient large frequent pattern generation. 

IFPMAI uses both vertical and horizontal data format for generating large frequent pattern from the database 

transactions. We have found many challenges for Apriori, DHP, ECLAT and FP Growth Algorithms. With 

above analytics we can find some improvements that can be suggested for these algorithms like reduce passes of 

transaction database scans, shrink number of candidates, facilitate support counting of candidates without 
database scan[6]. By considering analytical study on these factors, we have experimented with subsume indexes. 

That is like those items having support count equal to minimum support, the item itself and possible itemsets 

from this item and their subsume index having the same support count as equal minimum support[9]. That is this 

indexing will save lots of work for support count and itemset generation.  

 

IFPMAI Algorithm: 

Steps: 

1. Convert list of transactions in D into Vertical Data Format D_Ver 

2. Generate TransIndex_set from D_Ver. Maintain a list for no. of iterations i.e. useful for K+1 itemsets 

generation. 

3. Find Frequent 1-itemsets from the given TransIndex_set,  is simply the length of the TransIndex_set of the 

itemset 
4. Sort itemsets by acceding order in TransIndex_set by its minimum support. 

5. Gather Items as Keyset from TransIndex_set i.e. List of Itemsets only in acceding order by its minimum 

support 

6. Generate BitTable for each keys available in Items keyset 

7. Generate Subsume for each item in Items keyset 

8. For each item in Items 

 If item.subsume < > " " 

If item.Cardinality == min_sup Then 

   FindItemsetsEqualsMinSup(item, item.Cardinality) 

Else          

FindItemsetsGreaterThanMinSup(item, item.Cardinality) 
End If 

Else 

If item.Cardinality > min_sup  

AND    Item_Sequence<Items.Length Then 

FindItemsetsSubsumeNone(item) 

End If 

End If 
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Example 1:  Let us consider an example of a simple database with 10 transactions and min_sup is 2 as shown 

below. 

 
 

The sorted transactions are shown in Table 3. Then the scanned database is represented by BitTable shown in 

Table 4. Then Calculate the intersection of transactions that contain certain frequent items one by one. 

 

Table 5 : Frequent Pattern Generation for Each Item 

ITEMS 

I2 I4 I6 I7 I1 I3 I5 

I2 : 2 

I2,I6 : 2 

I2,I1 : 2 

I2,I3 : 2 

I2,I5 : 2 

I2,I6,I1 : 2 

I2,I6,I3 : 2 

I2,I6,I5 : 2 

I2,I1,I3 : 2 

I2,I1,I5 : 2 

I2,I3,I5 : 2 

I2,I6,I1,I3 : 2 

I2,I6,I1,I5 : 2 

I2,I6,I3,I5 : 2 

I2,I1,I3,I5 : 2 

I2,I6,I1,I3,I5 : 2 

I4 : 2 

I4,I1 : 2 

I4,I3 : 2 

I4,I1,I3 : 2 

I6 : 2 

I6,I1 : 2 

I6,I3 : 2 

I6,I5 : 2 

I6,I1,I3 : 2 

I6,I1,I5 : 2 

I6,I3,I5 : 2 

I6,I1,I3,I5 : 2 

I7 : 5 

I7,I1 : 5 

I7,I3 : 5 

I7,I1,I3 : 5 

I7,I5 : 4 

I7,I1,I5 : 4 

I7,I3,I5 : 4 

I7,I1,I3,I5 : 4 

I1 : 8 

I1,I3 : 8 

I1,I5 : 6 

I1,I3,I5 : 6 

I3 : 8 

I3,I5 : 6 

I5 : 8 

TOTAL  =  43 

16 4 8 8 4 2 1 
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Let us take frequent item I2 as example, candidate   

  =  T1    ∩   T7  

          =  1010111  ∩   1010111 
          =  1010111 

That is I2 subsume is I6 I1 I3 I5 i.e. (I2, I6 I1 I3 I5) 

  

Continue this process accordingly for all items and finally the subsume index array is  

(I2, I6 I1 I3 I5), (I4, I1 I3), (I6, I1 I3 I5), (I7, I1 I3), (I1, I3), (I3, Ø), (I5, Ø). 

 

In above example, min_sup is 2, and items I2, I4 and  I6 are having support count 2. So the support 

count and frequent itemsets generation for these three items is very easy. That is to find frequent itemsets, we 

only need to generate possible combinations for item and their subsume index, support count will be the same as 

min_sup. Through this way we have found 16 + 4 + 8 = 28 total out 43 for I2, I4 and I6 directly. Also for I7, 

which is having support count greater than min_sup, frequent itemsets will be possible combinations of item I7 
and its subsume index (I1 I3) and support count will be same as I7. Item I5 which is not in subsume of I7, we 

calculate support count for this i.e. for I7,I5. But for rest like (I7,I1,I5), (I7,I3,I5), (I7,I1,I3,I5) having the same 

support count as (I7,I5). The same process is repeated for I1, I3 and I5. In this way it consumes less time for 

frequent patterns generation compare to other algorithms we have discussed earlier. 

 

IV. Experimental Results and Performance Evaluation 
We compared the performances of the newer algorithm with algorithms Apriori, DHP, ECLAT and FP 

Growth. The newer algorithm is implemented in Java and compiled with java compiler with use of Netbeans 

IDE 6.8. We choose the dataset from [8] for testing the performance of the new algorithm. All datasets are direct 
or indirect which are taken from the FIMI repository page http://fimi.cs.helsinki.fi. Table 6 below shows the 

characteristics of these datasets. The experiments were conducted on Windows 8 PC equipped with a core i3 

processor and 2 GB of RAM memory. Execution times (in seconds) required by Apriori, DHP, ECLAT, FP 

Growth and newer algorithm i.e. IFPMAI are shown in below figure 1, 2, 3 and 4. 

 

Table 6. CHARACTERISTICS OF DATASETS USED FOR EXPERIMENT EVALUATION 

[1 – Apriori, 2 – DHP, 3 – ECLAT, 4 – FP Growth 5 – IFPMAI(New Algorithm)] 
Dataset Records Algorithms Comparisons Remarks 

T10I4D100 100 1,2,3,4,5 
Top 100 records from 

T10I4D100K 

T10I4D1000 1000 1,2,3,4,5 
Top 1000 records from 

T10I4D100K 

T10I4D50000 50000 3,5 
Top 50000 records from 

T10I4D100K 

T10I4D100K 100000 3,5 - 

 

 
Figure 1. Execution time (in seconds) required by five different algorithms in T10I4D100 dataset with different 

minimum support threshold. 

http://fimi.cs.helsinki.fi/
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The dataset in Fig. 1 shows that the idea that the new algorithm runs the fastest on smaller to longer supports 

with small size dataset. For most supports on the datasets, the new algorithm has the best performance. 

 

 
Figure 2. Execution time (in seconds) required by five different algorithms in T10I4D1000 dataset with 

different minimum support threshold. 

 

Fig. 2 shows the result of computing the new algorithm with the other four algorithms on dataset. On the above 

fig, we can find that the new algorithm demonstrates the best performance of the four algorithms 

 

   
Figure  3.              Figure  4. 

Figure 3. Execution time (in seconds) required by two different algorithms in T10I4D50000 dataset with 

different minimum support threshold. 

Figure 4. Execution time (in seconds) required by two different algorithms in T10I4D100K dataset with 

different minimum support threshold. 

Fig. 3 and 4 show the results of computing the new algorithm with the ECLAT algorithm on different size of 

datasets[8]. On the above figures, we can find that the new algorithm demonstrates the best performance 

compare to ECLAT also.  

 

V. Conclusion 
In this paper we have used indexes which generates more frequent patterns directly. Comparing with 

Apriori, DHP, ECLAT and FP Growth, the new algorithm reduces time for  many frequent itemsets generation 

and candidate frequent itemsets which support count do not need to be computed. So the efficiency of the new 

algorithm is better than all of the above discussed algorithms. Performance evaluation shows that new algorithm 

in performance is more remarkable for mining frequent patterns. 
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