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Abstract: This paper is deals with Parallel Distributed system. Hadoop has become a central platform to 

store big data through its Hadoop Distributed File System (HDFS) as well as to run analytics on this stored big 

data using its MapReduce component. Map Reduce programming model have shown great value in 

processing huge amount of data. Map Reduce is a common framework for data-intensive distributed 
computing of batch jobs. Hadoop Distributed File System (HDFS) is a Java-based file system that provides 

scalable and reliable data storage that is designed to span large clusters of commodity servers. In all Hadoop 

implementations, the default FIFO scheduler is available where jobs are scheduled in FIFO order with support 

for other priority based schedulers also. During this paper, we are going to study a Hadoop framework, HDFS 

design and Map reduce Programming model. And also various schedulers possible with Hadoop and provided 

some behavior of the current scheduling schemes in Hadoop on a locally deployed cluster is described.  
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I.     Introduction 

 

Apache Hadoop is a software framework for processing Big Data such as data in the range of petabytes 

. The framework was originally developed by Doug Cutting, the creator of Apache Lucene, as part of his Web 

Search Engine Apache Nutch  . Hadoop is an open source, large scale, batch data processing, distributed 

computing framework for big data storage and analytics. It facilitates scalability and takes care of detecting and 

handling failures. Hadoop ensures high availability of data by creating multiple copies of the data in different 
nodes throughout the cluster. In Hadoop, the code is moved to the location of the data instead of moving the 

data towards the code. Hadoop is a highly efficient and reliable cloud computing platform, which can be 

deployed in a cloud computing data center. Hadoop users need not concern on the low-level details of 

distributed system but focus on their business need when they develop distributed applications. That is why lots 

of famous Internet service providers, including Facebook, Twitter, Yahoo, Baidu, and Alibaba, have already 

chosen Hadoop as one of the core components to build their own cloud systems to provide more efficient 

services. 

 Hadoop MapReduce is a programming model and software framework for writing applications that 

rapidly process vast amounts of data in parallel on large clusters of compute nodes. In Hadoop, the Map Reduce 

programming model is used. MapReduce is the framework for processing large volume of datasets as key 

value pairs. MapReduce divides each job in to two types of functions, map and reduce. Both Map and 
Reduce functions take input as key value pairs and emits the result as another set of key value pairs. 

Each job is divided in to number of map tasks and Reduce tasks. The input is initially processed in 

distributed map tasks and aggregate the result with the help of reduce tasks. In order to complete the 

transactions submitted by users efficiently, Hadoop needs the right job scheduling algorithm and appropriate 

task scheduling algorithm. Job and task are different concepts in Hadoop. When a user submits a transaction, 

Hadoop will create a job and put it in the queue of jobs waiting for the job scheduler to dispatch it. Then, the job 

will be divided into a series of tasks, which can be executed in parallel. The task scheduler is responsible for 

dispatching tasks by certain task scheduling algorithm. Several job scheduling algorithms have been developed, 

including first-in–first-out scheduling, fair scheduling, and capacity scheduling. 

The rest of the paper is organized as follows. Section 2 describes why Hadoop for big data analytics. 

Section 3 provides a brief introduction to Hadoop, HDFS and Map/Reduce framework. Section 4 presents our 
analysis of Hadoop policies in Hadoop cluster. 

 

II. Why Hadoop For Big Data Analytics? 
Big Data is moving from a focus on individual projects to an influence on enterprises strategic 

information architecture. Dealing with data volume, variety, velocity and complexity is forcing changes to many 
traditional approaches. This realization is leading organizations to abandon the concept of a single enterprise 

data warehouse containing all information needed for decisions. Instead, they are moving towards multiple 

systems, including content management, data warehouses, data marts and specialized file systems tied together 

with data services and metadata, which will become the logical enterprise data warehouse. There are various 
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systems available for big data processing and analytics, alternatives to Hadoop such as HPCC or the newly 

launched Red Shift by Amazon. However, the success of Hadoop can be gauged by the number of Hadoop 

distributions available from different technological companies such as IBM Info Sphere Big Insights, Microsoft 
HDInsight Service on Azure, Cloudera Hadoop, Yahoo’s distribution of Hadoop, and many more. There are 

basically four reasons behind its success: 

 It’s an open source project. 

 It can be used in numerous domains. 

 It has a lot of scope for improvement with respect to fault tolerance, availability and file systems. 

 

There are a number of reasons why Hadoop is an attractive option. Not only does the platform offer 

both distributed computing and computational capabilities at a relatively low cost, it’s able to scale to meet the 

anticipated exponential increase in data generated by mobile technology, social media, the Internet of Things, 

and other emerging digital technologies 

 

III.      Hadoop Framework 
Hadoop is an open source software framework that dramatically simplifies writing distributed data 

intensive applications. It provides a distributed file system, which is modeled after the Google File System and a 

map/reduce implementation that manages distributed computation. 

 

3.1 HDFS  

Hadoop Distributed File System (HDFS) is a Java-based file system that provides scalable and reliable 

data storage that is designed to span large clusters of commodity servers. The HDFS is  designed as 

master/slave architecture (Fig. 1). A HDFS cluster consists of Name Node, a master node that manages 
the filing system name space and regulates access to files by clients. Additionally, there are various Data 

Nodes, usually one per node within the cluster, that manage storage connected to the nodes that they 

run on. HDFS exposes a filing system name space and permits user information to be hold on in files. 

Internally, a file is split into one or a lot of blocks and these blocks are stored in a set of Data Nodes. The 

Name Node executes filing system name space operations like gap, closing, and renaming files and 

directories. It determines the mapping of blocks to Data Nodes. Clients read and write request are served 

by the Data node. The Data Nodes is also responsible for block creation, deletion, and replication as per 

the instruction given by Name Node. 

 

 
Figure 1: HDFS Architecture 

 

3.1.1 How HDFS works? 

 An HDFS cluster is comprised of a Namenode which manages the cluster metadata and DataNodes that 
store the data. Files and directories are represented on the NameNode by nodes. Nodes record attributes like 

permissions, modification and access times, or namespace and disk space quotas. The file content is split into 

large blocks (typically 128 megabytes), and each block of the file is independently replicated at multiple 

DataNodes. The blocks are stored on the local file system on the datanodes. The Namenode actively monitors 

the number of replicas of a block. When a replica of a block is lost due to a DataNode failure or disk failure, the 

NameNode creates another replica of the block. The NameNode maintains the namespace tree and the mapping 

of blocks to DataNodes, holding the entire namespace image in RAM. The NameNode does not directly send 

requests to DataNodes. It sends instructions to the DataNodes by replying to heartbeats sent by those 
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DataNodes. The instructions include commands to: replicate blocks to other nodes, remove local block replicas, 

re-register and send an immediate block report, or shut down the node. 

 

3.2 Map Reduce Programming Model 

 The Map Reduce programming model is designed to process large data set in parallel by 

distributing the Job into a various independent Tasks. The Job considered to here as a complete Map 

Reduce program, which is the execution of a Mapper or Reducer across a set of data. A Task is an 

executing a Mapper or Reducer on a chunks of the data. Then the Map Reduce Job normally splits the 

input data into independent portions, which are executed by the map tasks in a fully parallel fashion. The 

Hadoop Map Reduce framework consists of a one Master node that runs a Job tracker instance which 

takes Job requests from a client node and Slave nodes everyone running a Task Tracker instance. The Job 

tracker is responsible for distributing the job to the Slave nodes, scheduling the job’s component tasks 

on the Task Trackers, monitoring them as well as reassigning tasks to the Task Trackers when they at 

the time of failure. It also provides the status and diagnostic information to the client. The task given by 
the Job tracker is executed by the Task Tracker. Fig. 2 depicts the Map Reduce framework. 

 

 

 

 

   

 

 

 

 

 

 
 

 

 

        Figure 2: Hadoop Map Reduce 
   

3.2.1 Execution of Map Task 
Every map task is provided with a portion of the input file called as split. By default, a split 

contains a one HDFS block, so the total number of the number of map tasks is equal to the total number of 

file blocks. The execution of a map task is divided into two passes: 

1) The map pass reads the task’s split from HDFS, interpreted it into records (key/value pairs), and 

applies the map function to every record. 
2) After applying map function to every input record, the commit phase stores the final output with the 

Task-Tracker, Then Task Tracker informs the Job-Tracker that the task has finished its execution. The 

map method specifies an Output Collector instance, which collects the output records created by the 

map function. The output of the map step is consumed by the reduce step, so that Output Collector 

stores output produce by mapper in a simpler format so that it is easy to consume for reduce task. The 

Task-Tracker will read these data and index files when servicing requests from reduce tasks. 

 

3.2.2 Execution Of Reduce Task 
The execution of a reduce task is divided into three passes. 

1) The shuffle phase is responsible for fetching the reduce task’s input file. Each reduce task is 

appointed a partition of the key range generated by the map pass, so that the reduce task must receive 

the content of this partition from each map task’s output. 
2) The sort phase group together records having same key. Public interface Reducer <K2, V2, K3, V3> 

{Void Reduce (K2 key, Iterator<V2> values, Output Collector <K3, V3> output); Void close () ;} 

3) The reduce phase appoint the user-defined reduce function to every key and corresponding list of 

values. Within the shuffle phase, a reduce task fetches data from every map task by sending HTTP 

requests to a configurable number of Task-Trackers at once .The Job-Tracker relays the location of each 

Task-Tracker that hosts map output to each Task-Tracker that executes a reduce task. Reduce task can’t 

receive the output of a map task till the map has finished execution and committed its final output to disk. 

The output of both map and reduce tasks is written to disk before it can be consumed. 
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IV.     Scheduling Policies In Hadoop 

4.1 Job Scheduling In Hadoop 

When Hadoop started out, it was designed mainly for running large batch jobs such as web indexing 

and log mining. Users submitted jobs to a queue, and the cluster ran them in order. However, as organizations 

placed more data in their Hadoop clusters and developed more computations they wanted to run, another use 

case became attractive: sharing a MapReduce cluster between multiple users. The benefits of sharing are 

tremendous: with all the data in one place, users can run queries that they may never have been able to execute 

otherwise, and costs go down because system utilization is higher than building a separate Hadoop cluster for 

each group. However, sharing requires support from the Hadoop job scheduler to provide guaranteed capacity to 

production jobs and good response time to interactive jobs while allocating resources fairly between users. The 

scheduler in Hadoop became a pluggable component and opened the door for innovation in this space. The 

result was two schedulers for multi-user workloads: the Fair Scheduler developed at Facebook, and the Capacity 
Scheduler, developed at Yahoo. 

 

4.1.1 Default FIFO Scheduler 

The default Hadoop scheduler operates using a FIFO queue. After a job is partitioned into individual 

tasks, they are loaded into the queue and assigned to free slots as they become available on TaskTracker nodes. 

Although there is support for assignment of priorities to jobs, this is not turned on by default. 

 

4.1.2 Fair Scheduler 

The Fair Scheduler was developed at Facebook to manage access to their Hadoop cluster, which runs 

several large jobs computing user metrics, etc. on several TBs of data daily. Users may assign jobs to pools, 

with each pool allocated a guaranteed minimum number of Map and Reduce slots. Free slots in idle pools may 
be allocated to other pools, while excess capacity within a pool is shared among jobs. In addition, administrators 

may enforce priority settings on certain pools. Tasks are therefore scheduled in an interleaved manner, based on 

their priority within their pool, and the cluster capacity and usage of their pool. Over time, this has the effect of 

ensuring that jobs receive roughly equal amounts of resources. Shorter jobs are allocated sufficient resources to 

finish quickly. At the same time, longer jobs are guaranteed to not be starved of resources. 

The Fair Scheduler is based on three concepts: 

 Jobs are placed into named “pools” based on a configurable attribute such as user name, UNIX group, or 

specifically tagging a job as being in a particular pool through its jobconf. 

 Each pool can have a “guaranteed capacity” that is specified through a config file, which gives a minimum 

number of map slots and reduce slots to allocate to the pool. When there are pending jobs in the pool, it gets 
at least this many slots, but if it has no jobs, the slots can be used by other pools. 

 Excess capacity that is not going toward a pool’s minimum is allocated between jobs using fair sharing. Fair 

sharing ensures that over time, each job receives roughly the same amount of resources. This means that 

shorter jobs will finish quickly, while longer jobs are guaranteed not to get starved. 

 

4.1.3 Capacity Scheduler 

The Capacity Scheduler is a pluggable scheduler for Hadoop that allows multiple tenants to securely 

share a large cluster. Resources are allocated to each tenant's applications in a way that fully utilizes the cluster, 

governed by the constraints of allocated capacities. Queues are typically set up by administrators to reflect the 

economics of the shared cluster. The Capacity Scheduler supports hierarchical queues to ensure that resources 

are shared among the sub-queues of an organization before other queues are allowed to use free resources. 

The Capacity Scheduler is designed to run Hadoop applications as a shared, multi-tenant cluster in an operator-
friendly manner while maximizing the throughput and the utilization of the cluster. The Capacity Scheduler is 

designed to allow sharing a large cluster while giving each organization capacity guarantees. The central idea is 

that the available resources in the Hadoop cluster are shared among multiple organizations who collectively 

fund the cluster based on their computing needs. There is an added benefit that an organization can access any 

excess capacity not being used by others. This provides elasticity for the organizations in a cost-effective 

manner. Sharing clusters across organizations necessitates strong support for multi-tenancy since each 

organization must be guaranteed capacity and safe-guards to ensure the shared cluster is impervious to single 

rouge application or user or sets thereof.  

The Capacity Scheduler provides a stringent set of limits to ensure that a single application or user or 

queue cannot consume disproportionate amount of resources in the cluster. Also, the Capacity 

Scheduler provides limits on initialized/pending applications from a single user and queue to ensure fairness and 
stability of the cluster. The primary abstraction provided by the Capacity Scheduler is the concept of queues. To 

provide further control and predictability on sharing of resources, the Capacity Scheduler supports hierarchical 

queues to ensure resources are shared among the sub-queues of an organization before other queues are allowed 
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to use free resources, there-by providing affinity for sharing free resources among applications of a given 

organization. 

 

4.2 Resource Aware Scheduling 

 The Fair Scheduler and Capacity Scheduler described above attempt to allocate capacity fairly among 

users and jobs without considering resource availability on a more fine-grained basis. As CPU and disk channel 

capacity has been increasing in recent years, a Hadoop cluster with heterogeneous nodes could exhibit 

significant diversity in processing power and disk access speed among nodes. Performance could be affected if 

multiple processor-intensive or data-intensive tasks are allocated onto nodes with slow processors or disk 

channels respectively. This possibility arises as the Job Tracker simply treats each Task Tracker node as having 

a number of available task slots. Even the improved LATE speculative execution could end up increasing the 

degree of congestion within a busy cluster, if speculative copies are simply assigned to machines that are 

already close to maximum resource utilization. 

. Scheduling in Hadoop is centralized, and worker initiated. Scheduling decisions are taken by a master 
node, called the Job Tracker, whereas the worker nodes, called TaskTracker are responsible for task execution. 

The Job Tracker maintains a queue of currently running jobs, states of TaskTracker in a cluster, and list of tasks 

allocated to each TaskTracker. Each Task Tracker node is currently configured with a maximum number of 

available computation slots. Although this can be configured on a per-node basis to reflect the actual processing 

power and disk channel speed, etc. available on cluster machines, there is no online modification of this slot 

capacity available. 

Two  possible resource-aware Job Tracker scheduling mechanisms are: 1) Dynamic Free Slot 

Advertisement-Instead of having a fixed number of available computation slots configured on each Task 

Tracker node, this number is computed dynamically using the resource metrics obtained from each node. In one 

possible heuristic, overall resource availability is set on a machine to be the minimum availability across all 

resource metrics. In a cluster that is not running at maximum utilization at all times, this is expected to improve 

job response times significantly as no machine is running tasks in a manner that  runs   into a  resource   
bottleneck.  2)  Free Slot Priorities/Filtering- In this mechanism, cluster administrators will configure maximum 

number of compute slots per node at configuration time. The order in which free TaskTracker slots are 

advertised is decided according to their resource availability. As TaskTracker slots become free, they are 

buffered for some small time period (say, 2s) and advertised in a block. TaskTracker slots with higher resource 

availability are presented first for scheduling tasks on. In an environment where even short jobs take a relatively 

long time to complete, this will present significant performance gains. Instead of scheduling a task onto the next 

available free slot (which happens to be a relatively resource-deficient machine at this point), job response time 

would be improved by scheduling it onto a resource-rich machine, even if such a node takes a longer time to 

become available. Buffering the advertisement of free slots allowed for this scheduling allocation. 

 

V.    Conclusion & Future Work 
Hadoop is a popular open source implementation platform of MapReduce model and used to process 

and analyze large-scale data sets in parallel. Ability to make Hadoop scheduler resource aware is one the 

emerging research problem that grabs the attention of most of the researchers as the current 

implementation is based on statically configured slots. This paper summarizes pros and cons of Scheduling 

policies of various Hadoop Schedulers developed by different communities. Each of the Scheduler considers 

the resources like CPU, Memory, Job deadlines and IO etc. All the schedulers discussed in this paper 

addresses one or more problem(s) in scheduling in Hadoop. Nevertheless all the schedulers discussed 

above assumes homogeneous Hadoop clusters. Future work will consider scheduling in Hadoop in 

Heterogeneous Clusters. 
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