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Abstract: Educational Data Mining is an emerging discipline that focuses on applying Data Mining tools and 

techniques to educationally related data. The discipline focuses on analyzing educational data to develop 

models for improving learning experiences and  institutional effectiveness. A literature review on educational 

data mining follows, which covers topics such as student retention and attrition, personal recommender systems 

with in education and how data mining can be used to analyze course management system data. Gaps in the 

current literature and opportunities for further research are presented. 
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I. Introduction 
EDM is growing at a very fast pace. The main aim of EDM is to develop methods in order to explore 

the unique type of data that comes from educational institutes and to use those methods to better understand the 

students and their learning environments. All types of educational data independent of their source have 

multiple levels of meaningful hierarchy which is determined by properties in the data itself and not in advance. 

Other issues like time, sequence, and context also plays important roles in the study of educational data. 

International Educational Data Mining Society has been formed with an aim to support collaboration 

and scientific development in this area. To realize its objectives EDM society organizes a series of conferences, 

bringing out a journal, development of community resources for sharing of data and techniques. 

EDM deals with mining of large data sets of educational data to answer educational research questions. 

These data sets may come from learning management systems, interactive learning environments, intelligent 

tutoring systems, or any system used in a learning context. The types of data ranges from raw log files to eye – 
tracking devices and other sensor data. EDM is interdisciplinary research and may require adaptation of existing 

or development of new approaches that build upon techniques from a combination of areas like statistics, 

psychometrics, machine learning, information retrieval, recommender systems and scientific computing. 

This survey features some of the innovative and fascinating basic and applied research centered on data 

mining, education and learning technologies. Survey includes diverse set of papers spanning the field of 

Machine Learning, Artificial Intelligence, Learning Technologies, Education, Linguistics and Psychology. 

These papers study application of data mining to analyze data generated by various information systems 

supporting learning or education. They also deal with EDM applications with an actual impact on the future of 

learning and teaching. Papers are contributed by researchers from computer science, machine learning and data 

mining, artificial intelligence in education, intelligent tutoring systems, education, learning sciences, 

psychometrics, statistics and cognitive psychology. 

 

II. Literature Survey 
Educational data mining is emerging as a research area with a suite of computational and psychological methods 

and research approaches for understanding how students learn 

 

2.1 Student Modelling Research: 

Student modelling is the major area of research in EDM, work done in student modelling ranges from 

automatic improvement of student model, unified discovery of student and cognitive model ,impact of 

individualizing student models on practice opportunities, technique for automated improvement of student 

model is presented which covers data sets from intelligent tutors to games. The improvements highlights flaws 
in original model which can lead to new insights into the learning process thereby improving the tutor design. 

The unified model is called as Dynamic Cognitive Tracing which expresses student learning in terms of skill 

mastery overtime by simultaneously building the student and cognitive models.  

 

Limits to Accuracy: How well Can we do at Student modelling (predicting Student’s next attempt): Here 

student modelling approach is used to predict whether student’s next attempt will be correct. Many student 
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modelling techniques are relatively close to ceiling performance, and there are probably not large gains in 

accuracy to be had. Knowledge tracing and performance factor analysis has very few differences between them.  

 
Predicting Future Learning Better Using Quantitative Analysis of Moment-by-Moment Learning: Student 

models have been extended from predicting students future performance on the skills leaned in a tutor to 

predicting student’s preparation for future learning. To predict PFL a combinations of features of student 

behavior from meta-cognition is used. An alternate method for predicting PFL is proposed which used 

quantitative aspects of moment by moment learning graph. Learning trajectories are analyzed very deeply.  

 

Discovering Student Models with a Clustering Algorithm Using Problem Content: Student model plays a 

crucial role in the instructional decisions of ITS. A good student model   delivers good instruction on ITS. 

Traditional ways of making student models are time consuming. Automated methods can be used to make better 

student models, but requires some engineering effort and are hard to interpret. 

 
Automated Student Model Improvement: Learning factor analysis algorithm is used. Improvements isolate 

flawed parts in student model. Focused investigation of flawed parts of model leads to new insights into the 

student learning process and suggests specific improvements of tutor design. Student models are directly 

improved by using data. 

 

2.2 Improving educational software 

Search variables and models to find out what is the mechanism of learning from multiple 

representations. Multiple representation increase error rate which inhibits learning. Designing multi-

representational ITS to help students in reducing errors during practice and learning phase. This finding will 

benefit both educational psychology literature and ITS. Path Analysis and model search is being used here. 

Identifying student learning behaviors especially those that either characterize or distinguish students, 

can be helpful in the design of adaptation and feedback mechanism in ITS. Differential Sequence Mining 
technique is used. Differentially frequent activity pattern is identified and interpreted in terms of student 

relevant  learning behaviors.  

Extension to the technique is done by contextualizing the sequence mining with information on the 

student’s task performance and learning activities. Piecewise linear segmentation algorithm is used in 

conjunction with differential sequence mining and action transformation. This methodology is very effective in 

identifying and interpreting learning behavior patterns at multiple levels of details. Future work deals with more 

efficient and effective interpretation of learning behavior. Expand and revise the feedback triggering conditions 

and student modelling to improve learning behavior feedback. 

Learner differences in hint processing Adaptation of ITS to differences in how students learn from 

help. Students may not be able to comprehend and use help of ITS in same way. Such individual differences can 

be measured by using logistic regression models - ProfHelp and ProfHelp-ID. These models extended the 
performance factor analysis with parameters that represent the effect of hints on performance on same step on 

which help was given. Models were implemented using multi-level Bayesian networks. Students differ in 

individual hint processing proficiency and these differences depend on hint levels.  

 

Student Profiling from Tutoring System Log Data: When Do Multiple Graphical Representations matter:  

Log data generated by an experiment conducted with Fractions tutor an ITS is analyzed. Comparison of 

effectiveness of instruction with single and multiple representations is done. Error making and hint seeking 

behaviors of each student is extracted to characterize their learning strategy. Expectation maximization is used 

to cluster students by leaning strategy. Educational gains are more from instructions with multiple rather than 

single representation. This methodology can be implemented in an on-line tutoring system to dynamically tailor 

individualized instruction. 

 

Investigating the solution space of an open ended educational game using conceptual feature extraction: 
As there are many different ways of using educational games, the interaction space is large. This large 

interaction space becomes a challenge for designers as well as researchers who strive to help students in 

achieving specific learning outcomes. Players are given total freedom to perform a complex game task, which 

makes it difficult to guess what they will do. To   handle these situations designers need to ask some series of 

questions. In order to answer these questions designers needs methods that give the details of student play. Two 

dimensional context free grammar is used to automatically extract conceptual features from logs of student play 

sessions within an open educational game. 
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2.3 Automated Discovery of Speech act Categories in educational games:  

Automated discovery of speech act categories in dialogue based multi-party educational games based 

on utterance clustering.  

 

Predicting Player Moves in an Educational Game: A Hybrid Approach Modeling and Predicting learner 

performance in an open ended educational tools to assist the students and to refine the tool is very critical. The 

range of input in open ended educational tools is also very broad. Building the same type of models which are 

used to track and predict student behavior in ITS for educational games is very challenging. Classification 

methods cannot be used here as the range of inputs is very broad at the same time observed data is very sparse.  

 

Sequences of Frustration and Confusion, and Learning: Sensor free affect detection and discovery with 

models is used to study the relationship between affect which occurs at different durations and learning 

outcomes among students using online tutors. The study indicates that frustration have stronger effect than 

confusion, the effect is strongest when both states are taken together. The role of frustration and confusion in 
online learning is the main topic of this paper. Work to understand and model these affective states in their full 

complexity will be an essential area of future research. 

 

2.4 Mining assessment data   

Optimal and Worst-Case performance of Mastery Learning Assessment with BKT: By implementing 

mastery learning, ITS aim to present students with exactly the amount of instruction they need to master a 

concept. Determination of mastery is imperfect. A standard method is to set a threshold for mastery representing 

a level of certainty that the student has attained mastery. Mastery threshold can be viewed as a parameter that 

controls the relative frequency of false positives and false negatives. Here a framework has been provided to 

understand the role of the mastery threshold in BKT. The effects of setting different thresholds under different 

best and worst case skill modelling assumptions have been studied. 

 
Predicting drop out from social behavior of students: Social behavior data describes social dependencies   as 

described by emails and discussion board’s conversation. A new method is suggested to extract features from 

both student data as well as behavior data which are in the form graph. Novel method is used to learn a classifier 

for student failure prediction that uses cost sensitive learning to reduce the number of incorrectly classifieds 

unsuccessful students. Use of social behavior data improves prediction accuracy. DM and SNA methods were 

used. Structured data obtained by means of linked based data analysis increased the classification accuracy. For 

future work incorporate faculty data, use more information from social networkw. Building heterogeneous 

networks and use learning methods like multi-label classification. 

 

2.5 Generic frameworks, Methods and Approaches for EDM 

A Spectral learning approach to knowledge tracing: EM was traditionally used in BKT. Here spectral 
learning is used to learn PSR that represents BKT. A heuristic is then used to extract BKT parameters from PSR 

using basic matrix operations. 

 

Extending the assistance model: Analyzing the use of assistance over time: There are multiple ways for 

predicting student performance. Bayesian networks with KT or logistic regression with PFA. Another approach 

uses raw data which uses Assistance Model which takes into account the number of attempts and hints required 

to answer previous question correctly. This work is extended by introducing a general framework for predicting 

student performance with raw data and a new way of predictions within this framework called Assistance 

Progress model. APM makes predictions on the basis of relationship between the assistance used on previous 

two problems. The importance of reporting multiple accuracy measures when evaluating student models is also 

discussed.  

 
2.6 Mining Meaningful Patterns from Students Handwritten Coursework: A key challenge in educational 

data mining is capturing student work in form suitable for computational analysis. ITS accomplishes this task 

efficiently. A method to capture student handwriting in digital form is investigated. Data mining techniques are 

applied to digital copies of handwritten work to understand the cognitive process used by students in an ordinary 

work environment. Pen stroke data is transformed into a sequence of discrete actions. 

 

InVis: An Interactive Visualization Tool for Exploring Interaction Networks: inVis is a novel visualization 

technique and tool for exploring, navigating and understanding user interaction data. InVis built an interaction 

network from student interaction data extracted from large number of students using educational systems and 

helps instructors to make new insights and discoveries about student learning. This is the first step in creating 
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domain independent visualization tool for understanding student behavior in software tutors and the initial 

results are promising for the future development of InVis. 

 
2.7 Tag-Aware Ordinal Sparse Factor Analysis for Learning and Content Analytics: Machine learning 

provides novel ways and means to design personalized learning systems, where each student’s educational 

experiences are customized in real time depending on their background, learning goals, and performance to date. 

SPARFA is a new framework for machine learning based learning analytics which estimates a learner’s 

knowledge of concepts underlying a domain and content analytics which estimates the relationship between a 

collection of questions and those concepts. SPARFA jointly learns the associations among the questions and the 

concepts, learner concept knowledge profiles, and the underlying question difficulties, solely on the basis of 

correct/incorrect graded responses of a population of students to collection of questions. SPARFA framework is 

extended to enable it also helps instructors to discover new question-concept associations underlying their 

learning material. 

 
Assisting instructional assessment of Undergraduate collaborative Wiki and SVN Activities: Assessing the 

collaborative performance of students who work on shared project. Team Analytics tool is implemented. 

Document content is processed using machine learning techniques. Summaries of students contribution to 

coding activities was used to evaluate and coordinate team projects. Future works involves tracing how manager 

uses the extracted information in team coordination and assisting students. Analyzing errors in NLP to 

Propositional logic translation using edit distance, so that it facilitates the development of tools and 

infrastructure to solve problems that these errors represent. The ultimate goal is to produce evidence based 

pedagogy in this area.  

 

2.8 Emotion, affect, and choice  

Sensor free affects detection from students’ interaction with a cognitive tutor for algebra. These detectors are 

developed from students’ semantic actions with the interface so that they can be used for driving intervention 
and labelling log files in the PSLC  data shop facilitating  future discovery with  models analyses at scale. 

Generalizing detectors is the future work. 

 

2.9 Mining browsing or interaction data  

Data Mining in the Classroom: Discovering Groups’ Strategies at a Multi-tabletop Environment The data 

generated when students interact with computer based learning systems can be analyzed to find patterns or train 

models that help students tutoring systems or teachers to provide better support. 

 

2.10 Comparison of methods to trace multiple sub skills: A long standing challenge to knowledge tracing is 

how to update estimates of multiple sub skills that underlie a single observable step. Various approaches to this 

problem are characterized by how they model knowledge tracing, fit its parameters, predict performance and 
update sub skill estimates. Previous methods allocated blame and credit among sub skills in ways based on 

relation to observe performance. LR-DBN relaxes this assumption.LR-DBN is very useful in predicting 

performance there is dramatic improvement when it is jointly used to estimate sub skills. Future work is to use 

LR-DBN to improve other DBN 

 

2.11 Co Clustering  by Bipartite Spectral graph partitioning for Out of tutor prediction: Learning from a 

distributed representation of input  feature space  boosts the performance of predictor to achieve this data is 

portioned into homogenous groups by clustering  so that separate model can be trained on each cluster. The 

drawback is students are clustered but not features. Co Clustering measures the degree of homogeneity in 

students as well as features thereby achieving clustering and dimensionality reduction simultaneously. Students 

and features are modelled as bipartite graphs and simultaneous clustering could be shown as bipartite graph 

portioning problem. Effective bagging strategy is integrated with clustering and is used for prediction of out-of-
tutor performance of students. For future work use this technique on co-occurrence table. 
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III. Summary Of Research Work 

 

IV. Conclusion 
This paper presents the research work carried out on Educational Data Mining by several research 

scholars and professional experts. There are a wide variety of applications of EDM discussed in this paper i.e. 

Improving Student Models, Discovering or improving models of the knowledge structure of the domain, 

studying the pedagogical support provided by learning software, Scientific discovery about learning and 

learners. Discovery with models being the key method EDM have lot of scope to the Researchers and software 
developers. A final recommendation is to create and continue strong collaboration across research, commercial, 

and educational sectors. Commercial companies operate on fast development cycles and can produce data useful 

for research.  
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