
IOSR Journal of Computer Engineering (IOSR-JCE)

 e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 17, Issue 2, Ver. IV (Mar – Apr. 2015), PP 17-23
www.iosrjournals.org

DOI: 10.9790/0661-17241723 www.iosrjournals.org 17 | Page

An Effective Method to Hide Texts Using Bit Plane Extraction

Mayukh Das
Department of Electronics & Communication Engineering,

Techno India (West Bengal University of Technology), India

 Abstract: The work is to show how simply a data can be hidden inside an image and be easily extracted using

Matlab. The work focuses on bit plane extraction and how it can be used to complete the above mentioned task.

Both encryption and decryption procedure has been discussed. Here the data to be hidden refers to any piece of

writing that may contain valuable information. It does not include any audio or video file. The main focus has
been given to grayscaled images, which acts as the reference image that covers the data.

Keywords: Bit plane slicing, Decryption, Encryption, Histogram, Steganography

I. Introduction
With the advancement of digital technologies and communication systems the need for privacy and

security has enhanced. Hackers are always ready to exploit any sort of impuissance inside a network. Hence,

data shared over any communication media must be concealed from them. Steganography, or data hiding is a

significant process for this purpose as it allows an image to shroud a data to be shared. Hence the original data

becomes invisible in the image. This invisible data are transmitted across the channel and finally decoded in the
receiver end in order to extract the actual data back. This method intensifies the security of the system.

II. Background
A lot of research related to steganography is going on currently. This research steers one’s attention

towards hiding texts, scripts or any kind of writing in a simple way. Grayscale image or an intensity image is an

image in which the value of each pixel is a single sample ranging from 0 to 255. Hence it carries only intensity

information. Any value between 0-255 can be represented as an eight bit binary value, example (168)10 =

(10101000)2 [1]. Hence an intensity image can be sliced up into 8 bit planes which give a sequence of binary

images. This procedure is called bit plane slicing that has been exploited in this work. The slicing can be done
with RGB images also.

Fig 1: Bit plane slicing of a grayscale image

Hence a grayscale image may be considered as a combination of eight bit-planes where each bit-plane can be

represented by a binary matrix [2].

 An Effective Method to Hide Texts Using Bit Plane Extraction

DOI: 10.9790/0661-17241723 www.iosrjournals.org 18 | Page

The formation of bit plane is given by

 Bp(i,j) = r{(1/2)*floor[(1/2i)*o(i,j)]} ……[2]

Where o(i,j) = original image

 Bp(i,j) = bit plane info

 r = remainder

 floor(X) = rounds the elements of X to the nearest integers towards minus infinity.

III. Methodology
3.1 Encryption

The information to be hidden is first converted into an image file whose file format must be similar to
the reference image. The MSB (most significant bit) plane contains utmost information of the image. This

information content decreases as we go down and is least in the LSB (least significant bit) plane. The target is to

slice both the reference as well as the data image and then overlay a particular data plane with the reference

planes so as to form a single image with the desired data concealed in it. But the data plane selected must also

contain adequate info so that the original data can be extracted after decryption. Hence, choosing a particular

combination is the main challenge in the encoding part.

Fig 2: Block diagram of encryption process

Both the encoding and decoding parts were carried out in Matlab and the results were analyzed. The

encoding starts with converting all the images into grayscale, because if we separate out R, G and B color
components and create 8 bit planes for each color component then we can create total twenty four bit planes for

each color image [2]. Therefore, it is quite convenient to deal with grayscale as it has only 8 bit planes. The

Matlab command used to slice into bit planes is given by

 An Effective Method to Hide Texts Using Bit Plane Extraction

DOI: 10.9790/0661-17241723 www.iosrjournals.org 19 | Page

 Cj = mod(floor(refer/2j),2);

Where Cj is the jth bit plane

Then the 3rd plane (the plane containing the 4th bit information) of the data is extracted to be replaced
by 3rd bit of reference data. Direct replacement generates a dimension error. Hence the dimensions of the 3rd bit

plane data were resized in accordance with the reference image (3rd bit plane). The final encrypted image was

obtained by amalgamating the rest of the reference bit planes with the 3rd bit data. Reason behind preferring the

3rd plane is further discussed in the next section.

3.2 Decryption

The decoding process was done in two steps. It includes bit plane extraction and morphological image

processing. The data plane that was blended with the reference image was pulled out and subsequent processing

was done. Binary image contains various imperfections. Particularly our extracted bit plane is actually a

bleached out image as it contains only the 4th bit info about the original data. Hence morphological image

processing removes a fair amount of imperfection by accounting for the form and structure of the image [3]. A
pragmatic approach with this process helps us to erode the image in order to get an unclouded view of the data.

Erosion with small square structuring elements shrivels an image by discarding away a layer of pixels from both

the inner and outer boundaries of regions. The holes and gaps between different regions become larger, and

small details are eliminated [3]. Here erosion was done using a 3×3 structure. The image is then complemented

to give a convenient look. Processing has been done mainly to make the data decipherable.

Fig 3: Block diagram of decryption process

IV. Results And Observations
4.1 Encryption

Many pairs of reference and data images were conflated into a single image and their histogram plots

were compared with that of the original of which one is shown.

Fig 4: Reference image (R) Fig 5: Data image (D)

 An Effective Method to Hide Texts Using Bit Plane Extraction

DOI: 10.9790/0661-17241723 www.iosrjournals.org 20 | Page

Fig 6: Encrypted image (E)

In the figure below a zoomed view of the encoded image is shown to substantiate the fact that the data is

perfectly hidden inside.

 Fig 7: Zoomed view of E

Histogram plot of an intensity image shows the number of pixels in each and every intensity value. For a
grayscale image there are 256 different possible intensities, and so the histogram will graphically display 256

numbers(0-255) showing the distribution of pixels amongst those grayscale values [4].

 An Effective Method to Hide Texts Using Bit Plane Extraction

DOI: 10.9790/0661-17241723 www.iosrjournals.org 21 | Page

Fig 8: Histogram plots

On comparing the two histogram graphs we see that the envelope of the curve is similar but in the

encrypted image some pixel values are suppressed. This is because the 3rd bit plane is removed from the image

which actually contained a fair amount of info. Hence the histogram graphs emphasize the fact that the bit plane

switching has been performed successfully.

4.2 Decryption

The encrypted data was decoded and the information was retrieved. Although the final output slightly
differs from the actual data input, the info is clearly readable. Decoder part has mainly two sections i.e. bit plane

extraction output and the final output after being processed.

Fig 9: Output on extracting the 3rd bit plane of the encrypted image

Fig 10: Final image

 An Effective Method to Hide Texts Using Bit Plane Extraction

DOI: 10.9790/0661-17241723 www.iosrjournals.org 22 | Page

Therefore, we see that the decoded output is clearly decipherable. However, in the bit plane extracted

output the smaller font characters are a bit obscured. Hence it has been processed to get a distinct appearance in

the final image. The larger figures are easily readable even from the first output image. So finally each alphabet
is clearly visible irrespective of font their font size.

4.3 Reason Behind Switching 3
rd

 Bit Plane

In order to understand the usefulness of this plane, the encryption part has been carried out by

switching other planes and corresponding outputs were observed.

Let us observe the encoded image when encryption is done by interchanging the 4th bit plane.

Fig 11: A zoomed view of the encrypted image when the 4

th
 bit plane is interchanged

A significant amount of data is visible over the reference image. This is because bit plane 7, 6, 5 and 4
contains a substantial amount of information about the parent image. When the 4th plane is interchanged, a rich

content of image R is replaced by a data plane (denser than the 3rd plane). Hence an imprint of the data is visible

throughout the encrypted image. This impression goes darker when higher planes are switched.

Now let us observe the encoded image when encryption is done by switching the 2nd bit plane.

Fig 12: Encrypted image when 2

nd
 plane is switched

 An Effective Method to Hide Texts Using Bit Plane Extraction

DOI: 10.9790/0661-17241723 www.iosrjournals.org 23 | Page

Fig 13: Decoded output

Here we see that encrypted image is fine, but the smaller font figures of the decoded output are too

hazy to be read. This image when processed produces a more blurred picture. Specially the smaller alphabets are

never distinctly readable. If the actual data never appears after decrypting then there is no point to choose this

combination. Then decoded output gets more obliterated as we interchange further lower bit planes. Only 3rd

plane switching yields a positive result for both encoding and decoding processes.

V. Conclusion
With the development of computer security, more and more research methodologies are also

developing for the purpose of data hiding. I have tried to implement one methodology for this purpose. One of

the main strengths of this work is the simplicity of the code. It allows a user to understand the method and

develop their own data hiding techniques. There are however a few limitations also. The main drawback is that

although readable the final decoded image is a bit distorted. An advance image processing technique is needed

to solve this problem. However, data hiding technologies have advanced from limited use to global deployment.

A new technique can further intensify the depth of exploration.

References
[1]. H. Faheem Ahmed and U. Rizwan, Embedding Multiple Images in an Image Using Bit Plane, International Journal of Advanced

Research in Computer Science and Software Engineering, Volume 3, Issue 1, January 2013, ISSN: 2277 128X

[2]. N S T Sai and R C Patil, IMAGE RETRIEVAL USING BIT-PLANE PIXEL DISTRIBUTION, International Journal of Computer

Science & Information Technology (IJCSIT), Vol 3, No 3, June 2011

[3]. Morphological Image Processing, Available at: https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-

html/topic4.htm#morpho

[4]. Intensity Histogram, Available at: http://homepages.inf.ed.ac.uk/rbf/HIPR2/histgram.htm

[5]. A.M.Raid, W.M.Khedr, M.A.El-dosuky and Mona Aoud, IMAGE RESTORATION BASED ON MORPHOLOGICAL

[6]. OPERATIONS, International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol. 4, No.3,

June 2014.

[7]. W. Bender, D. Gruhl, N. Morimoto and A. Lu, Techniques for data hiding (IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4,

1996)

[8]. Faheem Ahmed, H and Rizwan. U, An Alternative Technique in Data Embedding, Advanced Materials in Physics, pp 233 – 242,

2012.

[9]. Cachin. C., An information-theoretic model for steganography, Information and Computation, Vol. 192 (1), Ed. Academic, USA,

pp. 41 – 56, 2004.

[10]. Rizwan. U and Faheem Ahmed. H, Comprehensive study on various types of steganographic schemes and possible steganalysis

methods for various cover carrier like image, text, audio and video, International Journal of Scientific and Engineering Research,

Volume 3, Issue 11, November 2012, pp 151 – 154.

[11]. Eric Cole, Ronald D. Krutz, “Hiding in Plain Sight: Steganography and the Art of Covert Communication”,(Wiley Publishing Inc.

(2003).n).

[12]. Mr. Vikas Tyagi, Data Hiding in Image using least significant bit with cryptography, International Journal of Advanced Research in

Computer Science and Software Engineering, Volume 2, Issue 4, April 2012, ISSN: 2277 128X

[13]. Fridrich, J and M. Goljan and D. Hogea and D. Soukal, Quantitative steganalysis of digital images: estimating the secret message

length, Multimedia Systems Journal - Special issue on Multimedia Security, Vol. 9 (3), pp. 288 – 302, 2003.

https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm#morpho
https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm#morpho
http://homepages.inf.ed.ac.uk/rbf/HIPR2/histgram.htm

