
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 17, Issue 2, Ver. V (Mar – Apr. 2015), PP 88-92
www.iosrjournals.org

DOI: 10.9790/0661-17258892 www.iosrjournals.org 88 | Page

Continuous Testing of Service-Oriented Applications

Using Service Virtualization

Shrimann Upadhyay
1
, Hrishikesh Mukherjee

2
, Arup Abhinna Acharya

3

1(School of Computer Engineering, KIIT University, Bhubaneswar, Odisha)
2(School of Computer Engineering, KIIT University, Bhubaneswar, Odisha)
3(School of Computer Engineering, KIIT University, Bhubaneswar, Odisha)

Abstract: Service-Oriented Architecture (SOA) has changed the way business enterprises get aligned with

technology with a very fast pace keeping the demand of re-alignment time very short. Service-oriented

architecture (SOA) carries significant commitment to impart an effective version for bias, agile and

componentized IT which can be modified quickly. SOA removes the gap between software and business. The

service-oriented application can be expensive to test because services are hosted remotely, are potentially

shared among many users, and may have cost associated with their invocation. As classical testing approach

and tools are not able to fit well, we have evolved a new approach to confront the increased complexity of the

software. SV (Service virtualization) is the recent idea in software industry that grasp throughout the SDLC, it

grow vigorously due to its artistry to address numerous constraints faced while development and testing.

Service virtualization removes system dependency deadlocks by virtualizing or capturing and configuring the
objective of the system's dynamic behavior, performance and data which acts and replies in the same manner as

live one. The main benefit of using service virtualization is that the cost and time for testing is dramatically

reduced, and quality is improved.

Keywords: Service-oriented Architecture (SOA); Service virtualization (SV); continuous testing; software

dependency; unavailable and inaccessible components; dependency constraints; infrastructure cost reduction;

third party system dependency.

I. Introduction
Service-Oriented Architecture (SOA) is a technology as well as a paradigm of designing a software

system to provide services to either end-user applications or to other services distributed in a network. It is a
way of designing, deploying and managing systems [1]. SOA has changed the way of business enterprise get

aligned with technology with swiftness keeping the desire of re-alignment time very short. SOA makes promises

that include increased agility, larger application lifecycles, better integration at lower costs. However, in reality

these vow are difficult to deliver.

In SOA, services encapsulates reusable business functionality with platform-independent interface

contracts. A service can be vigorously located and invoked. Service-oriented computing promises exceptional

flexibility and efficiency in application development by enabling applications to be composed using third-party

services [1]. The common misconception for testing SOA-based applications is that it is no different than testing

non-SOA applications. However such applications are difficult to test. Hence, we have evolved newer

methodologies and approaches to address these increased complexity.

Service virtualization is the latest idea in software industry that grasp throughout the SDLC. It can find
delays, costs and risks enforced by dependent IT resources that are insufficient or unreachable for development

and testing of any enterprise application development or integration project. Service virtualization abolish

system reliance restraint by virtualizing or apprehending and replica of the objective applications zestful

behavior, execution and statistics so that it behaves and reacts in the same way as the real one. Service

virtualization ensures development and test teams have concurrent all time entry to logical test situation to

contract their release cycle. Some parameters are decreased severely such as Costs for labs to perform test,

repliers, and documents and quality is upgraded by examining more situations quick and untimely in the

process of the lifecycle [2].

The action of service virtualization initiates with pointing-out constrained resources. The betrothal lead

must point-out a recourse which is curb by cost or obtainbility. The procedures for pointing-out a well build

objective methods for service virtualization(SV) are [2]-

 Identifying methods which requires distributed opportunity to use between multiple teams like database
systems.

 Recognizing methods which have high use cost per operation like SaaS systems.

 Recognize methods which are not available for testing or have their autonomous phenomenon timelines and

arrangements.

Continuous Testing of Service-Oriented Applications Using Service Virtualization

DOI: 10.9790/0661-17258892 www.iosrjournals.org 89 | Page

 Recognize methods having complicated data management problems, like organizing test data over a number

of distributed systems to perform the desired test methodology.

Next a effective configuration of the method requires to be initiated. It can be done by arranging the
virtual artifact to analyze the input and output of objective of the system for clear-cut modeling behavior. E.g: a

typical procedure to begin a virtual-service is to scrutinize the WSDL.

The final step is the classification of the model in the practical(virtual) environment. Structural

modification to the model is done, such as reforming the data or accomplishment characteristics as required. The

model(virtual) will now act in the same method as its original world equivalent and may be used in case of

testing.

II. Service Virtualization An Alternative To Mocking And Stubbing
Mocking or stubbing via injecting dependency is often a chaotiv attempt. Simplest of applications it

often involves creating new interfaces, taking on dependency, and adds a lot of innecessary complexity. After

that, one still have to write the mocks or stubs themselves, and many of that mocks or stubs were aren't useful in

anything besides superficial unit tests. Service virtualization offer an alternative approach. Rather than mocking

or stubbing individual classes, one can mock entire service. From the applications perspective it is talking to a

real service, even though in reality that service may not even exist.

Two usual procedure of setting up a virtual service. First one is to initialize with the agreement (i.e. a

WSDL or other protocol specific service descriptor) and create responses. This can be done manually using Java

or .NET code. Advantages of this procedure is that the team doesn't have to wait for real service to be

completed. The downside is the virtual service needs to actually match the real one. The other procedure is to

use traffic recording. A tool sits between the component under test and its downstream dependencies, which

basically acts like a proxy, collects information about component interact, their message request/response,
performance attributes and data. Later on those recordings will be used to mimic the talk between the

component and services.

III. Challenges Faced During Testing Phase
The unavailability of environment and components for testing purpose is common challenge faced by

most testing teams, because a lot of delay is associated with the acquisition, installation, setup of testing

infractures, and in gaining access to external and dependent systems. All massive companies which are

dependent on IT must manage with the limitations of systems like mainframe, elements under processing, ERP's

and delicate data sources which hold-up the projects and having cost associated with their invocation.
Dealing with out-of-scope test data structure throughout distributed methodology could take more time

and exorbit cost. Service-virtualization(SV) ponders the concept of virtualizing all data which are missed and

components to simulate their behavior with enough intelligence so that the application under test (AUT)

believes that it is talking with a live system. It provides 24/7 availability to AUT like actual system for

functional and performance testing purpose at lower cost.

IV. Capabilities Of Service Virtualization And Expected Benefits
Service virtualization gives number of capabilities to provide high standard implementations swiftly to

the market, with competitive cost and modest risk.

1. Creation of virtual dependent production system in development and test environment

According to conventional approach or orthodox method, teams attempt to proceed forward having

their private component progress by "stubbing" the next downstream method. At the time of developing a web

UI, the team will build stub for same anticipated answers from the downstream surface (i.e. web service) after

which the service developer may extinguish the principal downstream ESB layer, or endeavor to figure-out

some user requirements from the web UI. Miserably, it is a non automatic process which is never enough to

abbreviate the different types of connections and software architectures, and may be totally unattainable if a UI

is not yet coded [3].

Teams working with real data scenarios and real behavior captured as virtual services, their

productiveness is higher, because the resulting environment is far more realistic and current than set of stubs

that are manually coded and maintained [3].

1.1. Expected Benefits

Even if some components are unavailable or down, development and testing will continue. Cycle time

for test execution will be reduced. With reduced data dependency on other systems and applications improves

test coverage in less time and improves code quality due to increased test coverage.

Continuous Testing of Service-Oriented Applications Using Service Virtualization

DOI: 10.9790/0661-17258892 www.iosrjournals.org 90 | Page

2. Simultaneous Development and Testing

The altogether software lifecycle may achieve a whole new degree of efficacy and efficiency when

both the teams of testing and development works simultaneously or in parallel [3].
In case of parallel development and testing, effective(virtual)services behave as the "in-between"

properties between the system which is under development and system which is under testing. For instance,

suppose that team B is developing a inventory management service while team A at top is developing and

testing an online shopping application. A virtual service is recorded from the existing inventory management

service as an inceptive sub-structure for online shopping application's testing phase. Then, as we further move-

on in testing, the online shopping application team A can provide feedback about any unexpected or new

retaliation requirements as feedback. Those feedbacks were taken as input for virtual service requests that turns

out to be the succeeding set of needs for the progress. Each parallel development and test cycle experience to

speed up every emphasis of virtual service model(VSM) and feedback ensures that the updates happen with

every new build. In case if the team lost access to the services, or the services would not help the element, one

can change to virtual services.

2.1. Expected Benefits

Increased speed of test and development cycle. Continuous integration and testing around business

requirements by avoiding deadlock conditions. Deliver function points at a fair speed, with higher quality and

accuracy to specification.

3. Handling data for Out-of-Scope dependencies

In testing scenarios, enterprise business process which requires access to third party services or

interfaces that are out of scope or out of reach of testing effort [3]. For instance, consider a online ticket booking

application is under testing which depends on online payment validation or processing service. The test team

focuses on testing the developed application, there is no practical or cost effective way to test the application

with the online payment validation service integrated. The online payment service is not possess or dominated
by testing team, but there might be some business processes in the application that may depend on it. The most

obvious solution in this stage is to stub the expected functionality and simply skip it, which reduces the testing

scope, accuracy, etc. But the goal is not to test the third party service, with suitable situation is to have it engage

in the functional/performance test in support of enterprise business process that would be of interest in testing.

Stubs are too steady, which requires additional development time and effort.

Service virtualization has the ability not only to virtualize the functional behavior of the interface but

also the performance behavior. Downstream out-of-scope component related scene are captured as virtual

services. Hence, service virtualization eliminates the problem of missing or unavailable data behind the in-scope

components.

3.1. Expected Benefits
Eliminates delay due to dependency on third party services or systems, data which is not available for

testing. It gives 24/7 availability of test scenarios for development and test teams. Impact on live system is

minimal. Test execution timeline is reduced as less time is required to setup the data. No conflicts over test data

with other testing teams as the data input be provided by independent test teams.

4. Heterogeneous technology and Platform support

Most in the cases project team spends a lot of money on creating the infrastructure in development,

testing, pre-production, and production environments. Many applications of financial sector were hosted on

multiple or heterogeneous environments [3].

The greatest challenge faced by many organization and project teams is that the pre-production

environments are never the complete systems.

Heterogeneous systems are used in business IT surroundings. So, service-virtualization(SV) can be
used to conceptualize any and all reliance that would have effect on system under test (SUT). The system

includes web traffic (HTTP), web services (SOAP,XML), integration layer and ESB and other third party

services.

4.1. Expected Benefits

Reduced cost in implementation or setting-up of the pre-production environments.

V. Approch To Implement Service Virtualization
Service virtualization creates the virtual mock of software service behavior, and those mocks will stand

in as real services during development and testing cycles.

Continuous Testing of Service-Oriented Applications Using Service Virtualization

DOI: 10.9790/0661-17258892 www.iosrjournals.org 91 | Page

Benefits of service virtualization and virtualizing any service will be taken care before starting the

execution (implementation). Most of the obstacles and bottlenecks can be solved by attentive and well marked

implementation approach. Service virtualization supports inherent agile lifecycle of current composite
application approach. The virtualization implementation approach starts with requirement management phase

followed by analysis and design phase, implementation (development and test) phase and end with deployment

and management phase [4].

Fig. 1- Service Virtualization Lifecycle

A. Requirement Management

The virtualization team will need to recognize the proposed functional and non-functional aspects.

Teams have to believe the running IT-landscape and wishing development and test peripherals. The teams at

this phase will need to understand all the use-cases and clearly demonstrate the ideal target for service

virtualization.

Systems and services having access constrained which are available at determined times but play an

fundamental role in the process of business for development and enhancement (i.e. mainframe) virtualization is

a solution to improve and intensify the availability and reduce the total elapsed time [4].
The teams understand well with the requirements for virtualization targets. In case, the developing

service is completely new and having no pre-existing data then teams may require to know how data are

authorized and the artificial data creation.

B. Analysis And Design

On the basis of collected requirements, the teams plan, prioritize and document the virtual services.

First, the teams concentrate on services(utility) and elements pointed-out for virtualization and the use-cases

associated with them. A variety of design artifacts can be used to link the use case with the services which

include sequence diagrams and service definitions. The services to be virtualized would be prioritized based on

development and test teams needs. This prioritization will help development and test teams timeline/schedule to

ensure improved agility [4].

At the end of this phase a design document is prepared contains information-Details of protocols used
by virtual services, port details of virtual services, request/response details, list of request/response fields

identified for parameterized and test data management, and test data for virtual services.

C. Implementation (Development And Test)

The implementation phase includes formations of effective methods(virtual services) and categorized

them with data. On the basis of development/test requirements, teams start implementation of virtual services.

There are different perspective of service virtualization rely on types of services and their behavior.

Now a days, many service virtualization tools are available in market, with their benefits and support

different numerous ways for creation of virtual services.

For instance, the open source soapUI tool creates mock stubs or services using service interface or

WSDL (i.e. web service description language) and CA LISA creates virtual services by placing a recorder which
works as proxy and records the transactions of the desired objected service and upload the pairs of request and

response [5].

D. Deployment And Management

The virtual services created or implemented are now designed and positioned in virtual containers and

may be used in development and testing when needed.

The virtual services and images are used in iterative and incremental lifecycle projects just like SOA.

So, the virtual services commonly requires to be tweaked to reach the rigors integrated co-relations.

Continuous Testing of Service-Oriented Applications Using Service Virtualization

DOI: 10.9790/0661-17258892 www.iosrjournals.org 92 | Page

Virtualization teams expects to have a look in the change in virtual images as new behavior are taken in to

consideration with proceeding through every iteration.

VI. Service Virtualization Tools

Tools which are available in market for service virtualization are listed [6]-

Table 1- Tools for Service Virtualization
S.no. Tool Name Vendor Supported Technologies Supported Protocols

1.

LISA SV

CA Technolog-

ies

Web services, XML, IBM web

sphere, SAP PI/XI, JBoss,

TIBCO, MQ Series, Progress

Sonic, Sun JMS/JCAPS, any

J2EE container, etc.

HTTP(s), IBM MQ,

JMS, TCP/IP, JAVA,

SOAP, etc.

2.

Parasoft

Service

Virtualize

Parasoft

Technologies

Web service, XML, TIBCO,

SAP PI/XI, J2EE container, etc.

HTTP(s), JMS, TCP/IP,

JAVA, SOAP, etc.

3.

Green Hat/ RT

VS

IBM

TIBCO, Software AG web

methods, SAP, IBM, Oracle,

JMS- based Middleware, etc.

HTTP, TCP/IP JMS,

IBM MQ, Sonic MQ,

Healthcare- HL7,

HIPAA, Financial

Services- FIX, etc.

4.

HP SV

HP

Web Services, MQ, JMS,

TIBCO EMS, IMT Connect,

CICS, SAP (XI/PI, RFC and

IDoc), etc.

HTTP(s), JMS, JDBC,

SAP, MQ, ORACLE,

SOAP, etc.

5. soapUI SmartBear Web Services SOAP, JSON

VII. Conclusion

Many times while testing service-oriented application as it is iterative and incremental development

and relay on agile methodology the teams depends on other teams for completion of development and testing

activities. A lot of dependencies on various teams and third party services while testing service-oriented

applications.

Basically, a team cannot complete its task until the other team finish their tasks. Every team is having

their own set of tasks when they are developing a complex and distributed application. In the situation, every

teams must be able to virtualize their own virtual components from the infrastructure. This is how, service
virtualization is important. Each team can take interface specification document or design document and

virtualize the downstream components or build the expected responses of the downstream components, even

before the first component or iteration is ready for testing.

Hence, service virtualization(SV) helps to provide a necessary environment for business application

development and testing. Using service virtualization in the development and testing lifecycle will decrease the

overall time spent in development and testing of service-oriented application.

References
[1]. Thomas Erl, "Service-oriented Architecture: Concept; Technology and Design", Pearson Education Publishing, 2

nd
 Edition, 2013.

[2]. Gaurish Vijay Hattangadi, Rajiv Gupta, "Service Virtualization for Modern Application", Infosys White Paper, April 2011.

[3]. John Michelsen, "Key capabilities of a Service Virtualization Solution", ITKO-Infosys White Paper, July 2011.

[4]. Gaursih Vijay Hattangadi, "A Practitioner's Approach to Successfully Implementing Service Virtualization", Infosys White Paper,

Sep. 2011.

[5]. CA LISA Virtualization http://itroisolutions.com/wpcontent/uploads/2014/02/acs2717-ca-lisa-servicevirtualization-ds- 08121.pdf

[6]. Dharmalingam Subbuah, Balaji Arulmozhi, Hariharasudhan Maruthamuthu, "Constraint free testing using service virtualization",

Internatioanl Journal of Computer Applications, vol. 105- no. 17, November 2014.

[7]. Gaurish Vijay Hattangadi, "A Practitioner's Guide to Modern SOA Testing", Infosys White Paper, July 2011.

