
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 17, Issue 6, Ver. V (Nov – Dec. 2015), PP 25-30

www.iosrjournals.org

DOI: 10.9790/0661-17652530 www.iosrjournals.org 25 | Page

A Review on Software Fault Detection and Prevention

Mechanism in Software Development Activities

B.Dhanalaxmi
1
,

Dr.G.Apparao Naidu

2
, Dr.K.Anuradha

3

1
Associate Professor, Institute of Aeronautical Engineering, IT Dept,Hyderabad,TS,India
2
Professor , J.B.Institute of Engineering & Technology, CSE Dept, Hyderabad,TS,India

3
Professor & HOD, GRIET, CSE Dept, Hyderabad,TS,India

Abstract: The need of distributed and complex commercial applications in enterprise demands error free and

quality application systems. This makes it extremely important in software development to develop quality and

fault free software. It is also very important to design reliable and easy to maintain as it involves a lot of human

efforts, cost and time during software life cycle. A software development process performs various activities to

minimize the faults such as fault prediction, detection, prevention and correction. This paper presents a survey

on current practices for software fault detection and prevention mechanisms in the software development. It

also discusses the advantages and limitations of these mechanisms which relates to the quality product

development and maintenance.

Keywords: Software development, Fault Detection, Fault Prevention, Software faults

I. Introduction
The software is a single entity which has established a strong impact on all the domain software which

includes education, defence, medical, scientific, transportation, telecommunications and others. The activities of

this domain always demands for high quality software for their accurate service need [1], [2], [3]. Software

quality means to be an error-free product, which will be competent to produce predictable results and able to

deliver within the constraints of time and cost. Therefore, a systematic approach for developing high quality

software is increased in the competitiveness in today's business world, technology advances, the complexity of

the hardware and the changing business requirements. So far, for the fault-prone modules various techniques

have been proposed for predicting and forecasting in terms of performance evaluation. However, the kind of

quality improvement and cost reduction as their actual need to meet the business objectives is rarely assessed.

Software failures are mainly caused by design deficiencies that occur when a software engineer, either

misunderstood a specification or simply makes an error. It is estimated that 60-90% of current computer errors

are caused due to the software failures [10],[12], [19]. These failure predictions has been studied in the context

of fault-prone modules, self healing systems, developer information, maintenance models, etc., but a lot of

things like modelling and weighting of the impact of different types of faults in different types of software

systems must be explored for the fault severity in software development.

Performance requirements and reliability are fundamental to the development of high assurance

systems. Based on the failure analysis it has proved a useful tool for detecting and preventing failures

requirements early in the software lifecycle. Adapting a generic taxonomy fault, one is able to better prevent

past mistakes and develop requirements specifications with less general failures. Fewer failures in the software

specification, with respect to the requirements for performance and reliability, will result in high security and

quality systems. The scope of this paper is to provide an overview of the mechanism in fault detection and

techniques for the prevention of faults that can be followed in the quality software development process.

The following paper organizes in the seven sections. Section-2 and 3 discuss about software fault

detection and software fault preventions mechanism. Section-4 presents fault prevention benefits and its

limitation, section-5 presents related works and section-6 presents the conclusion.

II. Software Fault Detection Mechanism
A failure refers to any fault or imperfection in a work activity for a software product or software

process cause due to an error, fault or failure. The IEEE Standards defines the terms Error as, a human action

that leads to inaccurate results, Fault as, a wrong decision while understanding the information given to solve

the problems or the application process. A single error can lead to one or more faults and a several faults can

lead to failure. To avoid this failure in software products, faults detections activities are carried out in every

phase of the software development life cycle based on their need and criticality.

A Monden et al. [1] proposes simulation model using fault prediction results for software testing to measure the

cost effectiveness of test effort allocation strategies. The proposed model evaluates the number of qualified

A Review on Software Fault Detection and Prevention Mechanism in Software Development Activities

DOI: 10.9790/0661-17652530 www.iosrjournals.org 26 | Page

faults in relates to resource allocation strategy, a set of modules, and the result of fault prediction. In a case

study applying a small fault prediction system acceptance testing in the telecommunications industry, the results

of our simulation model showed that the best strategy was to let the test effort is proportional to "number of

failures expected in a module ". By using this strategy with our best prediction model of failure, the test effort

reduced by 25%, while detecting as flawed normally found in testing, even if the company requires

approximately 6% of the test effort for the collection of statistics, data cleansing and modelling.

A. Detection Using Automated Static Analysis
Automated Static Analysis (ASA) detection is mostly performed for the Manual Code analysis, which

is one of the oldest practices are still practiced, but automated tools are increasingly used especially for the

standard problems related to non-compliance faults possible memory leaks, variable usage etc. They have an

essential place in the development phase because they save effort and significant resumption fault leakage test

cycles. Findbugs, CheckStyle and PMD are some of the commonly used tools in the Java technology and there

are many of these tools in all technologies. Although this plays an important role in the development cycle is not

widely practiced in the maintenance mode. However, for systems that have compatible source for automatic

static analysis detection tools can be used as a hygiene factor and good detection mechanism as any error

introduced in the field is highly expensive. Maintenance cycle of ASA detection tools cannot find many flaws

that may result in failures. A study on the effectiveness of ASA detection tools in the open source code reveals

that less than 3% of the failures [2].

S Liu et al.[3] address static analysis technique problem that is commonly used for fault detection, but

which suffers from a lack of rigor. It supports a systematic and rigorous inspection method takes advantage of

the formal specification and analysis. The purpose of the method defined in the specification of a set of paths

from each functional landscape program and the path specification of the program in every program contributes

to the implementation of a functional landscape that is implemented correctly determine whether the inspection

is used. Specification of functional scenarios to get the program paths, the paths linking scenarios, analyzing the

paths against the scenarios, and the production of an inspection report, and a list of a systematic and automatic

generation for inspection.

B. Detection Using Graph mining

Graph Mining is a dynamic control flow based approach that helps identify flaws that may be not

crashing in nature. Use graphics calls are reduced by the simplicity in processing. The graph node represents the

functions and a function call to another is represented by the edges. Edge weights are entered based on the

calling frequencies. The variation in the frequency of call and change in the structure of call are potential

failures. If there are problems in the data that is transmitted between the methods could also affect the graph of

the named because of its implications.

C. Detection Using Classifiers

Classifiers based on the clustering algorithm and decision tree or neural network can be used to identify

abnormal events of normal events for the detections. Classifiers are also formed by labelling defective tracks

when a fault is observed. Some classifiers are commonly used NaiveBayes and bagging. Bayesian classification

is a supervised learning method and a statistical method for classification. Representing an underlying

probabilistic model that allows us to capture the uncertainty in the model of a reasoned determining the

probabilities of outcomes. Recent research works [4] done in this area, without secondary supervision model

that captures the normal code of behaviour probability distribution of each region is proposed to identify events

when it behaves abnormally. This information is used to filter the labelling abnormality submitted to the ranking

algorithm to focus on anomalous observations.

Machine learning classifiers [35] have recently introduced in the faults to predict changes in the source

files. The classifier is first trained on software development, and then used to predict whether an upcoming

change causes an error. Disadvantages of existing classifier-based bug prediction techniques are not enough

power for practical use and slow prediction times due to a large number of machines learned functions.

S Shivaji et al. [5] investigates several feature selection techniques, which are generally for

classification based fault prediction method using Naive Bayes and Support Vector Machine (SVM) classifiers.

The techniques discard less important functions until optimal classification performance achieved. The total

number of functions used for the formation is substantially reduced, often to less than 10 percent of the original.

Both Naive Bayes and SVM with feature selection provides significant improvement in Buggy F-measure

compared to the prior classification change failure prediction results compare to proposed in [6], work.

A Review on Software Fault Detection and Prevention Mechanism in Software Development Activities

DOI: 10.9790/0661-17652530 www.iosrjournals.org 27 | Page

D. Detection Using Pattern Mining

Pattern based detection also the classifier based but uses unique iterative patterns for classification

sequential data using the software trace analysis for failure detection. A set of discriminatory features capture

repetitive series of events from the program execution traces first executed. Subsequently, the choice is made to

select the best features for classification. Classifier model is trained with these sets of features that will be used

to identify the failures. Processing pattern modelling allows together the analysis and improvement of processes,

the work coordinate multiple people and tools to perform a task. Process modelling focuses generally on the

normative process that is how transpires cooperation, if all goes as desired. Unfortunately, real-world processes

rarely go that smoothly. A more complete analysis of the process requires that the process model and details of

what to do when emergency situations occur.

B.S. Lerner et al. [7] have shown that in many cases there are abstract pattern to detect the relationship

between the exception handling functions and the normative process. Just as object-oriented design patterns

facilitate the development, documentation and maintenance of object-oriented programs, they believe that

process patterns can facilitate the development, documentation and maintenance of process models. They focus

on the exception handling pattern that we have observed over many years of process modelling. They also

describe these patterns using three process modelling notations: UML 2.0 Activity Diagram [8], BPMN and

Little-JIL [9]. They provide both the abstract structure of the pattern, as well as an example of the pattern is

used. They present some preliminary statistical data to support the contention that these patterns are commonly

found in practice, and represent in relation to their ability to use these patterns to discuss the relative merits of

the three notations.

III. Software Fault Prevention Mechanism
In software development, many faults emerged during the development process. It is a mistake to

believe that faults are injected into the beginning of the cycle and removed through the rest of the development

process [10]. The faults occur all the way through the development process. Therefore, fault prevention becomes

an essential part of improving the quality of software processes.

Fault prevention is a process of quality improvement which aims to identify common causes of faults

and change the relevant processes to prevent the type of fault recurrence. It also increases the quality of a

software product and reduces overall costs, time and resources. This ensures that a project can keep the time,

cost and quality in balance. The purpose of fault prevention is to identify faults in the beginning of the life cycle

and prevent it happening again so that the fault cannot appear again.

A. Importance of Fault Prevention

Faults prevention is an important activity in any software project development cycle. Most software project

team focuses on fault detection and correction. Thus, fault prevention, often becomes a neglected component.

Right from the early stages of the project to prevent faults from being introduced into the product that measure

is therefore appropriate to make. Such measures are low cost, the total cost savings achieved due to profit later

on stage are quite high compared to the cost of fixing faults. Thus, the time required for the analysis of faults in

the early stages, reducing the cost and resources. Fault injection methods and processes enable fault prevention

knowledge. After practicing this knowledge has improved quality. It also enhances overall productivity.

B. Activities in Fault Prevention

 Fault Identification

Fault can be a pre-planned activities aimed at highlighting the specific faults found. In general, faults

can be identified in design review, code inspection, GUI Review, function and unit testing activities performed

at different stages of software development life cycle. Once the faults are identified it will be classified using

classification approach for the detection.

 Fault Classification

Classification of fault can be made using the general Orthogonal Defect Classification (ODC)

technique [11] to find the fault group and it type. The ODC technique classifies the faults at the time when fault

first occurs and when the fault gets fixed. The ODC methodology for each fault in orthogonal (mutually

exclusive) to certain technology and some managerial Characteristics. These characteristics change through

massive amounts of data can be analyzed and the root cause, the pattern to be able to access all the information

on offer. Good action planning and tracking across with this fault reduction and can achieve high levels of

learning.

Generally, important projects which are typically large projects needs to be classified in depth in order

to get analyze and understand the faults, while the small and medium projects can be classified faults up to first

level of ODC in order to save time and effort. The first level of ODC classifies the various types of faults in

different stages of development requirement like Specification gathering, Logical Design, Testing and

Documentation.

A Review on Software Fault Detection and Prevention Mechanism in Software Development Activities

DOI: 10.9790/0661-17652530 www.iosrjournals.org 28 | Page

 Fault Analysis

Fault analysis is the continuous process for the quality improvement using fault data. Fault analysis

generally classified in categories blame and direct process improvement efforts in order to attempt to identify

possible causes. Root Cause Analysis (RCA) software fault has played a useful role in the analysis. RCA's goal

to identify the root cause of faults and flaws that the source is eliminated so is to initiate action. To do this,

faults one at a time are analyzed. Qualitative analysis is limited only by the limits of human investigative

capacities. Qualitative analysis ultimately improves both the quality and productivity of software organization

that provides feedback to the developers.

 Fault Prevention

Fault prevention is an important activity in any software project. Identify the cause of faults and fault

prevention objective is to prevent them from recurring. Fault Prevention had suffered in the past to analyze the

faults and faults in the future to prevent the occurrence of these types include special operations. Fault

prevention software process to improve the quality of one or more phases of the software life cycle can be

applied.

The benefits of analysis software faults and failures are widely recognized. However, a detailed study

based on concrete data is rare. M Hamill et al. [12] analyze the fault and failure data from two large, real-world

case studies. They specifically discuss the lead of software failure using localization of faults and different faults

due to distribution. The results show that individual faults are caused often distributed through multiple errors in

the entire system. This observation is important because it does not support multiple uses heuristics and

assumptions about the past. Moreover, it is clear that the search for and fixing errors, such software errors that

result in large, complex systems are often in spite of the advances in software development difficult and

challenging tasks.

IV. Faults Prevention Benefits And Limitations
Fault prevention strategies exist, but reflect a high level of test maturity discipline associated with the

testing effort represents the most cost-effective expenditure. To detect errors in the development life cycle from

design to implement code specifications require that helps to prevent the escape of errors. Therefore, test

strategies can be classified into two different categories as, fault detection technologies and fault prevention

technologies.

Fault prevention efforts over a period of application development provide major cost and time savings.

Thus it is also important, reduces the number of faults for reconstruction brings cost reduction, it is easy to

maintain port and reuse makes. It is also necessary for the organization to develop high-quality systems in less

time and provides resources, makes the system reliable. Faults which in turn increases productivity preventive

measures are identified, based on which they have been injected to the life cycle stage can be traced back. A

corrective measure for the promotion of knowledge of lessons learned between projects is a mechanism.

The lack of specific domain knowledge, where new and diverse domain software is a need to develop

and implement. In many occasions, appropriate quality requirements specified are not in the first place. The

inspection operation is labour intensive and requires high skill. Sometimes well-developed quality measurement

may not have been identified at design time.

V. Related Works
No single software fault detection technique is capable of addressing all concerns in error detection.

Similar software reviews and testing, static analysis tools (or automated static analysis) can be used to remove

faults before a software product release. Inspection, prototyping, testing and proofs of correctness are several

approaches to identify faults. Formal inspections to identify faults in the early stages of developing the most

effective and expensive quality assurance techniques. Prototype through several requirements clearly helps to

overcome the faults which are understood. Testing is one of the least effective techniques. May escape detection

in the early stages, which is to blame, those tests could be detected in time. The accuracy proofs especially on

the coding level are a good means of detection. Accuracy in manufacturing the most effective and economical

way of building software.

J Zhang et al. [13] determine the extent to which automated static analysis can in the economic

production to help a high quality product, they have static analysis and examine errors and customer reported

losses for the three major in developed industrial software systems analyzed at Nortel Networks, The data show

that automated static analysis is an affordable means of software error detection. Using orthogonal defect

classification scheme, they found that automated static analysis effectively in identifying and mapping error

checking, so that subsequent software production phases to focus on more complex, functional and algorithmic

error. Much of the shortcomings that seem determined by automated static analysis are produced by a few major

types of programming errors and some of these types have the potential to cause security vulnerabilities.

A Review on Software Fault Detection and Prevention Mechanism in Software Development Activities

DOI: 10.9790/0661-17652530 www.iosrjournals.org 29 | Page

Statistical analysis results indicate the number of automated static analysis errors can be effective for identifying

modules problem. The results analysis shows that the static analysis tools complement other error detection

techniques for the economical production of high-quality software product.

Khoshgovar and Allen [14], [15] have proposed a model to check for software quality factors such as

future fault density modules list. The inputs to the model are software complexity metrics such as LOC, number

of unique operators and complexity. A stepwise regression is then performed to find weights for each factor.

Briand et al.[16] using object-oriented metrics to predict classes that are likely to contain faults and used PCA in

combination with logistic regression to predict failure-prone classes. Morasca and Ruhe [17] predicts risky

faults modules using rough set theory and logistic regression in commercial software.

Over the years, several software techniques have been developed to support log-based fault analysis,

the integration of state-of-the art gathering techniques to manipulate and to model the log data, for example

MEADEP [18], Analyzing NOW [19], and SEC [20], [21]. However, log-based analysis is not supported by

fully automated procedures so that most of the processing loads to analysts log is the often limited knowledge

about the system. For instance, the authors in [22] have defined a complex algorithm for OS reboots from the

log to identify on the basis of sequential analysis of log messages. Moreover, since an error activating multiple

messages in the log cause a considerable effort to spent to the entries on the same mistake manifestation merged

results [23], [24], [25]. Pre-processing tasks are critical to obtaining accurate failure analysis [26], [27].

While many case studies in the failure prediction in application for industry records reported [28], [29],

[30] few studies have estimated achieved through early fault detection to reduce the test effort or increase the

software quality. Li et al. [31] reported experience of application field fault prediction in ABB Inc. Their

experiences are practical questions about how to select a suitable modelling method and how to evaluate the

accuracy of the forecasts for several releases in the time period. They evaluated the usefulness of forecasts based

on expert opinions. They reported that modules are identified vulnerable by experts as the failures of the top

four fault prone identifies modules of the prediction model. They also reported that the module prioritization

results were actually used by a test team to uncover the original be the low fault-prone additional faults in a

module. Unfortunately it has no quantitative information on the effort for additional testing and the number of

uncovered additional deficiencies required.

Mende and Koschke [32] and Kamei et. al [33] suggested that the efforts consciously measure to assess

the failure prediction accuracy. While conventional valuation measures such as recall, precision, Alberg charts

and ROC curves ignore the cost of quality assurance takes its action, the audit or review of a module is roughly

expected to be proportional to the size. They took the advantage of their measure to the bottom to find the

required prediction accuracy is required for the real testing.

C F. Kemerer et al. [34] studied the influence of the checking rate on software quality, while the

controller for a comprehensive range of factors that can affect the analysis. The data comes from the Personal

Software Process (PSP), which implements carried out inspections, the development group activities. In

particular, the PSP design and code review rates correspond to the preparatory courses in inspections.

VI. Conclusion
Today there is an inherent need for software reliability is getting increased attention these days and

highly fault tolerant system. In this survey paper, research on fault detection mechanism, as well as fault

prevention mechanism in relation to the recent trend of the latest technologies have been discussed. There flaw

detection and software systems used to diagnose the vast number of methods and techniques, but not every tech

suits every system. Select technology system arrangement, size and complexity of adaptability and reliability

targets, technology platform, driven by critical factors. Automated way to detect a tendency to higher levels in

hybrid mining techniques and statistical models are in leaning toward more traditional systems-oriented

solutions for diagnostics and prevention. Fault handling in modern day applications are in the early stages of

research and the solution architecture try to build tolerance level as much as possible.

References
[1]. A Monden, T Hayashi, S Shinoda, K Shirai, J Yoshida, M Barker and K Matsumoto, "Assessing the Cost Effectiveness of Fault

Prediction in Acceptance Testing", IEEE Transactions on Software Engineering, DOI-098-5589, 2013.

[2]. Fadi Wedyan, Dalal Alrmuny and James M. Bieman, "The Effectiveness of Automated Static Analysis Tools for Fault Detection

and Refactoring Prediction", ICST '09. International Conference, vol., no., pp.141,150, 1-4 April 2009.

[3]. S Liu, Y Chen, F Nagoya and J A. McDermid, "Formal Specification-Based Inspection for Verification of Programs", IEEE

Transactions on software engineering, vol. 38, no. 5, september/october 2012.

[4]. Bronevetsky, G.; Laguna, I.; de Supinski, B.R.; Bagchi, S., "Automatic fault characterization via abnormality-enhanced

classification," Dependable Systems and Networks (DSN), 2012 42nd Annual IEEE/IFIP International Conference on , vol., no.,

pp.1,12, 25-28 June 2012

[5]. S Shivaji, E. J Whitehead Jr., R Akella and S Kim, "Reducing Features to Improve Code Change-Based Bug Prediction", IEEE

Transactions on Software Engineering, Vol. 39, No. 4, April-2013.

[6]. S. Kim, E. Whitehead Jr., and Y. Zhang, "Classifying Software Changes: Clean or Buggy?” IEEE Trans. Software Eng., vol. 34, no.

2, pp. 181-196, Mar./Apr. 2008.

A Review on Software Fault Detection and Prevention Mechanism in Software Development Activities

DOI: 10.9790/0661-17652530 www.iosrjournals.org 30 | Page

[7]. B. S. Lerner, S Christov, L J. Osterweil, R Bendraou, U Kannengiesser and A Wise, "Exception Handling Patterns for Process

Modeling", IEEE Transactions On Software Engineering, Vol. 36, No. 2, March/April 2010.

[8]. OMG, Unified Modelling Language, Superstructure Specification, Version 2.1.1, http://www.omg.org/spec/ UML/2.1.1/

Superstructure/PDF/, 2010.

[9]. A. Wise, "Little-JIL 1.5 Language Report", technical report, Dept. of Computer Science, Univ. of Massachusetts, 2006.

[10]. David Lo, Hong Cheng, Jiawei Han, SiauCheng Khoo and Chengnian Sun, "Classification of Software Behaviors for Failure

Detection: A Discriminative Pattern Mining Approach", KDD '09 Proceedings of the 15th ACM SIGKDD international conference

on Knowledge discovery and data mining. Pages 557-566 ACM, USA, 2009.

[11]. Orthogonal Defect Classification – A concept for In-Process Measurements, IEEE Transactions on Software Engineering, SE-

18.p.943-956.

[12]. M Hamill and K Goseva-Popstojanova, "Common Trends in Software Fault and Failure Data" IEEE Transactions on Software

Engineering, Vol. 35, No. 4, July/August 2009.

[13]. J Zheng, L Williams, N Nagappan, W Snipes, J P. Hudepohl and M A. Vouk, "On the Value of Static Analysis for Fault Detection

in Software", IEEE Transactions on Software Engineering, Vol. 32, No. 4, April 2006.

[14]. T. Khoshgoftaar and E. Allen, "Predicting the Order of FaultProne Modules in Legacy Software", Proc. Int’l Symp. Software

Reliability Eng., pp. 344-353, 1998.

[15]. T. Khoshgoftaar and E. Allen, "Ordering Fault-Prone Software Modules", Software Quality J., vol. 11, no. 1, pp. 19-37, 2003.

[16]. L.C. Briand, J. Wiist, S.V. Ikonomovski, and H. Lounis, "Investigating Quality Factors in Object-Oriented Designs: An Industrial

Case Study", Proc. Int’l Conf. Software Eng., pp. 345-354, 1999.

[17]. S. Morasca and G. Ruhe, "A Hybrid Approach to Analyze Empirical Software Engineering Data and Its Application to Predict

Module Fault-Proneness in Maintenance", J. Systems Software, vol. 53, no. 3, pp. 225-237, 2000.

[18]. D. Tang, M. Hecht, J. Miller, and J. Handal, "Meadep: A Dependability Evaluation Tool for Engineers", IEEE Trans. Reliability,

vol. 47, no. 4, pp. 443-450, Dec. 1998.

[19]. A. Thakur and R.K. Iyer, "Analyze-Now—An Environment for Collection and Analysis of Failures in a Networked of

Workstations", IEEE Trans. Reliability, vol. 45, no. 4, pp. 561-570, Dec. 1996.

[20]. R. Vaarandi, "SEC—A Lightweight Event Correlation Tool", Proc. Workshop IP Operations and Management, 2002.

[21]. J.P. Rouillard, "Real-Time Log File Analysis Using the Simple Event Correlator (SEC)", Proc. USENIX Systems Administration

Conf., 2004.

[22]. C. Simache and M. Kaaniche, "Availability Assessment of SunOS/ Solaris Unix Systems Based on Syslogd and Wtmpx Log Files:

A Case Study", Proc. Pacific Rim Int’l Symp. Dependable Computing, pp. 49-56.

[23]. J.P. Hansen and D.P. Siewiorek, "Models for Time Coalescence in Event Logs", Proc. Int’l Symp. Fault-Tolerant Computing, pp.

221227, 1992.

[24]. Y. Liang, Y. Zhang, A. Sivasubramaniam, M. Jette, and R.K. Sahoo, "Bluegene/L Failure Analysis and Prediction Models", Proc.

Int’l Conf. Dependable Systems and Networks, pp. 425-434, 2006.

[25]. A. Pecchia, D. Cotroneo, Z. Kalbarczyk, and R.K. Iyer, "Improving Log-Based Field Failure Data Analysis of Multi-Node

Computing Systems", Proc. Int’l Conf. Dependable Systems and Networks, pp. 97-108, 2011.

[26]. D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, "Improving Software Diagnosability via Log Enhancement", Proc. Int’l Conf.

Architectural Support for Programming Languages and Operating Systems, pp. 3-14, 2011.

[27]. J.A. Duraes and H.S. Madeira, "Emulation of Software Faults: A Field Data Study and a Practical Approach", IEEE Trans. Software

Eng., vol. 32, no. 11, pp. 849-867, Nov. 2006.

[28]. N. Ohlsson, and H. Alberg, "Predicting fault-prone software modules in telephone switches", IEEE Trans. Software Engineering,

vol. 22, no. 12, pp. 886-894, 1996.

[29]. T. J. Ostrand, E. J. Weyuker, and R. M. Bell, "Predicting the location and number of faults in large software systems", IEEE Trans.

on Software Engineering, vol. 31, no. 4, pp. 340-355, 2005.

[30]. A. Tosun, B. Turhan, and A. Bener, "Practical considerations in deploying AI for defect prediction: a case study within the Turkish

telecommunication industry", Proc. 5th Int’l Conf. on Predictor Models in Software Engineering (PROMISE’09), pp. 1-9, 2009.

[31]. P. L. Li, J. Herbsleb, M. Shaw, and B. Robinson, "Experiences and results from initiating field defect prediction and product test

prioritization efforts at ABB Inc.", Proc. 28th Int’l Conf. on Software Engineering, pp. 413-422, 2006.

[32]. T. Mende and R. Koschke, "Revisiting the evaluation of defect prediction models", Proc. Int’l Conference on Predictor Models in

Software Engineering (PROMISE’09), pp. 1–10, 2009.

[33]. Y. Kamei, S. Matsumoto, A. Monden, K. Matsumoto, B. Adams, and A. E. Hassan, "Revisiting common bug prediction findings

using effort aware models", Proc. 26th IEEE Int’l Conference on Software Maintenance (ICSM2010), pp. 1-10, 2010.

[34]. C F. Kemerer and Mark C. Paulk, "The Impact of Design and Code Reviews on Software Quality: An Empirical Study Based on

PSP Data", IEEE Transactions on Software Engineering, Vol. 35, No. 4, July/August 2009.

[35]. V. Challagulla, F. Bastani, I. Yen, and R. Paul, "Empirical Assessment of Machine Learning Based Software Defect Prediction

Techniques", Proc. IEEE 10th Int’l Workshop Object-Oriented Real-Time Dependable Systems, pp. 263-270, 2005.

