
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 18, Issue 1, Ver. I (Jan – Feb. 2016), PP 49-56

www.iosrjournals.org

DOI: 10.9790/0661-18114956 www.iosrjournals.org 49 | Page

An Enhanced Scheme for Hiding Text in Wave Files

Buthainah F. AL-Dulaimi
1
, Nibras Amer Mohammed

1
, Hamza A. Al-Sewadi

2

1
(Computer Department, College of Education for Women/ University of Baghdad, Iraq)

2
(Computer Science Department, King Hussein Faculty of Computing/ Sumaya University for Technology,

Amman, Jordan)

Abstract: Steganography is a term applied to any number of processes that embed an object into

another object in order to deceive any observer or adversary. An embedding algorithm for hiding

messages into wave files or audio signals is proposed here. It a spatial domain type that implement

least significant bit (LSB) process and represents a jumping algorithm technique.

Keywords: Steganography, Information Hiding, LSB, PSNR, Data Security.

I. Introduction
Two kinds of techniques were used to conceal information nowadays, namely: Encryption and

information hiding. The importance of these two protection methods is vastly increased since the discovery of

telephone, fax, electronic communication and computer [1]. However, it is still critical problem to secure

multimedia contents against illegal use. Such digital contents can be easily copied or edited on a computer and

delivered through the network by third party without permission of the copyright owner. In order to solve this

problem, data hiding has got great attention as a promising method that plays a complementary role to the

conventional cryptographic techniques [2].

Steganograghy is the practice of hiding private or sensitive information within something that appears

to be nothing out of usual. Staganograghy is often confused with cryptology because they are similar in the way

that they are both used to protect important information. The main difference between the two is that

Steganograghy involves hiding information so it appears as no information is hidden at all. If a person or

persons views the carrier object that the information is embedded inside it, he/she will have no idea that there is

any hidden information; therefore there will no attempt to decrypt the information [3]. The most common use of

Steganograghy is to hide a file inside another file. When information or a file is hidden inside a carrier file, the

data is usually encrypted with a key or a password. Steganography literally means "covered writing", which

aims to transmit a message through a channel where some other kinds of information are already being

transmitted [4]. The general principle of steganography is illustrated in the block diagram of Fig 1 [2] [3].

Fig 1. General scheme of steganography

II. Steganography Concepts
Generally, there are numerous methods for hiding information inside another media. Both the

information and the media types can be text, Audio or Video files [2]. According to the type of cover media the

steganography techniques may be classified as listed below.

An Enhanced Scheme for Hiding Text in Wave Files

DOI: 10.9790/0661-18114956 www.iosrjournals.org 50 | Page

Embedding in still Images

Data hiding in still images presents a variety of challenges that arise due to the way the human visual

system (HVS) works and the typical modifications that the images undergo [5]. One of the most important

advantages in using still images for data hiding is that they represent a no causal medium, since it is possible to

access any pixel of the image at random. There are various techniques for data hiding in images which are: LSB

insertion, Spread spectrum, Texture block, Patchwork, Orthogonal projection coefficients manipulation and

other methods like dithering manipulation, perceptual masking, and DCT coefficients manipulation [5].

When hiding information inside images in spatial domain, the LSB (Least Significant bit) method is

usually used. The best type of image file to hide information inside of is a 24 bit BMP (Bitmap) image. The

reason being is that it is with the highest quality and obviously has largest file size. When an image is of high

quality and resolution it is a lot convenient to hide and mask information inside it. Although 24 bit images are

best for hiding information inside them due to their size some people may choose to use 8 bit BMP’s or possibly

another image format such as GIF. The reason for such choice is to avoid suspicion when large images are

posted on the internet. Moreover, it is important to remember that if information is embedded inside an image

file and that file is converted to another image format, the hidden information is most likely would be lost [5].

2.2 Embedding in Video files

Video files are generally a sequence of images and sounds. The great advantages of videos are the large

amount of data that can be hidden inside and the fact that it is a moving stream of images and sounds. Hence,

any small but otherwise noticeable distortions might go unobserved by human eyes because of the continuous

flow of information [6].

2.3 Embedding in Audio files

Embedding secret message in digital sound is generally more difficult than embedding information in

digital image because the human auditory system (HAS) is extremely sensitive [3].Sensitivity to additive

random noise is also acute. The perturbations in a sound file can be detected as low as one part in ten million (80

dB below ambient level). However, there are some "holes" available. While the HAS has a large dynamic range,

it has a small differential range. As a result, loud sounds tend to mask out quiet sounds. Additionally, the HAS is

much less sensitive to the phase components of sound. Finally, there are some environmental distortions so

common as to be ignored by the listener in most cases [5].

III. Digital Audio Structure
Digital Audio Files consist of two main parts; header and audio data. The header is used to store

information about the file, including the resolution, sampling rate and type of compression. Its structure is based

on chunks and sub-chunks. Each Chunk has a type, represented by a number of characters called Chunk ID,

comes first in the chunk, followed by the Chunk Size(long integer) which is the size of the rest chunk data

(except the size of Chunk ID, and Chunk Size), then comes the content of the chunk [7]. The Resource

Interchange File Format (RIFF) provides a way to store all varied data types [8]. The first thing in the contents

of the RIFF chunk is the form type which describes the overall type of the files contents such as WAV, AVI, etc

[8]. There are two sub-chunks that are required in order to successfully save sampled audio wave formats [7];

(1) the format chunk, specifying the data format and (2) the data chunk, containing the actual sample data.

The main advantage of using this chunk structure is that when parsing a wave file, one doesn’t need to

interpret every chunk type but he/she could skip over the not needed sub-chunks by reading the Chunk ID and

Chunk Size parameters. After identifying the type of the sub-chunk (using Chunk ID) and discovering it is not

the wanted one, one can skip this chunk by using the second parameter. The size of this sub-chunk usually

equals to 16 bytes, but it was noticed that some sound recorder programs use 18 bytes instead 16 bytes (i.e.,

there are two additional bytes). The sub-Chunk ID field consists of four characters (4 bytes) and the field of

sub-Chunk size is long integer type (4 bytes) type, hence in case of the existence of the additional two bytes,

they should be by-passed [6]

IV. Least Significant Bit Manipulation
LSB is an extremely simple steganographic method that considers embedding in individual pixels of

the cover image. Each of these pixels in cover is made up of a string of bits. One may commandeer the use of

the 2-least significant bits of 8-bit true color image to hold 2-bits of the message to be embedded by simply

overwriting the data that was already there. Empirically, it is noted that the impact of changing the 2-least

significant bits is almost always entirely imperceptible [9].

An Enhanced Scheme for Hiding Text in Wave Files

DOI: 10.9790/0661-18114956 www.iosrjournals.org 51 | Page

4.1 Embedding - Altering/Replacing the LSB

 When files are created there are usually some bytes in the file that aren't really needed, or at least aren't

that important. These areas of the file can be replaced with the information that is to be hidden without

significant altering or damaging to the file. This allows a person to hide information in the file and make sure

that no human could detect the change in the file. The LSB method works best for high resolution and

multicolor image files. And it is also suitable for audio files that have many different sounds and of a high bit

rate [6]. The LSB method usually does not increase the file size, but depending on the size of the embedded

information, the file may become noticeably distorted.

Figure 2 illustrates the general description of replacing 2 least significant bits. The message may be a

few thousand bits (often at 7 or 8 bits per text character) embedded in millions of other bits. Probably the most

typical use is Audio files as carriers. Audio information is commonly stored in either 24-bit or 8-bit files. If an

8-bit Audio is viewed as a grid and the grid is made up of cells, these cells are called pixels. Each pixel consists

of an 8-bit binary number (or a single byte), and each 8-bit binary number refers to the color pixel.

4.2 Extraction - Reconstruction of the Secret message

At the receiving side of the stego-audio, the secret message is reconstructed by reversing the

embedding process, i.e. extracting the least significant bits from the pixels in exactly the same way as they were

embedded. The secret message will be recovered; however the audio file cover will not be restored. Fig 2

illustrate the extraction principle [8].

Fig 2.Shows the general description of 4 least significant bits

V. The Proposed Steganographic Scheme
The proposed system consists of two phases. The first phase is to hide the binary text into the wave file

and the second phase is to extract the hidden text from the wave file. The general structure of the proposed

system is illustrated in Fig 3. It consists of two basic modules: Embedding and extraction modules. The inputs to

this system are the cover file (wave file) and secret file (binary file). These inputs are processed in the hiding

part with various operations to produced stego wave file. The stego audio enters to extraction stage is processed

through a set of operations to retrieve the secret data. Each module (i.e. embedding and extraction) consists of

several steps that are executed systematically in order to produce the final result, and will be described as below.

Fig 3. The general steganography model

5.1 Load Audio Data

The audio file that will be used as a carrier and the file to be embedded (secret message) are loaded

first. Then they are converted to binary representation to be used for the hiding process. Each character of the

message is of 8-bits length. The conversion process is carried out using algorithm (1) shown in Fig 4.

An Enhanced Scheme for Hiding Text in Wave Files

DOI: 10.9790/0661-18114956 www.iosrjournals.org 52 | Page

Algorithm (1): Binary Conversion

Input:

OrgScrt: Secret data as an array byte OrgScrtLen: Size of secret file

Output:

Scrt: Binary secret data as an array byte ScrtLen: New size of secret data

Begin

 Set K ««—0

 For each byte value i in OrgScrt

For each bit j in byte //from 0 to 7

 Set Scrt(K+j) OrgSecrt(i) AND (2
A
 j)

 Set K «—K + 8 End loop

 Set ScrtLen «— OrgScrtLen x 8

End.

Fig 4. Algorithm (1): Binary conversion.

5.2 Load the Secret Data

After converting the secret message to binary, the binary text is prepare to be embedding into the

carrier which is a wave file. This operation of secret file loading is depicted by algorithm (2) shown in Fig 5.

Algorithm (2): Load the secret file

Input:

ScrtName: Secret file Name

Output:

OrgScrtLen: Size of secret file

OrgScrt: Secret data as an array of bytes

Begin

 Open the secret file " ScrtName"

Get OrgScrtLEN//*The length of secret file.

 Get secret data OrgScrt//*OrgScrt[0...OrgScrtLen] as an array of bytes

End.

Fig 5. Algorithm (2): Loading the secret message.

5.3 The Hiding Phase

In this phase, the embedding of secret block is done on the wave file (voiced blocks), exclusively. So,

the implementation of process (to prepare the slack space) is executed on the voiced blocks. The embedding

process is done by adding or subtracting a value, (A) to the quantized phase coefficients. The application of

addition or subtraction processes depends on the value of the secret bit (whether it is 0 or 1). The value of (A)

should be less than half the value of quantization step, in order to avoid the occurrence of a jump from current

quantization bin to the one of the adjacent (pervious or next) quantization bins. To make the process of

determining the suitable values of (A) more easy and consistent, a parameter called slack step ratio (R) is

proposed, it is a ratio parameter define by equation 1.

R=∆/Q (1)

The value of R should be chosen in the range (0 < R < 0.5) for the reason stated previously. In this

research work, the value of R was chosen to be either (1/3) or (1/4). Both the values of (Q) and (R) are

predefined by the user.

The quantity (A) is added to phase (pht) if the secret data value (Scrt) is 1, or it is subtracted if (Scrt) is 0, as

follows:

 P H H (u) = p h s q (u) - ∆ , i f S c r t (i) = 0

 = p h s q (u) + ∆ , i f S c r t { i) = l (2)

W h e r e p h s q (u) is the j
t h

phase coefficient in the block, p h s H (u) is the u
t h

host phase coefficient in the

block, S c r t (i) is the i
t h

secret bits, u =l,2,3, . . . , (N/2)-l.

The hiding phase algorithm is illustrated in Fig 6.

An Enhanced Scheme for Hiding Text in Wave Files

DOI: 10.9790/0661-18114956 www.iosrjournals.org 53 | Page

Algorithm (3): Hiding Stage

Input:

Cov: The original samples of cover audio file of length DataSize.

Scrt: An array of secret bits of size ScrtSiz.

 N: The block size. //N : 8, 12, 16, 21, 32

Str: Start block position of Overlnfo bits vector inCov. Ed: Ending block position of Overlnfo bits vector in

Cov.

Output:

Steg: Array of stego wave data of length DataSize.

Step 1: Divide Covinto blocks of size N samples.

step 2:check if (block position<str) or (block position>Ed) then go to Step 9.

step 3: check each block is it unvoiced block, if it is unvoiced go to step 8.

Step 4: Apply dynamic located jump on this unvoiced block to produce B, and

BB, Coefficients then construct Phs and Mag .

Step 5: Insert secret bits Scrt in the quantized phase coefficients.

step 6: Reconstruct F ,and Fi coefficients and pass the result through IDFT to

construct the stego block, then round the values to the range [0 … 255].

step 7: put the produced block in Steg array, which represents the stego data.

Step 8: If there are (secret bits of Scrt And cover block) go to Step 2.

Step 9: End.

Fig 6. Algorithm (3): The hiding stage.

5.4 The Extraction Stage

The extraction stage is similar to that mentioned hiding stage but it is arranged in reverse manner.

Instead of embedding the secret data it is extracted. The extraction of the secret bits (either 1 or 0), is done

according to equation 3.

R s c r t (i) = 0 ,i f p h s q (u) > p h s (u)

 = 1 o t h e r wi s e (3)

W h e r e p h s (u) is the u
t h

phase coefficient of the stego audio block, P h s q (u) is the u
t h

quantized phase

coefficients, R s c r t (i) is the i * retrieved secret data, and u=l,2, ... ,N\2.The main steps of the extraction stage

are illustrated in Fig 7.

Algorithm (4): Extraction Stage

Input:

Steg: Array of stego wave data of length DataSize. Str: Start block position of Overlnfo bits vector in steg.

Ed: Ending block position of Overlnfo bits vector in steg

Output:

Scrt: Secret bits of length ScrtSize.

Stepl: Divide Steg into block of size N samples.

Step2 : Check if (block position<Str) or (block position>Ed) then go to step7.

Step 3:Check each block whether it is voiced or unvoiced block, if it is unvoiced jump to step6.

Step 4: Apply in LSB dynamic located jump on the(voiced block to produce sss and bb, coefficients then

Construct p h s and Mag.

Step 5: Retrieve secret bits Scrt from p h s q .

Step 6: If(retrieve secret bits<ScrtSize)

If block of Steg not finished then jump to step 2.

Else stop with error message indicating that stego file is corrupted.

Step 7: End.

Fig 7. Algorithm (4): the extraction stage.

VI. Implementation and Results
The algorithms of the proposed scheme prototype are coded and run on a Pentium PC. In the following,

a summary of an implementation example is first listed together with some samples screens showing the process

of both hiding text message into wave files, then extracting the message. Secondly, measurements of the quality

of hiding and extraction process are included by calculating the root mean square error (RME) and the Peak

signal to noise ratio (PSNR).

6.1 System implementation:

After entering the name and password of the user at the start of running the system, the menu screen of

Fig 8 shows the operation action parameters, which consists of the following commands.

An Enhanced Scheme for Hiding Text in Wave Files

DOI: 10.9790/0661-18114956 www.iosrjournals.org 54 | Page

Fig 8. The operation action interface window.

 Load Wave File:This command is used to load the cover file which it is an audio file in a wave form type

as shown in Fig 9.

Fig 9. File loading window.

 Enter Text To Be Hidden: This command is used to enter the secret messages which are to be hidden as

shown in Fig 10. In this system, the secret message is treated as a binary file, and will appear in the text box

(e.g. “computer" in this example).

Fig 10. Entering the secret message.

 Hide Text In Wave File: This command is the last command that is executed to hide a message which is

performing the proposed algorithms in order to hide the secret message into audio file and at the end of this

process a confirming comment will appear on the screen informing of the completion of the process.

An Enhanced Scheme for Hiding Text in Wave Files

DOI: 10.9790/0661-18114956 www.iosrjournals.org 55 | Page

 Save Hiding File: Finally after all previous commands were executed; the resulting file can be saved by this

command, specifying its name and destination.

 Extract The Secret Message: This command is the inverse of hiding command. The secret message is

extracted from the stego-file. It is restored to its original form by implementing the extraction algorithm of

Fig 7.

 Clear Screen: This command is used to clear the program and the screen from any message. Then it will be

ready for a new hiding operation.

6.2 Stabile System Performance.

To talk about the stability of the system performance, it is required to define the peak signal to noise

ration first (PSNR).

PSNR: The phrase peak Signal-to-Noise Ratio, often abbreviated PSNR, is an engineering term for the ratio

between the maximum possible power of a signal and the power of corrupting noise that affects the fidelity of its

representation. Because many signals have a very wide dynamic range, PSNR is usually expressed in terms of

the logarithmic decibel scale. The PSNR is most commonly used as a measure of quality of reconstruction of

loss compression codecs (e.g., for image compression). The signal in this case is the original data, and the noise

is the error introduced by compression. When comparing compression codecs it is used as an approximation to

human perception of reconstruction quality, therefore in some cases one reconstruction may appear to be closer

to the original than another, even though it has a lower PSNR (a higher PSNR would normally indicate that the

reconstruction is of higher quality). One has to be extremely careful with the range of validity of this metric; it is

only conclusively valid when it is used to compare results from the same codec (or codec type) and same

content [10]. It is most easily defined via the mean squared error (MSE). Given a noise-free m×n monochrome

image I and its noisy approximation K, MSE is defined by equation 4.

 (4)

The PSNR is defined by equation 5.

 . . (5)

Here, MAXI is the maximum possible pixel value of the image. When the pixels are represented using 8

bits per sample, this is 255. More generally, when samples are represented using linear PCM with B bits per

sample, MAXI is 2
B
−1. For color images with three RGB values per pixel, the definition of PSNR is the same

except the MSE is the sum over all squared value differences divided by image size and by three. Alternately,

for color images the image is converted to a different color space and PSNR is reported against each channel of

that color space, e.g., YCbCr or HSL [9].Typical values for the PSNR in lossy image and video compression are

between 30 and 50 dB, where higher is better. Acceptable values for wireless transmission quality loss are

considered to be about 20 dB to 25 dB [10].

Calculations of the PSNR for listed in table I. It shows the calculation results for more than one case

(e.g. for cover audio files of different sizes, namely; 22 KB, 30 KB, and 956 KB). It is notices that PSNR values

are reduced as the size of the embedded message is increased, i.e. the results are generalized for all cases.

However, the proposed method has experienced a good stability in performance for different cases studied.

Table 1. The Psnr Measurement For The Proposed Scheme.

PSNR
Secret Message

Size

Cover Audio File

Size

Case Stabile

13.5023767966667 8 Byte

22 KB 1 10.4597538329787 34 Byte

9.7054155119719 47Byte

13.0846465394163 8 Byte

30 KB 2 10.2454903333924 34 Byte

9.53434500931639 47Byte

44.4773998751594 8 Byte

958 KB 3 40.322785503722 34 Byte
34.81240623547805 47Byte

http://en.wikipedia.org/wiki/Signal_(information_theory)
http://en.wikipedia.org/wiki/Noise
http://en.wikipedia.org/wiki/Dynamic_range
http://en.wikipedia.org/wiki/Logarithm
http://en.wikipedia.org/wiki/Decibel
http://en.wikipedia.org/wiki/Codec
http://en.wikipedia.org/wiki/Image_compression
http://en.wikipedia.org/wiki/Mean_squared_error
http://en.wikipedia.org/wiki/255_(number)
http://en.wikipedia.org/wiki/PCM
http://en.wikipedia.org/wiki/Color_image
http://en.wikipedia.org/wiki/RGB
http://en.wikipedia.org/wiki/Color_space
http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/HSL_and_HSV
http://en.wikipedia.org/wiki/Lossy_compression
http://en.wikipedia.org/wiki/Decibel

An Enhanced Scheme for Hiding Text in Wave Files

DOI: 10.9790/0661-18114956 www.iosrjournals.org 56 | Page

VII. Conclusion
The implementation and measurement of the given algorithm have manifested some satisfactory results

from which one can conclude the following.

1. Data or text hiding in voiced block sample is more suitable to avoid noise occurrence, which is more probably

happen when unvoiced blocks are used as host area.

2. Large threshold value provide more power in cover audio signal by avoiding unvoiced blocks and increased

correct retrieved bits, but also decrease in hiding rate.

3. Whenever the size of the secret message increases, the value of PSNR is decreases. This characteristic is

notices for the various cover audio files that were included in the test.

REFERENCES
[1]. S. Cacciaguerra, and Ferretti, S., Data Hiding: Steganography and Copyright Marking, Paper, Department of computer science,

Bologna University, Italy, 2000.

[2]. N. F. Johnson, and Jajodia, S., Stganalysis of Image Created Using Current Steganography Software, Workshop on Information

hiding proceeding, center for secure information System, lecture notes in computer science, 1525, George Mason University, USA,

1998. http://isse.gmu.edu/~csis

[3]. S. Katzenbeisscr, Petitcolas, F. A., Information Hiding Techniques for Steganography and Digital Watermarking (Artech House,

Boston-London, 2000).

[4]. R. Petrovic, Winograd, J. M., Jemili J., and Metois, E., Data Hiding Within Audio Signal, Journal of Electronics and

Energetics,12(2), 1999, 103-122.

[5]. W. Bender, Techniques for Data Hiding, IBM System Journal; 35(3-4), 1996, 1-10.

http://www.research.ibm.com/journal/sj/353/section/bendeaut.htm1#bender

[6]. D. E. Lane, Video in Video Data Hiding, Department of Electrical and Computer Engineering, California University, USA, 1999.

[7]. P. Bourke, WAVE sound file format, November, 2001.http://local. Wasp. uwa. edu.au/~pbourke/dataformats/wave

[8]. T. J. Weber, Wave PCM Sound File Format", 2003, http://www.ora.com/centers/gff/formats/micriff/index.html.

[9]. D. Salomon, 2007, Data Compression: The Complete Reference

http://books.google.com/books?id=ujnQogzx_2EC&lpg=PA281&ots=FolwqB8qsN&dq=PSNR%20infinite&pg

=PA281#v=onepage&q=PSNR%20infinite&f=false

[10]. Q. Huynh-Thu, Ghanbari M., Scope of Validity of PSNR in Image/Video Quality Assessment, Electronics Letters, 2008.

http://isse.gmu.edu/~csis
http://local/
http://www.ora.com/centers/gff/formats/micriff/index.html
http://books.google.com/books?id=ujnQogzx_2EC&lpg=PA281&ots=FolwqB8qsN&dq=PSNR%20infinite&pg=PA281#v=onepage&q=PSNR%20infinite&f=false
http://books.google.com/books?id=ujnQogzx_2EC&lpg=PA281&ots=FolwqB8qsN&dq=PSNR%20infinite&pg%20=PA281#v=onepage&q=PSNR%20infinite&f=false
http://books.google.com/books?id=ujnQogzx_2EC&lpg=PA281&ots=FolwqB8qsN&dq=PSNR%20infinite&pg%20=PA281#v=onepage&q=PSNR%20infinite&f=false

