
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 18, Issue 1, Ver. III (Jan – Feb. 2016), PP 27-35

www.iosrjournals.org

DOI: 10.9790/0661-18132735 www.iosrjournals.org 27 | Page

Predicting software aging related bugs from imbalanced datasets

by using data mining techniques

Amir Ahmad
Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh, Saudi Arabia

 Abstract: Software aging bugs are related with the life-span of the software. Rebooting is one of the solutions

of this problem, however, it is time consuming and causes resources loss. It is difficult to detect these bugs

during the time-limited software testing process. Data mining techniques can be useful to predict whether a

piece of software has aging related bugs or not. The available datasets of software aging bugs present a

challenge as they are imbalanced datasets. In these datasets, the number of data points with bugs is very small

as compared to the number of data points with no bugs. It is important to predict the rare class (Bugs). In this

paper we carried out experiment with a dataset containing data points related to aging-related bugs found in an

open-source project MySQL DBMS. Data mining techniques developed for imbalanced datasets were compared

with general data mining techniques. Various performance measures were used for the comparative study. The

results suggest that data mining techniques developed for imbalanced datasets are more useful for correct

prediction of data points related to aging related bugs. Data mining techniques developed for imbalanced

datasets performed better than general data mining techniques on G-mean measure which is an important

performance measure for imbalanced datasets.

Keywords: Aging-related Bugs, Data mining, Imbalanced datasets, Performance measures.

I. Introduction
Software engineering deals with design, development and maintenance of software [1, 2]. Software

bugs are defects which occur due to error in software design or software development process [3]. Due to these

bugs, software produces incorrect results or does not produce expected results. As software plays a very

important part now a days, software bugs can lead to financial losses and effort losses. For example, in 1996,

the $1.0 billion rocket called Ariane 5 was destroyed because of a software bug [4]. Software bugs prevention is

the first step to quality assurance of software. Tasks like training, requirements and code reviews, and other

activities that promote quality software come under this step. Software testing is an important part of software

development process [1, 2]. It finds out software bugs in a given piece of software [1, 2]. In software testing

processes, software is tested by using given test cases. A large number of software bugs are generally detected

during software testing. The software design and software code are corrected to remove the bugs. However,

software testing is a time consuming process and all the possible test cases cannot be tested. In other words,

some bugs still may go undetected. Some bugs are detected by customers; the cost of removing these bugs is

higher. It is commonly believed that the earlier a defect is found, the cheaper it is to fix it. Efforts are being

made to make software testing faster, cheaper, and more reliable. Test automation is an important step in which

instead of human tester dedicated software is used for testing [5].

Software aging is related with the life-span of the software. As the software gets older it shows

degraded performance, an increased failure occurrence rate and system hanging or crashing [6, 7]. As the

runtime period of the software increases, its failure rate also increases. Aging effects in a system can only be

detected while the system is running. It occurs because of software faults, called Aging-Related Bugs (ARBs)

[6, 7]. However, due to the nature of this error (errors occur over time), it is difficult to correct the software

faults for good during the time-limited testing process. Rebooting is a short term solution of this problem. The

aging effect cannot be reversed without external intervention. ARBs can produce resource leakage, unterminated

threads and processes, unreleased files and locks, numerical errors, and disk fragmentation [6, 7].

Data mining techniques analyse huge datasets [8, 9]. Supervised learning and unsupervised learning are

two important data mining problems. In supervised learning, the output is given. The task is to create a model

from a given training data (data points with output) such that when a new data point without output comes, the

model predicts the output of the data point. When the output is class, the problem is called classification

problem. If the output is a real number, the problem is called a regression problem. Decision trees, Naïve Bayes

classifiers, neural networks etc. are popular classifiers [8, 9]. In clustering, the output of data points are not

provided, the task is to group data points in different clusters such that the data points in a cluster are more

similar than the data points in different clusters. K-means clustering, Hierarchical clustering etc. are popular

clustering methods [8, 9].

Predicting Software Aging Related Bugs From Imbalanced Datasets By Using Data Mini...

DOI: 10.9790/0661-18132735 www.iosrjournals.org 28 | Page

The problem discussed in the paper is a classification problem as we want to predict whether given

software has bugs or not.

Classifier ensembles are methods to improve the accuracy of classification algorithms. Classifier

ensembles are combination of accurate and diverse classifiers. The final result of an ensemble depends on output

of individual classifiers. Classifier ensembles generally perform better than single classifiers [10]. Bagging [11]

and Boosting [12] are two popular classifier ensembles.

Some datasets have class-imbalanced problem [13]. In two-class setting, most of the data points belong

to one class. This problem is also called imbalanced dataset problem. The aim of this problem is to detect a rare

but important case. The classifier algorithms may not perform well on these datasets. To overcome this problem,

different approaches have been suggested. Undersampling of majority class and oversampling of minority class

are two popular preprocessing approaches to overcome class-imbalanced problem [13]. A classifier algorithm

with a cost matrix is another approach to overcome this problem. The cost matrix gives more weightage to

classification error of minority class point. The decision threshold is shifted towards minority class. In other

words, the trained model is biased towards minority class [13].

Software repositories contain datasets about software projects. Mining these datasets can be used to

uncover interesting and actionable information about software projects [14, 15]. This information can be used by

software practitioners to improve the quality of software projects. Mining software engineering data has

emerged as a research direction in test automation. Application of data Mining software metrics have been

widely used in the past for predictive and explanatory purposes. These techniques try to find out relationship

between software metrics and the bugs in a program. Therefore, these techniques can predict which software

program is more likely to have bugs without doing any manual testing [14, 15].

Czibula et al. [16] apply association rules to predict software defects. Moeyersomsa et al. [17] use

decision tree ensembles with rule extraction algorithm for comprehensible software fault and effort prediction.

El-Sebakhy [18] applies functional networks forecasting framework to forecast software development efforts.

Dejaeger et al. [19] present a comparative study of various data mining techniques for software efforts. The

study suggests that Least Squares Regression in combination with a logarithmic transformation performs best.

Cotroneo et al. [20] use various data mining techniques to predict which source code files are more

prone to Aging-Related Bugs. Despite the fact that the datasets are imbalanced they use the normal data mining

techniques. In this paper, a detailed study of general classification algorithms and algorithms for imbalanced

data is carried out on an Aging-Related Bugs dataset.

This paper is organized in the following way. In Section 2, we discussed the data mining techniques

and the dataset used in the study. The results are discussed in Section 3. Conclusion and future work is presented

in Section 4.

II. Material & Methods
We used various general data mining techniques and data mining techniques for imbalanced datasets in

our study. In this section, we will discuss these techniques. We will also discuss about the dataset used in the

study.

2.1 General Data Mining Techniques

i. Decision Trees - Decision trees are very popular classifiers [8, 9]. They create rules which human can

understand easily. These trees are created by recursive partitioning. Started with root node, at each node

of the tree the data points available at the node are split in different braches depending upon the chosen

split criterion eg. Information Gain ratio, Gini index etc. Splitting process terminates after a particular

stopping criterion is reached. C4.5 [21] tree is a very popular decision tree, it uses Information Gain Ratio

criterion.

ii. Multilayers Perceptron (MLP) - Neural networks classifiers are inspired by biological neural networks

[8, 9]. They are interconnected nodes. These networks have weights which represent connection strengths

between neurons. These neural networks can approximate all kinds of decision boundaries [8, 9]. They are

very popular because of their high accuracy. However, they are slow. The selection of parameters is an

important step, improper parameters can reduce the accuracy of neural networks.

iii. Bagging - Bagging is a method to create classifier ensembles [11]. This is a general method and can be

used with any classifier. As discussed in Section 1, for classifier ensembles we need accurate and diverse

classifiers. Bagging creates diverse classifiers by resampling. In each round, the training datasets is created

by sampling the data from training data uniformly and with replacement. Hence, in each round some data

points are not selected whereas some data points are selected more than one time. This process create

diverse datasets, classifiers trained on these datasets are diverse and hence create accurate ensembles.

iv. AdaBoost.M1 - AdaBoost.M1 is a popular classifier ensembles method [12]. In each round of training,

weights are assigned to each data points such that the hard to classify data points will get more weights. In

other words, in subsequent rounds, classifiers try to concentrate more on difficult to predict data points. It

Predicting Software Aging Related Bugs From Imbalanced Datasets By Using Data Mini...

DOI: 10.9790/0661-18132735 www.iosrjournals.org 29 | Page

is a general method and work with all kinds of classifiers. However, it is more successful with decision

trees and neural networks. AdaBoost.M1 has problem with datasets with class noise.

2.2 Data mining techniques for imbalanced datasets

i. C4.5 for imbalanced datasets – Cost-sensitive classifiers are developed for imbalanced datasets [13].

For normal datasets, while calculating accuracy, all data points have same weights, whereas, in classifiers

with cost-sensitive matrix, the error of data points of minority class is given more weight. In other word,

it is better to have classification error for majority class data points than for minority class data points.

The classifier tries to minimize the error function with cost matrix. Ting [22] proposes cost-sensitive trees

in which the weights are assigned to each data point and the initial data point weights determine the type

of tree. The selection of cost-matrix is an important step in the algorithm.

ii. Multilayer Perceptron with Back Propagation Training Cost-Sensitive (NNCN) - Cost-sensitive

learning technique is also useful for neural networks. Zhou et al. [23] show that the threshold-moving

approach can be useful for neural networks for imbalanced datasets. For normal datasets the threshold for

classification is in the middle of the output range. Threshold-moving moves the output threshold toward

inexpensive classes such that data points with higher costs (minor class data points) become harder to be

misclassified.

iii. SMOTEbagging – Undersampling of majority class and over-sampling of minority class are used to

reduce the class imbalance. Chawla et al [24] propose an over-sampling approach (Synthetic Minority

Over-sampling Technique (SMOTE)) in which the minority class is over-sampled by creating “synthetic”

examples rather than by over-sampling with replacement. The minority class is over-sampled by taking

each minority class sample and introducing synthetic examples along the line segments joining any/all of

the k minority class nearest neighbours. They show that combining the proposed under-sampling

technique with general over-sampling method produce good results. In SMOTEbagging [25], in each

round a training dataset is created by bagging process and then the data imbalanced is removed by

SMOTE process. A classifier is trained on this dataset. Classifiers trained in different rounds are

combined to get an ensemble.

iv. SMOTEBoost – SMOTEboost combines SMOTE sampling technique with boosting [26]. Unlike

standard boosting, where all misclassified examples are given equal weights, in SMOTEBoost technique

the weights are updated such that the data points from the minority class are oversampled by creating

synthetic minority class examples.

v. MSMOTEbagging – Modified synthetic minority oversampling technique (MSMOTE) [27] is a

modified version of SMOTE. In this algorithm, the minority class data points are divided into three

subclasses, safe, border and latent noise instances by the calculation of the distances among all data

points. For safe data points, the algorithm randomly selects a data point from the k nearest neighbours; for

border data points, it only selects the nearest neighbour; for latent noise instances, it does nothing.

MSMOTE combines with bagging (as SMOTE combine with bagging to create SMOTEbagging) to

create MSMOTEbagging.

vi. MSMOTEboosting – MSMOTEboosting [28] combines the MSMOTE sampling method with

AdaBoost. This way the minority class is better represented in each round of AdaBoost. For many

datasets, MSMOTEboost has shown better results than SMOTEBoost.

vii. Underbagging – Undersampling technique is used to reduce the number of majority class data points so

that the data imbalanced can be reduced. In Underbagging, a training dataset is created by under-

sampling majority class randomly to build a classifier. Various diverse classifiers created by this method

are combined to create an Underbagging ensemble [29].

viii. Overbagging – To reduce data imbalance, oversampling is used to increase the number of minority class

data points. In Overbagging, a training dataset is created by oversampling minority class randomly to

build a classifier. These diverse classifiers are combined to get an ensemble. This method is called

Overbagging [25].

2.3 Dataset Used In The Study

Cotroneo et al. [20] present a data set for ARB found in MySQL_DBMS (dataset_mysql_innodb-

http://wpage.unina.it/roberto.natella/datasets/aging_related_bugs_metrics/dataset_mysql_innodb.arff). The data

set has 402 files. 370 files has no bugs (0), whereas 32 files has age related bugs (1). It can be considered as a

two class problem. It is an imbalanced data as the ratio of minority class to majority class is 1 to 11.6. Each file

is represented by 83 attributes. The first attribute is the name of the file. 49 attributes come from "Program size"

metrics for the file. These metrics are related to amount of lines of code, declarations, statements, and files. 18

attributes came from “McCabe's cyclomatic complexity" metrics for the file. These metrics represent the

control flow graph of functions and methods. "Halstead" metrics for the file are represented by 9 attributes.

Predicting Software Aging Related Bugs From Imbalanced Datasets By Using Data Mini...

DOI: 10.9790/0661-18132735 www.iosrjournals.org 30 | Page

These metrics represent operands and operators in the program. "Aging-related" metrics for the file are

represented by 6 attributes. These attributes are related with memory usage. For detail information about the

attributes readers may refer to [20].

III. Experiments
Experiments were carried out by using the KEEL software [30]. Table 1 presents the implementation of

different data mining algorithms. Defaults parameters were used in the experiments.

Table 1- Implementation of different data mining algorithms in KEEL software.
 Name of the algorithm KEEL implementation

C4.5 [21] Decision trees

MLP-normal [8, 9] Multilayer Perceptron with Back propagation Training

Bagging [11] Bootstrap Aggregating with C4.5 Decision Tree as Base Classifier

Adaboost.M1 [12] Adaptive Boosting First Multi-Class Extension with C4.5 Decision Tree as Base
Classifier

C4.5-Imbalanced [22] C4.5 Cost-Sensitive

NNCS [23] Multilayer Perceptron with Back propagation Training Cost-Sensitive

SMOTEbagging [25] Synthetic Minority Over-sampling Technique Bagging with C4.5 Decision Tree as Base
Classifier

SMOTEadaboost [26] Synthetic Minority Over-sampling Technique Boosting with C4.5 Decision Tree as

Base Classifier

MSOMTEbagging [27] Modified Synthetic Minority Over-sampling Technique Bagging with C4.5 Decision
Tree as Base Classifier

MSMOTEboosting [28] Modified Synthetic Minority Over-sampling Technique Boost with C4.5 Decision Tree

as Base Classifier

Overbagging [25] Over-sampling Minority Classes Bagging with C4.5 Decision Tree as Base Classifier []

Underbagging [29] Under-sampling Minority Classes Bagging with C4.5 Decision Tree as Base Classifier

3.1 Performance Measures

There are many performance measures for classifiers. However, all performances measures are not

good for imbalanced datasets. First, we discuss various performance measures. Then, we will explain which

performance measures are good for imbalanced datasets [13]. The present problem is a two-class problem. The

minority class (Bug class) is taken as positive class whereas the majority class (Non-Bug class) is taken as

negative class. Table 2 presents the confusion matrix for this problem.

Table 2 - Confusion Matrix
 True Class

Predicted

Class

 Positive Negative

Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

3.1.1 Definitions of various performance measures

1. Accuracy – Accuracy performance measure calculates the number of data points correctly predicted. It is

calculated by the following formula;

 Accuracy = (TP + TN)/(TP + FN + FP + TN);

2. Recall (True positive rate (TPR)) – It calculates the fraction of positive class data points predicted as

positive. The following formula is used to calculate it;

 Recall (TPR) = TP/(TP + FN);

3. True negative rate (TNR) = It calculates the fraction of negative class data points predicted as negative.

It is calculated by using the following formula;

 TNR = TN/(TN + FP)

4. Average of TNR and TPR – The average of TNR and TPR is a performance measure which depends

on both TNR and TPR. It is calculated by using following formula;

 Average = (TNR + TPR)/2

5. G-mean – The geometric mean of TNR and TPR is another performance measure which depends on

both TNR and TPR. This is a very popular performance measure for imbalanced datasets. It is calculated by

following formula;

 G-mean = (TPRxTNR)
1/2

6. Precision- Precision is the fraction of predicted positive class that is actually positive class. It is

calculated by following formula;

 Precision = TP/(TP + FP)

Predicting Software Aging Related Bugs From Imbalanced Datasets By Using Data Mini...

DOI: 10.9790/0661-18132735 www.iosrjournals.org 31 | Page

7. F-measure – F-measure depends on recall and precision. It is another important performance measure. It

is calculated by following formula

 F-measure = 2*Precision*Recall/(Precision + Recall)

Not all performance measures are good for imbalanced datasets. Accuracy is not a good measure for

these datasets as any classifier which will classify all the points to majority class will be very accurate.

However, this is not desirable. The most important thing is that the classifier should be able to predict minority

class data points well (High TPR). At the same time it should have high TNR. The G-mean is a good measure

for imbalanced datasets. F-measure which depends on recall and precision is also a good measure [13]. The user

should select the performance measure depending upon his application.

IV. Results And Discussion
The experiments were carried out by using the 5 fold cross validation. The results are presented in

Table 3 and Fig 1 – Fig. 5. Results suggest that the accuracy of general machine learning algorithms is high (>

0.9). TNR is also quite high. However, TPR is generally low. This is due to the fact that these algorithms are

predicting most of the testing data points as Non-Bug. As the number of Bug data points is very small (32 data

points out of 402 data points). The classification accuracy is quite high. However, these algorithms are not able

to capture Bug data points correctly. This is the reason of low TPR. The G-mean which is the most important

performance measure for imbalanced datasets is low for these algorithms [13]. Generally, the important point of

these kinds of datasets is that we should be able to predict minority class correctly (High TPR) without affecting

the predicting accuracy of majority class much (High TNR). The G-mean captures this fact. Low G-mean

means that they are not able to do it. Generally, these algorithms also have low F-measure.

Table 3- A comparative study of various data mining techniques with different performance measures. The

bold result shows the best performance for a given performance measure.

 Criterion

 Method

Accuracy
TPR

(Recall)
TNR

Mean = TPR

+TNR/2

G-mean =

(TPRxTNR)1/2
Precision F-measure

General

Machine

Learning

Methods

C4.5 0.9080 0.1250 0.9757 0.5503 0.3492 0.3077 0.1778

MLP-normal 0.6045 0.5938 0.6054 0.5996 0.5995 0.1152 0.1929

Bagging 0.9080 0.0625 0.9811 0.5218 0.2476 0.2222 0.0976

Adaboost.M1 0.9154 0.2813 0.9703 0.6258 0.5224 0.4500 0.3462

Machine

Learning

methods for

imbalanced

datasets

C4.5-Imbalanced 0.6841 0.9375 0.6622 0.7998 0.7879 0.1935 0.3209

NNCN 0.5821 0.6875 0.5730 0.6302 0.6276 0.1222 0.2075

SMOTEbagging 0.6741 0.8750 0.6568 0.7659 0.7581 0.1806 0.2995

SMOTEadaboost 0.7488 0.6875 0.7541 0.7208 0.7200 0.1947 0.3034

MSOMTEbagging 0.7164 0.7813 0.7108 0.7460 0.7452 0.1894 0.3049

MSMOTEboosting 0.7463 0.6250 0.7568 0.6909 0.6877 0.1818 0.2817

Overbagging 0.8234 0.3750 0.8622 0.6186 0.5686 0.1905 0.2526

Underbagging 0.6990 0.8750 0.6838 0.7794 0.7735 0.1931 0.3164

Accuracy of different algorithms

Predicting Software Aging Related Bugs From Imbalanced Datasets By Using Data Mini...

DOI: 10.9790/0661-18132735 www.iosrjournals.org 32 | Page

Figure 1- Accuracy of different data mining algorithms. General data mining algorithms, represented by white

columns, show better accuracy as compared to data mining techniques for imbalanced datasets, represented by

black columns.

Figure 2- G-mean of different data mining algorithms. Data mining techniques for imbalanced datasets,

represented by black columns, show better G-mean than that of general data mining algorithms, represented by

white columns.

Figure 3- TPR of different data mining algorithms. Data mining techniques for imbalanced datasets, represented

by black columns, show better TPR than that of general data mining algorithms, represented by white columns.

TPR of different

algorithms

Predicting Software Aging Related Bugs From Imbalanced Datasets By Using Data Mini...

DOI: 10.9790/0661-18132735 www.iosrjournals.org 33 | Page

Figure 4- TNR of different data mining algorithms. General data mining algorithms, represented by white

columns, show better TNR as compared to data mining techniques for imbalanced datasets, represented by black

columns.

Figure 5- F-measure of different data mining algorithms. Data mining techniques for imbalanced datasets,

represented by black columns, show better F-measure than that of general data mining algorithms, represented

by white columns.

 Table 4- Confusion matrix for C4.5 decision tree.
 True Class

Predicted Class

 Bug No-Bug

Bug 4 9

No-Bug 28 361

Table 5- Confusion matrix for AdaBoost.M1.
 True Class

Predicted Class

 Bug No-Bug

Bug 9 11

No-Bug 23 359

Table 6- Confusion matrix for C4.5-Imbalanced decision tree.
 True Class

Predicted Class

 Bug No-Bug

Bug 30 125

No-Bug 2 245

TNR of different algorithms

F-measure of different algorithms

Predicting Software Aging Related Bugs From Imbalanced Datasets By Using Data Mini...

DOI: 10.9790/0661-18132735 www.iosrjournals.org 34 | Page

To understand this in a better way, the confusion matrix of C4.5 classifier is presented in Table 4. The

classifier predicted only 4 out of 32 Bug data points correctly. Hence, low TPR is achieved. Only 13 data points

are classified as Bug. In other words, almost all the points are predicted Non-Bug (389 out of 402 data points).

Adaboost.M1 gives the best F-measure. To understand this in a better way, the confusion matrix of

AdaBoost.M1 is presented in Table 5. The algorithm predicted 9 out of 32 Bug data points. However, the

precision in this case is relatively high (0.4500). The high precision leads to high F-measure. However, the G-

measure is relatively low (0.5224).

The accuracy of data mining algorithms for imbalanced datasets is relatively low. However, the G-

mean is generally high (most of the cases more than 0.7). The best case is C4.5 for imbalanced dataset (0.7998).

The TPR for these algorithms is relatively high. C4.5 for imbalanced dataset gave best TPR (0.9375). This

suggests that these algorithms are able to predict large number of Bug data points without affecting TNR much.

To analyse the performance, we presented the confusion matrix for C4.5 decision tree for imbalanced dataset in

Table 6. The matrix suggests that the algorithm was able to predict 30 out of 32 Bug data points correctly.

However, it also predicted a large number of Non-Bug data points as Bug data points. That leads to lower TNR

as compare to those of general data mining algorithms. The F-measure of these algorithms is also relatively

high.

It is important to note that the selection of performance measures for a given problem is an important

step. The G-mean and F-measure are the best performance measure for the imbalanced datasets. The data

mining algorithms for imbalanced datasets performed well on these two measures. The results suggest that for

Aging Related Bug problem in which the number of Bug data points is small, data mining algorithms for

imbalanced datasets should be used.

V. Conclusion
In this paper, we applied data mining techniques for imbalanced datasets to predict ARBs in a dataset

related with an open source software; MYSQL DBMS [20]. Results suggest that these data mining algorithms

are more useful than general data mining algorithms for predicting ARBs. Data mining algorithms for

imbalanced datasets have better prediction (TPR) for Bugs data points (minority class). These algorithms also

have better G-mean measure. More datasets will be used in the future. Feature selection techniques will also be

applied in future to remove the insignificant features. One class classifier is an approach to analyse dataset when

we have points of only one class [31]. In future, we will see the application of one class classifiers for predicting

ARBs.

References
[1]. S. L. Pfleeger and J. M. Atlee, Software Engineering: Theory and Practice, Prentice Hall; 4 edition, 2009.

[2]. Ian Sommerville, Software Engineering, Pearson; 9 edition, 2010.
[3]. M. McDonald, R. Musson and R. Smith, The Practical Guide to Defect Prevention, Microsoft Press, 2007.

[4]. M. Dowson, The Ariane 5 Software Failure, Software Engineering Notes 22 (2): 84. 1997.

[5]. D. Huizinga, Dorota and A. Kolawa, Automated Defect Prevention: Best Practices in Software Management. Wiley-IEEE
Computer Society Press. 2007.

[6]. M. Grottke, R. Matias, R., and K. S. Trivedi, The fundamentals of software aging, In IEEE Proceedings of Workshop on Software

Aging and Rejuvenation, in conjunction with ISSRE. Seattle, WA. 2008.
[7]. D. Controneo, R. Natella, R. Pietrantuono, and S. Russo, A survey on software aging and rejuvenation studies, IACM Journal on

Emerging Technologies in Computing Systems (JETC), 2014.

[8]. J. Han, M. Kamber and J. Pei, Data Mining: Concepts and Techniques, Morgan Kaufmann; 2011.
I. H. Witten, E. Frank, M. A. Hall (Author) Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann;

2011.

[9]. L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience, 2004.
[10]. L. Breiman. Bagging predictors. Machine Learning 24, 1996, pp. 123-140.

[11]. R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning 37, 1999, pp.

297-336.
[12]. N. Chawla, Data mining for imbalanced datasets: An overview. In. Maimon O., Rokach L. (eds.) The Data Mining and Knowledge

Discovery Handbook, Springer 2005, pp. 853-867.

[13]. A. E. Hassan and T. Xie. Mining software engineering data. In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering, 2010, pp. 503–504.

[14]. H. H. Kagdi, M. L. Collard, and J. I. Maletic. A survey and taxonomy of approaches for mining software repositories in the context

of software evolution. Journal of Software Maintenance, 19(2), 2007, pp. 77–131.
[15]. G. Czibula, , Z. Marian and I. G. Czibula, Software defect prediction using relational association rule mining. Information

Sciences, 264, 2014, pp. 260–278.

[16]. J. Moeyersomsa, E. Junqué de Fortunya, K. Dejaegerb, , B. Baesensb, D. Martensa, Comprehensible software fault and effort
prediction: A data mining approach, Journal of Systems and Software, Volume 100, Feb. 2015, pp. 80–90.

[17]. E. A. El-Sebakhy, Functional networks as a novel data mining paradigm in forecasting software development efforts, Expert

Systems with Applications, 38(3), March 2011, pp. 2187–2194.
[18]. K. Dejaeger, W. Verbeke, D. Martens, and B. Baesens. Data mining techniques for software effort estimation: A comparative study.

IEEE TSE, 38(2), 2012, pp. 375–397.

[19]. D. Cotroneo, R. Natella, R., and R. Pietrantuono, Predicting aging-related bugs using software complexity metrics. Performance
Evaluation, 70(3), 2013, pp. 163–178.

Predicting Software Aging Related Bugs From Imbalanced Datasets By Using Data Mini...

DOI: 10.9790/0661-18132735 www.iosrjournals.org 35 | Page

[20]. J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993.

[21]. K.M. Ting. An instance-weighting method to induce cost-sensitive trees. IEEE Transactions on Knowledge and Data Engineering
14:3, 2002, pp. 659-665.

[22]. Z.-H. Zhou, X.-Y. Liu. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE

Transactions on Knowledge and Data Engineering 18:1, 2006, pp. 63-77.
[23]. N. V. Chawla, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer. SMOTE: Synthetic Minority Oversampling TEchnique. Journal

of Artificial Intelligence Research,16, 2002, 321–357.

[24]. S. Wang, X. Yao. Diversity analysis on imbalanced data sets by using ensemble models. IEEE Symposium Series on Computational
Intelligence and Data Mining (IEEE CIDM 2009). Nashville TN (USA, 2009), 2009, pp. 324-331.

[25]. N.V. Chawla, A. Lazarevic, L.O. Hall, K.W. Bowyer. SMOTEBoost: Improving prediction of the minority class in boosting. 7th

European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD 2003). Cavtat Dubrovnik (Croatia,
2003), 2003, pp. 107-119.

[26]. S. Wang, X. Yao. Diversity analysis on imbalanced data sets by using ensemble models. IEEE Symposium Series on Computational

Intelligence and Data Mining, Nashville TN, USA, 2009, pp. 324-331.
[27]. S. Hu, Y. Liang, L. Ma, Y. He. MSMOTE: Improving classification performance when training data is imbalanced. 2nd

International Workshop on Computer Science and Engineering, Qingdao, China, 2009, pp. 13-17.

[28]. R. Barandela, R.M. Valdovinos, J.S. Sánchez. New applications of ensembles of classifiers. Pattern Analysis and Applications 6,
2003, pp. 245-256.

[29]. J. Alcalá-Fdez, A. Fernandez, J. Luengo, J. Derrac, S. García, L. Sánchez, F. Herrera. KEEL Data-Mining Software Tool: Data Set

Repository, Integration of Algorithms and Experimental Analysis Framework. Journal of Multiple-Valued Logic and Soft
Computing 17:2-3, 2011, pp. 255-287.

[30]. S.S. Khan, and M.G. Madden . A survey of recent trends in one class classification. Lect. Notes Comput. Sci. 6206, 2010, pp.

188−197.

