Lossless and Lossy Polynomial Image Compression

Ghadah Al-Khafaji and Maha A. Rajab

Department of Computers, College of Science, BaghdadUniversity, Baghdad, Iraq Department of Computers, College of Ibn Al-Haytham, BaghdadUniversity, Baghdad, Iraq

Abstract: This paper introduced a new hybrid image compression system of the lossless non-linear polynomial coding base and lossy linear polynomial base. The results are promising, since it would achieve high compression ratio with excellent medical image quality. **Keywords:** lossless and lossy, linear and non-linear polynomial coding.

I. Introduction

Nowadays, compression is become an essential requirement of transmission applications and storage. Image compression is the application of data compression on digital images [1], that aims to eliminate the data redundancies, which simply categorized into three essential redundancies: inter-pixel redundancy, coding redundancy and psycho-visual redundancy[2-3], for more details see [4-5].

In general, the image compression techniques classified into two types: lossless and lossy depending on the redundancies utilized, the first one also called information preserving or error free techniques, as their name indicates that no loss of information and the reconstructed image is identical to the original one and based on using the inter pixel redundancy and/or coding redundancy, that characterized by low compression ratio, with techniques such as Huffman coding, arithmetic coding and run length coding [6-7]. The second one, where some information may be lost through the processing but the distortion level of the reconstructed image must be acceptable and cannot be known by the human visual system. In other words, the original image can not be reconstructed exactly from the compressed data, where there is some degradation on image quality based on using of psycho-visual redundancy, either alone or combined with statistical redundancy with high compression ratio [8-9]. Review on various image compression techniques can be found in [6-10-11].

The linear polynomial coding is a modern effective image compression technique used by a number [12-13-14] based on using the image spatial domain that work either of linear base model or of nonlinear base model [15-16-17].

This paper is completely dedicated to the investigation of the hybrid compression system to compress the images effectively, using the lossy linear polynomial coding technique (first order Taylor series) and lossless non-linear polynomial coding technique (second order Taylor series).

This paper is organized as follows; section 2 discussed the proposed compression system. Section 3 explained experimental results and discussion. Conclusions are shown in Section 4.

II. The Proposed Compression System

The hybrid proposed compression system mixed the lossy and lossless types along with utilization of polynomial coding of linear (needthree coefficients a_0,a_1,a_2) and nonlinear base (i.e., require six coefficients a_0,a_1,a_2,a_3,a_4,a_5). The source coding and decoding of the proposed system are illustrated in figure 1 and figure 2 respectively. Figure 3, shows an example of the proposed compression techniques. The following steps are illustrated the proposed hybrid image compression system:

1. Load the input uncompressed grayscale image *I* of size $(N \times N)$.

2.Partition the image (*I*) into nonoverlapped blocks of fixed size $n \times n$, such as (8×8), then create an image called sampled image (*S*) of size quarter than the partitioned image *I*. in other words, the technique used two images one corresponding to the partitioned image *I* and the sampled image of small redundancy[7].

3. Apply non-linear polynomialcoding technique on the partitioned sampled image S of fixed size $n \times n$ to compute the estimated coefficients according to equations (1-17) below [18].

$$\begin{aligned} a_{1} &= \frac{\sum_{x=0}^{n-1} \sum_{y=0}^{n-1} S(x,y)(x-xc)}{\sum_{x=0}^{n-1} \sum_{y=0}^{n-1} (x-xc)^{2}} \dots (2) \\ a_{2} &= \frac{\sum_{x=0}^{n-1} \sum_{y=0}^{n-1} \sum_{y=0}^{n-1} (x-xc)^{2}}{\sum_{x=0}^{n-1} \sum_{y=0}^{n-1} (y-yc)^{2}} \dots (3) \\ \\ a_{3} &= \frac{|W_{1} \ V_{1} \ W_{2} \ W_{2} \ W_{3} \ W_{4}|}{|W_{2} \ W_{3} \ W_{4}} \dots (4) \\ \\ a_{3} &= \frac{|\sum_{x=0}^{n-1} \sum_{y=0}^{n-1} S(x,y)(x-xc)(y-yc)}{\sum_{x=0}^{n-1} \sum_{y=0}^{n-1} (x-xc)^{2}(y-yc)^{2}} \dots (4) \\ \\ a_{5} &= \frac{\sum_{x=0}^{n-1} \sum_{y=0}^{n-1} S(x,y)(x-xc)(y-yc)}{\sum_{x=0}^{n-1} \sum_{y=0}^{n-1} (x-xc)^{2}(y-yc)^{2}} \dots (6) \\ \\ a_{4} &= \frac{|W_{1} \ W_{2} \ W_{3} \ W_{4}}{|W_{2} \ W_{3} \ W_{4}} \dots (6) \\ \\ \\ xc &= yx = \frac{n-1}{2} \dots (7) \\ \\ V_{1} &= a_{0}W_{1} + a_{3}W_{2} + a_{4}W_{2} \dots (6) \\ \\ W_{2} \ W_{3} \ W_{4} \ W_{3} \dots (1) \\ \\ W_{2} &= a_{0}W_{2} + a_{3}W_{4} + a_{4}W_{3} \dots (1) \\ \\ W_{1} &= n \times n \dots (11) \\ \\ W_{2} &= \sum_{x=0}^{n-1} (x-xc)^{2} = \sum_{y=0}^{n-1} (y-yc)^{2} \dots (12) \\ \\ W_{3} &= \sum_{x=0}^{n-1} \sum_{y=0}^{n-1} (x-xc)^{2} (y-yc)^{2} \dots (13) \\ \\ W_{4} &= \sum_{x=0}^{n-1} \sum_{y=0}^{n-1} (x-xc)^{2} (y-yc)^{2} \dots (14) \\ \\ Where \\ \\ V_{1} &= \sum_{x=0}^{n-1} \sum_{y=0}^{n-1} (x-xc)^{2} S(x,y) \dots (15) \\ \\ V_{2} &= \sum_{x=0}^{n-1} \sum_{y=0}^{n-1} (y-yc)^{2} S(x,y) \dots (16) \\ \\ V_{3} &= \sum_{x=0}^{n-1} \sum_{y=0}^{n-1} (y-yc)^{2} S(x,y) \dots (17) \end{aligned}$$

Where S represent the sampled image. Where xc equal to yc that represents a block center of size $(n \times n)$. 4. Create the predicted image sampled \tilde{S} as a nonlinear combination polynomial model of coefficients and pixel

distance as equation (18), such as [18]:

 $\tilde{S} = a_0 W_1 + a_1 (x - xc) + a_2 (y - yc) + a_3 (x - xc)^2 + a_4 (y - yc)^2 + a_5 (x - xc) (y - yc) \dots \dots \dots (18)$ 5. Find the residual image *Res* or prediction error (as difference between original and prediction image), as equation (19).

7. Apply linear polynomial coding technique on the original partitioned image *I* to compute the estimated coefficients $(a_0, a_1 \text{ and } a_2)$ according to equations (20-22)[19].

where I(x,y) is the original image of size NxN that partitioned into fixed block size $n \times n$. Where xc equal to yc that represents a block center of size $(n \times n)$ as equation (7).

8. Using the uniform scalar quantization to quantize the estimated coefficients of the linear base, where each coefficient is quantized using different quantization level, The quantizer/dequantizer as illustrated in equations (23-25).

Where Q_{a_0} , Q_{a_1} , Q_{a_2} are represented the quantized value of the coefficients (a_0, a_1 and a_2) respectively, while $QL_{a_0}, QL_{a_1}, QL_{a_2}$ are represented the quantization levels of the parameters. $DQ_{a_0}, DQ_{a_1}, DQ_{a_2}$ represents the dequantization value of the estimated parameters.

9. Create the predicted image value I using the dequantized polynomial coefficients for each encoded block as equation (26).

$$\tilde{I} = DQ_{a_0} + DQ_{a_1}(y - xc) + DQ_{a_2}(x - yc) \dots \dots \dots \dots \dots \dots \dots \dots (26)$$

10. Find the residual or prediction error as difference between the original image and the predicted one I as equation (27).

11.Apply the uniform scalar quantization to quantize the residual as equation (28) shown quantizer/dequantizer of residual.

$$Q_{Residual} = round\left(\frac{Residual}{QL_{Residual}}\right) \rightarrow DQ_{Residual} = Q_{Residual} \times QL_{Residual} \dots \dots (28)$$

12. Encode the estimated coefficients of linear polynomial model and residual image lossily, also by utilizing both the run length coding (RLC) and Huffman coding.

13. The decoder reconstruct the inverse images, correspond to the identical \hat{S} image and the approximated \hat{I} using the nonlinear/linear coefficients and residuals images as equations (29-30).

$\hat{S}(x, y) = Res(x, y) + \tilde{S}(x, y) \dots $	(29)
$\hat{I}(x,y) = DQ_{Residual}(x,y) + \tilde{I}(x,y) \dots \dots$	(30)
14. The reconstructed hybrid image of lossy and lossless base as equation	(31).
$\widehat{M}(x,y) = \widehat{S}(x,y) + \widehat{I}(x,y) \dots \dots$	(31)

Figure 1- The proposed source coding of compression system.

Figure 2- The proposed source decoding of compression system.

III. Experimental and Results

Three standard medical images are selected for testing the proposed hybrid compression system, the images of 256 gray levels(8 bits/pixel) of size 256×256 (see figure 4 for an overview). To evaluate theperformance of the proposed compression system, the compression ratio used (CR)which is the ratio between the original image size and the compressed size (see equation 32), also the peak signal to noise ratio(PSNR) along with normalized root mean square error (NRMSE) adopted, see equations(33-34), where a large PSNR value implicitly means high image quality and close to the original image and vice versa, while NRMSE where the range of the values between 0 and 1, if the value is close to zero refers to high image quality and vice versa [7].

$$Compression Ratio = \frac{Size \ of \ Original \ Image}{Size \ of \ Compressed \ Information} \dots \dots \dots (32)$$

The result of the proposed hybrid compression system indicates that the high image quality is achieved because of utilization of effective non-linear losslesspolynomial coding technique along with the efficient linear lossy polynomial coding technique.

The results showed in table (1) of block sizes 8×8 . It is obvious that the blocks size and the quantization step affected the technique performance, where the quantization process utilized for the linear polynomial model only, so the quantization levels of the coefficients and the residual affects the image quality and compression ratio.

Figures 5illustrated the results of the compressed three tested images of block sizes 8×8 , and quantization level of three coefficients as, Qa0, Qa1,Qa2={1,2,2} and quantization level of residual equal to {30}.

Knee Image

Brain Image Figure 4- Overview of the tested images.

Knees Image

Table 1- Illustrated the results of three images for block size (8×8) and value of quantization levels of	of
coefficients equals to 1,1,1, and 1,2,2, with different quantization levels of residual image.	

Test	Quantization	Block Size {8×8}			Block Size {8×8}		
Images	Residual	Quantization Coefficients			Quantization Coefficients		
		1,1,1			1,2,2		
		NRMSE	PSNR	CR	NRMSE	PSNR	CR
Knee	5	0.0946	27.0276	8.1600	0.0950	26.9927	8.3560
	10	0.0528	32.0880	8.2701	0.0531	32.0379	8.4010
	20	0.0288	37.3597	8.6350	0.0290	37.3014	8.9300
	30	0.0198	40.5962	9.1633	0.0200	40.5307	9.3650
	40	0.0151	42.9651	9.4210	0.0152	42.8877	9.6630
	50	0.0122	44.7930	9.5901	0.0124	44.7101	9.8913
Brain	5	0.2186	21.0490	10.0405	0.2189	21.0374	10.2561
	10	0.1222	26.0966	10.1352	0.1224	26.0822	10.3035
	20	0.0617	32.0426	10.4600	0.0618	32.0247	10.6333
	30	0.0408	35.6381	10.5459	0.0408	35.6235	10.7989
	40	0.0304	38.1716	10.6761	0.0306	38.1395	10.8055
	50	0.0243	40.1437	10.7002	0.0243	40.1277	10.8952
Knees	5	0.1248	27.5953	9.1097	0.1250	27.5805	10.0045
	10	0.0621	33.6622	9.3822	0.0622	33.6355	10.2593
	20	0.0328	39.2129	9.4982	0.0329	39.1631	10.5476
	30	0.0223	42.5402	9.7101	0.0226	42.4497	10.6680
	40	0.0171	44.8702	9.8050	0.0173	44.7642	10.7999
	50	0.0138	46.7091	9.8832	0.0140	46.6091	10.9079

IV. Conclusions

This paper attempts to exploit the hybrid image compression system based on lossless non- linear polynomial coding to compress the sampled image and lossy linear polynomial coding to compress the original image. The experimental results clearly showed that when increased the block size the compression ratio increased and also reduced image quality and vice versa. Also shown when increase the quantization levels of residual the image quality increased and CR decreased and vice versa.

References

- [1]. Alka sharma, Gagangeet Singh Aujla and Jagbir Singh Gill. **2013**. A Comprehensive lossless modified compression in medical application on DICOM CT images. IOSR Journal of Computer Engineering (IOSR-JCE). Issue 3, Vol. 15, December, pp: 01-07.
- [2]. Fuangfar Pensiri and Surapong Auwatanamongkol.2012. A lossless image compression algorithm using predictive coding based on quantized colors. Wseas Transactions on Signal Processing, Fuangfar Pensiri, Surapong Auwatanamongkol. E-ISSN: 2224-3488, Issue 2, Vol. 8, April, pp: 43-53.
- [3]. Pralhadrao V Shantagiri and Saravanan K N.2013. Pixel Size Reduction Loss-Less Image Compression Algorithm. International Journal of Computer Science & Information Technology (IJCSIT) Vol. 5, No. 2, April, pp: 87-95.
- [4]. Gaurav Vijayvargiya, Dr. Sanjay Silakari and Dr.Rajeev Pandey. **2013**. A Survey: Various Techniques of Image Compression. (IJCSIS) International Journal of Computer Science and Information Security, Vol. 11, No. 10, October.
- [5]. Rasha Al-Tamimi1 and Ghadah Al-Khafaji. 2015. Image Compression Using Hirarchical Linear Polynomial Coding. International Journal of Computer Science and Mobile Computing, Vol.4 Issue.1, January, pp: 112 – 119.
- [6]. Khalid. S. 2006. Introduction to Data Compression, Third Edition, Elsevier Inc., San Francisco United States of America.
- [7]. G. K. Al-Khafaji, 2012. Intra and Inter Frame Compression for Video Streaming, Ph.D. Thesis, Dept. Computer Science., University of Exeter, Exeter United Kingdom, February.
- [8]. Sachin Dhawan. 2011. A Review of Image Compression and Comparison of its Algorithms. International Journal of Electronics & Communication Technology. I S S N: 2 2 3 0 - 7 1 0 9, IJECT Vol. 2, Issue 1, March, pp: 22-26.

{30}.

- Haider Al-Mahmood and Zainab Al-Rubaye. 2014. Lossless Image Compression based on Predictive Coding and Bit Plane Slicing. International Journal of Computer Applications (0975 – 8887). Vol. 93, No. 1, May, pp:01-06.
- [10]. Amruta S. Gawande and Sanjay L. Nalbalwar. 2013. A Review on Lossy to Lossless Image Coding. International Journal of Computer Applications (0975 – 8887) Vol. 67, No.17, April, pp: 9-16.
- [11]. G. Al-Khafaji, **2013**. Hybrid Image Compression Based on Polynomial and Block Truncation Coding, International Conference on Electrical, Communication, Computer, Power, and Control Engineering (ICECCPCE13), Mosul Iraq, Dec.
- [12]. Rupali Sachin Vairagade, Yogita S. Hande, Sandeep M. Chitalkar and Santosh S. Darade. 2015. Predictive Coding: A Reducing Memory Consumption with a Lossless Image Compression Algorithm. International Journal of Innovative Research in Computer and Communication Engineering. Vol. 3, Issue 12, December, pp: 12875-12883.
- [13]. Ruben Verhack, Lieven Lange, Peter Lambert, Rik Van de Walle and Thomas Sikora. 2015. Lossless Image Compression based on Kernel Least Mean Squares. IEEE. Pp: 189-193.
- [14]. Petros A. Maragos, Ronald W. Schafer and Russell M. Mersereau. 1984. Two- Dimensional Linear Prediction and Its Application to Adaptive Predictive Coding of Images. IEEE Trasactions on Acoustics, Speech and Signal Processing, Vol Assp.32, No.6, December, pp:1213-1229.
- [15]. Ghadah Al-Khafaji. 2012. Adaptive Selective Predictive For Image Data Compression. Iraqi Journal of Science. Vol. 53, No. 4, December, pp:1181-1187.
- [16]. M. Nappi and D. Vitulano. 1999. Linear prediction image coding using iterated function systems. Image and Vision Computing, pp: 771–776.
- [17]. Giovanni Motta, James A. Storer, and Bruno Carpentieri. 2000. Lossless Image Coding via Adaptive Linear Prediction and Classification. Proceedings of The IEEE, VOL. 88, NO. 11, November, pp: 1790- 1796.
- [18]. Dr. Loay E. George and Dr. Ghadah Al-Khafaji. 2015. Image Compression based on Non-Linear Polynomial Prediction Model. International Journal of Computer Science and Mobile Computing, Vol.4 Issue.8, August, pp: 91-97.
- [19]. Loay E.George and Bushra A. Sultan. 2011. Image Compression Based On Wavelet, Polynomial and Quadtree. Journal of Applied Computer Science & Mathematics, Vol.11 No. 5, pp:15-20.