
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 20, Issue 6, Ver. III (Nov - Dec 2018), PP 46-52

www.iosrjournals.org

DOI: 10.9790/0661-2006034652 www.iosrjournals.org 46 | Page

Managing IoT data using relational schema and JSON fields, a

comparative study

Christodoulos Asiminidis
1
, George Kokkonis

2
, Sotirios Kontogiannis

1

1
Laboratory team of Distributded Microcomoputer systems, Department of Mathematics, University of

Ioannina, Ioannina, Greece
2
Department of Business Administration, T.E.I of Western Macedonia, Grevena, Greece

Corresponding Author: Christodoulos Asiminidis

Abstract: Data transmitted from sensors and actuators as part of the Internet of Things (IoT) infrastructure are

stored either in database tables following relational schema and normalization forms or in schema less

collections using JSON string or binary formulation. As data content in such repositories radically increases,

the selection and use of the appropriate storage types are essential in terms of performance and robustness.

Furthermore, taking into account the amount of database capacity and processing needed, as well as the

exponential increase and use of IoT devices, storage and retrieval of sensory data are the main bottlenecks and

set the boundary requirements for IoT services functionalities.

This paper tries to identify the performance characteristics that derive from data operations over IoT big

datasets that are stored as records in relational schema tables or documents in tables containing JSON fields.

Trying to pose an answer to the question which one performs better than the other the PostgreSQL open source

relational database has been selected and examined for insert, select/find and aggregation function queries. The

comparative study results are presented and thoroughly discussed.

--- ----------

Date of Submission: 20-12-2018 Date of acceptance: 06-01-2019

-- ---------------

I. Introduction
Databases are used in order to satisfy data storage requirements. After their inception in the 1960’s

several types have been developed, each one using its own supported data representation. Initially performing as

linked list navigational databases followed by the relational databases schemas and supported fields with joins,

triggers, views, functions and stored procedures and afterwards object-oriented capabilities and other specific

type fields for the process of storing images, videos or coordinates and vector objects (GIS capabilities).

In the late 2000s NoSQL schema less data stores appeared for the purpose of data storage of entities

that their attributes timely change. The main representatives of these databases are MongoDB, Cassandra, Hyper

table, HBase/Hadoop and CouchDB [15] emerged and became a popular trend [4]. Most commonly used

database systems today use the relational model [7], which includes SQL as its query language. Nevertheless,

over the last years NoSQL database solutions are becoming more prominent as massive amounts of rapidly

growing data of non specific formulation or entities of non atomically fields and fields with partial and transitive

dependencies are being collected today, in the form of super-entities called collections [11, 20]. This poses the

question if the relational model reached their service limits.

Relational databases use normality forms (1NF, 2NF, 3NF, BCNF, 4NF and 5NF) on the notion of

entities containing fields and entity records filling up table datasets. Normalization processes include the

analysis of functional dependencies between entity attributes [11]. Normalization tries to eliminate the

redundancy but not at the cost of integrity so as to improve the performance of database queries. De-

normalization is the inverse process of normalization, where the normalized schema is converted into a schema

which has redundant information. The performance is improved by using redundancy; however, in many cases

keeping the data integrity intact may lead to redundant data inconsistencies [21].

De-normalization processes can also be defined as the methods of storing superior normal form joined

relations as a base relation, which is kept normalizes only in a lower normal form. Such processes try to reduce

the number of database tables, and table joins since joins can slow down the query process. There are various

de-normalization techniques such as: Storing derivable values, pre-joining tables, hard-coded values and

keeping details with master, etc. De-normalized schemas can greatly improve performance under extreme read-

loads but the updates and inserts become programmable complex, since they require data duplication and hence

has to be updated/inserted in more than one place [16].

NoSQL databases started gaining popularity in the last decade, when companies began investing into

distributed databases [20]. For this purpose the category of NoSQL databases grew and included many subtypes

Managing IoT data using relational schema and JSON fields, a comparative study

DOI: 10.9790/0661-2006034652 www.iosrjournals.org 47 | Page

each better suited to specific datasets than others. Using subtypes containing attributes and super types linked to

subtypes, NoSQL databases provide a schema flexibility that can be useful for data records of arbitrary fields

offering also easy programming discrepancies away from the precariousness of relational databases query

preparations and strict type checks. The notion of "documents" is the central concept here with documents being

the equivalent of records in relational databases and collections being similar to tables.

The most commonly used document store database is MongoDB [7, 14], used by many IoT services,

since IoT services use sensors that acquire data objects of variable and time vary schema records. However, the

programming conveniences offered, there is a processing effort tradeoff regarding the transactions performed in

a non relational dataset [13]. This continuing battle between relational databases and NoSQL datasets lead to the

incorporation of the NoSQL JSON formulation and corresponding documents query functionality into particular

relational database fields called JSON, JSONP (JSON with padding) and JSONB [9] accordingly. More

particularly open source PostgreSQL database as a pioneer int the area of object oriented databases has already

implemented the JSON and JSONB fields in its RDBMS engine, without the complexity of having two separate

databases for SQL and NoSQL datasets [18].

In this paper the schema full and schema less representations of a big dataset containing IoT sensory

measurements are put to test and examined in terms of performance over bulk data inserts, query data select

aggregations and stored procedures internally implemented in the PostgreSQL database as aggregation

functions. In section II an outline of the performance characteristics of relational PostgreSQL over NoSQL

MongoDB are presented. In section III the authors present their performance evaluation scenarios and results

followed by section IV, the evaluation summary conclusions.

II. Related Work
The main aspect of relational databases which guarantees the reliability of transactions is their

adherence to the ACID properties: Atomicity, Consistency, Isolation, and Durability [2, 3]. That is, preserving

data integrity, stability and availability. An important difference between relational databases and NoSQL

databases is that NoSQL databases do not fully guarantee ACID properties. Their lack of ACID guarantees is

due to their deployment architecture which typically involves having multiple nodes in order to achieve

horizontal scalability and recovery in case of failover. This deployment, which is also referred to as replication,

creates consistency issues to synchronization which can result in a secondary node becoming primary but not

have an up-to-date content. NoSQL databases, apart from using an Application Programming Interface (API) or

query language other than SQL to access and modify data may also use the Map reduce method which is

important for performing a specific function on clustered dataset and retrieving only the queried result[8].

Relational databases mainly include only schema full tables and fields, with the exception of

PostgreSQL. PostgreSQL supports two additional fields called JSON and JSONB [18]. These two data types

JSON and JSONB, as defined by the PostgreSQL documentation, difference is that JSON field stores an exact

copy of the JSON input text, whereas JSONB stores data in a decomposed byte-form. This form is slower for

data input and storage size, since it requires more space than the JSON field for a specific record, but it is faster

to process, it supports indexing and joins which in turn can lead to simpler designs by replacing the JSON

fields’ necessity of an entity attribute value.

In order to measure the databases performance and scalability, uniform metrics are required. The most

important metric for the application layer protocol that performs database transactions, is the time required for

completing a set of prepared queries, which translates to the time required for the database service to complete a

transaction (series of prepared SQL queries). Then the average query execution time is derived from the average

number of queries per transaction and the average transactions execution time [2, 3 19]. For the process of

transaction consistency estimation authors propose the query jitter metric (Tj) which is calculated using

Equation 1 and expresses database queries variation over time:

𝑇𝑗 = 𝑇𝐷𝐵𝑖𝑛𝑖𝑡 +
 𝑑𝑇1−𝑑𝑇2

𝛴𝑅1
𝑖𝑛𝑠𝑒𝑟𝑡 𝑢𝑝𝑑𝑎𝑡𝑒 ..

−𝛴𝑅2
𝑖𝑛𝑠𝑒𝑟𝑡 𝑢𝑝𝑑𝑎𝑡𝑒 .. ∨ (ms) (1)

where the sums ΣR1, ΣR2 are the number of records returned from queries 1 and 2 accordingly and

dT1, dT2 is the time required completing the queries. TDB_init is the average initialization and setup time for

each query which is assumed as a constant coefficient parameter for each query type accordingly and is

calculated experimentally using a zero result query time estimate [6, 10]. The average metric values of all the

benchmarks during a single run of the benchmarking harness are calculated in order to have a better overall idea

of how the database behaves, as a single unity benchmark may deviate due to external factors such as an

operating system utilization of the server CPU or performing burst I/O [1].

Before comparing the performance of embedded PostgreSQL fields, authors bibliographically

examined the performance of PostgreSQL in comparison to MySQL and then collate the results with the mostly

Managing IoT data using relational schema and JSON fields, a comparative study

DOI: 10.9790/0661-2006034652 www.iosrjournals.org 48 | Page

used NoSQL MongoDB database performance evaluation experiments [1, 5, 6, 8, 11, 12, 17]. Focusing on the

cross comparison results of PostgreSQL and MongoDB only, MongoDB is faster than PostgreSQL for insert

queries presents and presents similar performance for Select-find queries, which deteriorates when the number

of records increases in favor of MongoDB. The records/documents update performance between PostgreSQL

and MongoDB showed that MongoDB is also more efficient as the number of records increases. Table 1 below

summarizes the overall performance of PostgreSQL and MongoDB in insert, select-find and update

experiments.

Table 1: Performance summary between PostgreSQL and MongoDB
Queries Small number of records (Less than 10.000) Big number of records (Less than 100.000)

Insert MongoDB performs similarly to PostgreSQL MongoDB is 5-10% faster than PostgreSQL

Select-find MongoDB is 5% slower than PostgreSQL. MongoDB is 15% slower than PostgreSQL.

Update MongoDB performs similarly to PostgreSQL MongoDB is 9% slower than PostgreSQL

In the following section the authors’ performance evaluation scenarios performed in the PostgreSQL, using a

big IoT data set are presented in detail.

III. Performance Evaluation scenarios and results
Author’s experimental scenarios include performance measurements of PostgreSQL relational database

between relational schema and JSON fields using IoT data. For the purpose of this study, authors used the 10.5

version of PostgreSQL, a server of Intel Core 2 CPU which runs at 2 GHz with 4GB RAM where 1.5GB of

RAM are reserved by the PostgreSQL service and a SATA hard disk of 320GB that can sustain 78MB/s of

buffered reads, 1Gb/s cached reads. The system which has been used is Ubuntu 18.04.To minimize network

delays and most importantly to increase jitter time metric accuracy (as calculated from Equation 1), PostgreSQL

queries have been performed locally (minimizing network jitter) in the experimental database server using

Python scripts.

The dataset used included IoT data in JSON format. Every JSON record is 168 bytes on average. The

average insertion, selection, jitter and aggregation function time has been measured and averaged over the

number of records. For the PostgreSQL database authors used a big IoT dataset of derived sensory data from a

meteorological station that contains 1.5 year of measurements (up to 1.100.000 records). The database contains

fields of sensory measurements of date time, temperature, humidity, pressure, dew point, rainfall, and wind

speed and wind direction. Since PostgreSQL supports the JSON data type, authors migrated those data from a

MongoDB database to a PostgreSQL table by storing the JSON sensory data to a PostgreSQL JSON field

without any transformation.

Scenario 1.a. Insert queries and insert queries jitter time on JSON field table
For insert queries experimentation, PostgreSQL JSON field execution time varies according to the

number of documents already inserted in the table. For small number of documents in the table, the average

insertion time is 10.8ms. For medium number of documents in the table there is a slight time decrement and then

increment of the query execution time, which remains almost constant for big number of existing table

documents, close to 9.4ms. Jitter time, is constant as shown at Table 2, which means that there is consistency in

respect to queries execution time.

Table 2:Average insert query execution and jitter time for JSON table
No. of existing

documents in the Table

Avg. Insertion Time (ms) Avg. Jitter Time(ms)

50Κ 10.80475725 0.000147996

100K 10.42759795 6.79E-06

200K 9.805020907 4.0793E-06

300K 9.561896896 1.50E-07

400K 9.858754606 6.45661E-07

500K 10.14608878 -0.000159567E-05

600K 9.981811373 -8.5117E-05

700K 9.232856781 -7.10482E-07

800K 9.428665195 -1.7619E-06

900K 9.667404556 8.32383E-05

1M 9.597382772 -5.40857E-05

Managing IoT data using relational schema and JSON fields, a comparative study

DOI: 10.9790/0661-2006034652 www.iosrjournals.org 49 | Page

Scenario 1.b. Insert queries and insert queries jitter time on relational table
Using the same IoT dataset of the scenario 1.a, authors migrated the data to a relational database table

by transferring each JSON attribute to appropriate size fields. Then the average insertion time and jitter have

been measured. The same PostgreSQL database has been used. For insert queries experimentation, PostgreSQL

relational table maintains a smooth average execution time of 40ms, as presented at Table 3. Jitter time presents

a non-significant variation, which is smaller than 0.002ms.

The comparison between relational table and JSON table insertion time shows that the relational data

insertion time is 4 times less than the JSON field table insertion time. This signifies that the JSON field table

data insertion is much more efficient than the relational table. Regarding jitter time, both relational and JSON

tables jitter footprints are small, which corresponds to no significant database in-consistencies over the number

of existing database records or documents.

Table 3: Average insert query execution and jitter time for the relational table
No. of existing

records in the
table

Avg. Insertion Time for relational schema (ms) Avg. jitter time for relational schema (ms)

50K 40.00160742 0.002390102

100K 40.22283722 0.001426959

200K 41.01418487 -0.00013122

300K 41.32908446 -5.66954E-06

400K 40.68967547 7.51011E-07

500K 41.16252482 -9.57956E-06

600K 40.54067992 -0.000827602

700K 39.84358471 -0.000470476

800K 40.47535517 0.000650847

900K 40.09842679 1.00135E-06

1M 41.29881756 -5.40857E-05

Scenario 2.a. Select queries and select queries jitter time on JSON table
For select queries experimentation, PostgreSQL presents poor performance as the number of selected

documents increases. For small number of documents JSON table did not perform also well. As the number of

records increases, the average select query execution time increases dramatically from 6s for 10K returned

documents up to 10s for 1M documents, as presented at Table 4.

Table 4: Average Select query execution and jitter time for JSON table.
No. of selected
records

Avg. Selection time for JSON table (ms) Avg. Selection jitter time for JSON table (ms)

10K 6157.742023 -3837.219

100K 9899.653912 2939.173937

250K 6756.292105 -722.5949759

400K 7375.653028 1083.530903

500K 8019.70005 -701.3947967

700K 8670.635939 -479.6288009

800K 9075.858831 1003.731966

900K 9473.566055 -529.6288009

1M 10168.4258 -145.3735844

Jitter varies significantly with respect to execution time. The average jitter time for all cases is 1270ms

while the average select query execution time is 8300ms. This means that there is a high inconsistency, since

average jitter time is close to the 15% of the average execution time. For low number of records average jitter is

close to 50% of the select query execution time. For high number of records average jitter is close to 5% of the

select query execution time. This signifies query possible query consistencies that are of high probability for low

number of selected documents that gradually reduces as the number of returned documents increasses

Scenario 2.b. Select queries and select queries jitter time on relational table
For select queries on a relational table, for very small number of records, the average selection time is

600ms. For big number of selected records, the average select query time is 2s. Jitter time has been measured for

this scenario as well. For small number of records, jitter time is close to 1.5% of the total execution time. For big

number of records, jitter time is close to 0.5% of the total execution time. This means that for the relational table

there are no important inconsistencies in respect to the queries execution time.

The comparison results between relational and JSON tables show that for small number of

records/documents, relational table is 8 times faster than the JSON table. For big number of records relational

table is 4 times faster than the JSON table. Authors notice that while the number of records increases, the

Managing IoT data using relational schema and JSON fields, a comparative study

DOI: 10.9790/0661-2006034652 www.iosrjournals.org 50 | Page

execution time difference between relational and JSON query execution time radically decreases, especially

between small and big number of records as mentioned above (see Figures 4, 5). This indicates that the

relational table outperforms JSON table. The selection of records in scenario 2.b has been performed up to 400K

returned records, due to PostgreSQL ‘out of memory’ reached limit.

Table 5:Average select query execution and jitter time for relational table
No. of selected
records

Average Selection time for relational table(ms) Average Selection jitter time for relational table(ms)

10K 968.3041573 2.483129505

100K 397.4092007 -19.48785782

200K 1638.284922 -11.76905575

400K 2348.677874 -76.88879967

Scenario 3.a Aggregation function query time and jitter time on JSON table

For JSON table aggregation queries, authors used the average (AVG) aggregation function and

measured its execution time over the number of selected documents. For small number of documents there is a

constant execution time of 3350ms. For big number of records the average execution time increases up to

6000ms. Results are presented at Table 6.

Jitter time is close to 150 milliseconds for small number of aggregated documents. For big number of

documents, jitter time is close to182ms. This means that jitter time is almost constant over the number of

aggregated documents. This means that there are minimum inconsistencies close to 3.5% of the average

aggregation execution time.

Table 6: Average Aggregation function time and jitter time for JSON table
No. of

aggregate
function records

Average Aggregation function time for JSON

table(ms)

Average Jitter Aggregation function time for JSON

table(ms)

10K 3306.502104 145.2691555

100K 3350.203037 128.3073425

200K 3386.135101 158.2260132

300K 3659.034967 112.8232479

400K 4022.873878 161.7748737

500K 4420.567989 153.7988186

700K 4824.729919 192.7640438

800K 5104.82502 147.9272842

900K 5309.696913 261.1157894

1M 5788.780928 156.0409069

Scenario 3.b Aggregation function query time and jitter on relational table
For the relational table aggregation queries, authors used the average(AVG) aggregation function and

measured its execution time over the number of selected records. It should be mentioned that whilst

implementing a select query over big number of records, the PostgreSQL required memory and crashed out.

Whereas, while calling an aggregated function over a big number of records, the PostgreSQL successfully

returned the results.

As presented at Table 7, for small number of records the aggregation function execution time is on

average 175ms, while for big number of records execution time is 225ms on average. Jitter time presents

variations around 2.75ms on average, which corresponds to the 1.3% of the average aggregation function

execution time. This means that there are no important inconsistencies regarding the aggregation functions

execution time for the relational table. The comparison between relational and JSON tables in aggregation

function query time has shown that relational table is 20 times faster than JSON table. This signifies that

relational table in aggregation function query time is much more efficient than JSON table.

Table 7: Average Aggregation function query time on relational table
No. of aggregate

function records

Average aggregation function time for relational

table(ms)

Average Jitter time for aggregation function for

relational table(ms)

10K 173.3779907 0.271558762

100K 176.5909195 1.517009735

300K 185.8799458 1.37758255

400K 196.336031 0.472784042

600K 206.0739994 1.980781555

700K 216.812849 0.169754028

800K 225.0239849 1.870632172

900K 233.2780361 8.156061172

1M 245.1839447 9.302377701

Managing IoT data using relational schema and JSON fields, a comparative study

DOI: 10.9790/0661-2006034652 www.iosrjournals.org 51 | Page

Scenario 4.a Selection query and jitter time for JSONB table
In this scenario, authors examined the JSONB data fields using the same IoT dataset and performing

select queries. The results are presented in Table 8. The average selection query time for the JSONB table is

proportional to the number of selected documents. For small number of documents, the average selection query

time is 1450ms. For big number of records is 6700ms on average. Results are presented in Table 8.

Jitter time for JSONB table for small number of documents is approximately to 0.4% of the average

selection query execution time. For big number of records jitter is close to 50ms that corresponds to the 0.7% of

the average selection query execution time. This means that the JSONB table select queries are consistent in

respect to their execution time

The comparison amongst relational, JSON and JSONB tables has shown that JSONB table selection

query time is 1.5 faster than the JSON table. Furthermore, the relational table selection queries time are 3 times

faster than the JSONB table queries. Jitter time is almost constant for JSONB and relational tables which

signifies data consistency over queries. However, there have been query inconsistencies spotted on the JSON

table for data selection queries, mainly due to its spurious variations over the number of selected documents.

Table 8: Average select query time and jitter time for JSONB table
No. of selected records Average JSONB Selection time (ms) Average Jitter time for Selection time for JSONB table (ms)

10K 1364.244938 -4.009246929

100K 1467.782974 -9.11569571

200K 2437.329054 -6.512642028

400K 3509.732008 31.91089628

500K 4704.421997 -20.36929124

700K 5936.168909 -59.06295769

800K 6692.276001 30.12999151

900K 7408.374071 -77.4040221

1M 8818.401098 -197.371721

Scenario 4.b Aggregation function query time on JSONB table
Authors also tested the average (AVG) aggregation function on the JSONB table. As presented in

Table 9, for small number of documents, average aggregation function query time on JSONB table remains

constant around 405ms. For big number of documents, query time is at 550ms on average.

Jitter time for JSONB table on aggregation function for small number of documents is approximately to

0.1% of the average selection query execution time. For big number of records jitter is close to 225ms that

corresponds to the 0.3% of the average aggregation function query execution time. This means that the JSONB

table select queries are consistent in respect to their execution time.

Table 9: Average aggregation function query time on JSONB table
No. of aggregate

function records

Average aggregation function query time for

JSONB table(ms)

Average aggregation function jitter time JSONB

table(ms)

10K 405.796051 -6.53076

100K 404.6578407 -9.71961

300K 405.4729939 3.271341

400K 447.701931 -5.25808

600K 513.0839348 -2.50816

700K 555.0577641 -0.22125

800K 580.655098 -1.71018

900K 606.5020561 19.15026

1M 646.1930275 38.83266

The comparison amongst relational, JSON and JSONB tables has shown that JSONB table aggregation

function query time is 10 times faster than the JSON table. Furthermore, the relational table selection query time

is 3 times faster than the JSONB table. Jitter time is consistent between JSONB and relational tables. Jitter time

is close to 6.5 ms for small number of records and 20ms for big number of records. Jitter time corresponds to

1.28% of the average aggregation function query time on average for the JSONB table. This means that there

are no important inconsistencies regarding the aggregation functions execution time for the JSONB table.

IV. Conclusion
In this paper, authors examined the performance of relational and non-relational PostgreSQL fields

using IoT data, through a series of experimental scenarios. From the authors’ experimentation it has been

noticed that on insert queries JSON table is much more efficient than relational table. Specifically, relational

table insert query execution time is 3 times faster than the JSON table. However, on the select query

experiments, the relational table performed 6 times better than the JSON table and 3 times faster than the

Managing IoT data using relational schema and JSON fields, a comparative study

DOI: 10.9790/0661-2006034652 www.iosrjournals.org 52 | Page

JSONB table. On aggregation function experiments, the relational table performs 2 times faster than JSONB

table, and in turn the JSONB table performs 7-10 times faster than the JSON table.

Authors noticed that there is guaranteed data consistency as spotted by jitter time metric amongst

relational, JSON and JSONB tables, with the exception of high probability of query variations for the JSON

table, close to 7% of the average selection query execution time and minimum inconsistencies for aggregation

function queries for the JSON table, close to the 3% of the average aggregation function execution time.

Concluding, the main IoT data requirements are fast database inserts and schema less records. Fast

database inserts contribute positively on the IoT devices energy conservation, while schema less is essential for

the IoT industry due to the IoT devices and embedded to the devices sensors escalation. Based on the

aforementioned information requirements, the authors forward the JSONB data type for IoT application use,

since its improvements over the relational table bring it closer to the relational table performance while fully

adopting the IoT primary requirements.

References
[1] Aboutorabi S., Rezapour M., Moradi, M., and Ghadiri, N., “Performance evaluation of SQL and MongoDB databases for big e-

commerce data ”, In proc. of CSICSSE conf., DOI: 10.1109/CSICSSE.2015.7369245, 2015

[2] Afolabi A. O. and Ajayi A. O., Performance Evaluation of a database Management System, Journal of Engineering and Applied

Sciences Vol. 3 (2): 155-160, 2008, ISSN: 1816-949X, 2008

[3] Al-Qerem, A. Performance Evaluation of Transaction Processing in Mobile Data Base Systems, International Journal of Database
Management Systems (IJDMS) vol. 6 (2), ISSN: 0975-5985, 2014

[4] Berg K., Seymour T., and Coel R., History of Databases. International Journal of Management and Information Services, Vol.

17,No. 1, DOI: 10.19030/ijmis.v17i1.7587, 2013
[5] Damodaran D. B., Salim S. and Vargese M. V., Performance evaluation of MySQL and MongoDB databases, International Journal

of Cybernetics & Informatics IJCI, Vol. 5, No. 2, ISSN:2320-8430, 2016

[6] DB-Engines, System Properties Comparison MySQL vs. PostgreSQL, Technical report. https://db-
engines.com/en/system/MySQL%3BPostgreSQL%3BSTSdb, 2016

[7] DB-engines, The DB-Engines Ranking ranks database management systems according to their popularity, Internet: https://db-

engines.com/en/ranking, 2018
[8] Gyorodi C., Olah, A. I., Gyorodi R. and Bandici L., A Comparative Study between the Capabilities of MySQL vs. MongoDB as a

Back-End for an online Platform, International Journal of Advanced Computer Science and Applications (IJACSA), Vol. 7(1),

ISSN:2158-107X, 2016
[9] JSONB, JSON Binding Binary data v. 1.0 for converting java objects to JSON messages, http://json-b.net/users-guide.html, 2016

[10] Kontogiannis S. and Karakos A., ALBL: An Adaptive Load BaLancing algorithm for distributed web systems, International Journal

of Communication Networks and Distributed Systems, Vol. 13(2), July 2014, pp. 144-168, 2014.

[11] Lourenco J.R., Abramova V., Vieira M., Cabral B., Bernardino J., NoSQL Databases: A Software Engineering Perspective. In:

Rocha A., Correia A., Costanzo S., Reis L. (eds) New Contributions in Information Systems and Technologies. Advances in

Intelligent Systems and Computing, vol 353. Springer, Cham, 2015
[12] Maksimov D., Performance Comparison of MongoDB and PostgreSQL with JSON types, Master Thesis, Tallin University of

Technology, faculty of Information Technology, https://digi.lit.ttu.ee, 2015

[13] Mei S., Why you should never use MongoDB, http://www.sarahmei.com/blog/2013/11/11/why-you-should-never-use-mongodb/,
2013

[14] MongoDB, MongoDB document database and documentation, Internet: https://docs.mongodb.com, 2012

[15] NoSQL Archive, List of NoSQL Databases, http://nosql-database.org, 2018
[16] Ovais T., Databases: Normalization or Denormalization. Which is the better technique?, Technical report,

http://www.ovaistariq.net/199/databases-normalization-or-denormalization-which-is-the-better-technique/#.W0S30nsVTIU, 2010

[17] Parker Z., Scott P., Vrbsky V. Susan, Comparing NoSQL MongoDB to an SQL DB. Proceedings of the 51st ACM Southeast
Conference. DOI: 10.1145/2498328.2500, 2013

[18] PostgreSQL, PostgreSQL JSON and JSONB datatypes, https://www.PostgreSQL.org/docs/9.4/datatype-json.html, 2016

[19] Stancu-Mara, S., and Baumann, P., A Comparative Benchmark of large Objects in Relational Databases. In Proc. of the 2008
international symposium on Database engineering & applications, pp. 277-284, ACM, 2008

[20] Strozzi C., NoSQL: Non-SQL RDBMS, http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home%20Page, 2016

[21] Tech Differences Foundation, Difference between Normalizations and Denormalization, Technical report,
https://techdifferences.com/difference-between-normalization-and-denormalization.html, 2017

Christodoulos Asiminidis. " Managing IoT data using relational schema and JSON fields, a

comparative study. "IOSR Journal of Computer Engineering (IOSR-JCE) 20.6 (2018): 46-52.

