
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 23, Issue 4, Ser. I (Jul. –Aug. 2021), PP 34-50
www.iosrjournals.org

DOI: 10.9790/0661-2304013450 www.iosrjournals.org 34 | Page

Hyperparameter Optimization on Classification and Regression

Algorithms

Georgia Lytra
1
, Argyro Mavrogiorgou

1
, Athanasios Kiourtis

1
,

Dimosthenis Kyriazis
1

1(Department of Digital Systems, University of Piraeus, Greece)

Abstract:
Background: Machine learning has taken the technological world by storm in recent years. Every expert that
needs to cope with a specific problem, demands to develop a model that will be able to cover all the problem’s

needs in combination with all the available resources that come by. Along the way of this process, a lot of

challenges may come up. One of these challenges refers to the selection of the most appropriate

hyperparameters that should be used for the construction of the most efficient model. This process, called

hyperparameter optimization, is considered to be extremely vital. Even though the created models are proved to

be effective in both performance and execution time, the same models can be rendered rather than useless

without the appropriate hyperparameters’ selection. It is a fact that hyperparameter optimization can really

help a model to shine and exploit its capabilities to the fullest. However, since every problem has its uniqueness

and complexity, domain knowledge is necessary for choosing the appropriate hyperparameters in each different

case. Hence, the need of implementing methodologies that automatically solve this issue is on the rise.

Materials and Methods: This study tries to fill in this gap, by following an experimental procedure to extract
information regarding the appropriate hyperparameters on various supervised (classification and regression)

learning models. Various datasets with diverse features and characteristics are exploited, which could assist the

successful automation of machine learning processes, whereas already existing optimization frameworks are

fully utilized.

Results: The conducted study resulted into the extraction of both reliable and generalized results that cover a

variety of diverse machine learning problems deriving from various sectors.

Conclusion: The study led to doubts on hyperparameter optimization as a practice that should occur in all

cases of development of machine learning models. There are some factors that appear to affect the whole

process, whereas the same set of factors is what should help the user decide whether performing

hyperparameter optimization worths its trade-offs or not.

Key Word: Hyperparameters, Hyperparameter optimization, Hyperparameter tuning, Supervised learning,

Classification, Regression, Machine learning, HyperOpt, Scikit-learn.

Date of Submission: 10-07-2021 Date of Acceptance: 26-07-2021

I. Introduction
 In a 2017 article of the Economist [1], data was compared with what oil was in the 18th century and was
characterized as the most valuable resource of the 21st century. We are already going through the fourth

industrial revolution, a data-driven revolution where traditional processes are becoming more and more

automated to meet the needs of the times. Data is everywhere and they are here to stay [2]. Indeed, we live in an

era where data is produced in tremendous amounts every day, from social media platforms to Internet of Things

(IoT) sensors to applications that assist each of us in our everyday lives. This data need not only a place to be

stored but also a sufficient way to be analyzed to produce results that help answering difficult and complex

questions. This is where Artificial Intelligence (AI) comes along with Machine Learning (ML) practices to make

an impact and change the way things work in various fields [3].

Machine Learning is involved in many applications where data is present. Most of the times, there is an

algorithm that fits well within the definition of a particular problem, its requirements, and its peculiarities. Even

if a problem can be approached with more than one models, usually there is an optimal solution to it, indicating

the importance of the selection of the most suitable algorithm in a ML process [4]. Another key role is occupied
by the algorithms’ hyperparameters, which are also affected by the different scenarios and the data that

accompany them [5]. Thus, both the selection of the ML algorithm and the selection of the algorithms’

hyperparameters have to be taken carefully into con-sideration.

In this manuscript, we attempt to extract information from various experiments regarding the

hyperparameters of several ML models, concentrating mainly into the supervised ones. To be more specific, to

Hyperparameter Optimization on Classification and Regression Algorithms

DOI: 10.9790/0661-2304013450 www.iosrjournals.org 35 | Page

achieve that, we have studied various classification and regression models and conducted several experiments to

spot any differences or similarities in the way that their hyperparameters affect their developed models. The

procedure that we followed involves a very popular hyperparameter tuning framework, HyperOpt [6]. The latter
uses bayesian reasoning to construct an algorithm that is called Tree of Parzen Estimators, which has proven to

be very effective on the tasks of hyperparameter optimization, especially compared with other hyperparameter

search algorithms [7]. Into this context, the conducted experiments were a combination of widely used

classification and regression algorithms, along with a variety of popular datasets, each one of them belonging to

a different sector. This allowed us on the one hand not to get distracted by other issues that concern the process

before fitting a model and focus solemnly on hyperparameter optimization, and on the other hand to extract both

reliable and generalized results that cover a variety of diverse problems deriving from various sectors. On top of

these, in order to evaluate the results produced by the HyperOpt framework, these were compared with the

corresponding results produced by the sklearn framework; HyperOpt was constructing the algorithms’ models

based upon their hyperparameters, whereas sklearn was constructing the algorithms’ models based upon their

default parameters, thus showcasing their individual differentiations.
The rest of the manuscript is organized as follows. Section II provides all the necessary background that the

reader must know in order to understand the conducted experimental study. Section III includes all the datasets

that are used in the experimental study along with a description of the respective features of each dataset,

followed by a detailed explanation of the experimental phase and its components. Section IV discusses all the

captured results, whilst Section V provides some conclusion based on the conducted work along with some

future steps.

II. Material And Methods
The aim of this work is to investigate the performance of the hyperparameter optimization procedure,

based on various datasets that are produced by diverse sectors. The flow of the conducted experimental study is

illustrated in Figure no 1, consisting of 2 sequential phases. The first phase includes the initial implementation

of the chosen ML algorithm with its default parameters upon the chosen dataset, whereas the second phase

includes the iterative implementation of the chosen ML algorithm with its extracted hyperparameters upon the

chosen dataset. In short, in the first phase the preprocessing of the data takes place, followed by the split of the

input dataset into the train and the test sets. In sequel, the chosen algorithm (accompanied with its default

parameters) is applied upon the train set to build its corresponding model, which is then evaluated based upon

the test set. Based on the captured results, the produced model is then evaluated. Sequentially, the

hyperparameter optimization (i.e., tuning) occurs, exploiting already existing frameworks in order to extract the

best set of hyperparameters of the ML algorithm, which eventually will produce the most efficient ML model.

Hence, since two (2) different models are produced, one from the first phase and one from the second phase,

those models are compared to each other, always verifying the better performance of the model produced after
the execution of the hyperparameter optimization, as it is demonstrated in the Results section.

Figure no 1. Experimental study applied procedure.

Data Preprocessing

In the first step of the experimental study the data preprocessing takes place right before the separation

of each dataset into train and test sets, in the context of either classification or regression. Data preparation is a

critical step before training any ML model and therefore the techniques that are used have to be carefully
chosen. It can seriously impact both the performance of the models and the effectiveness of the attempts to

avoid the so very dreadful overfitting. All the datasets that are exploited in this work undergo the same

preparation techniques to ensure as much as possible unified results, implementing just a few required

exceptions, as it will be depicted in the Results section. Especially with regards to the datasets that are used for

classification, a big issue is the balance of the classes. Unbalanced classes can very easily lead to overfitting of

the model. The solution to this problem is either to upsample the cases of the lesser class or to undersample the

cases of the majority class. In the context of this study, the latter is implemented in order to generate more data

Hyperparameter Optimization on Classification and Regression Algorithms

DOI: 10.9790/0661-2304013450 www.iosrjournals.org 36 | Page

and use them on the training and test phases rather than reducing the dataset’s cases, since some of the sets

already contained very few data as it is.

The next step is to split the data into two (2) subsets, the training dataset and the test dataset. To this
context, in all the cases the ratio that was applied was a split of 70/30 correspondingly. The rationale behind this

is that on the one hand to fit the produced model on the training data and thus having a different portion of the

original dataset so as to make the appropriate predictions, and on the other hand to evaluate the performance of

the produced model with the appropriate metrics that fit the classification and regression tasks respectively.

Model Selection

In sequel, irrespective of the ML problem that has to be solved, a variety of supervised models are

applied upon the chosen dataset. Generally speaking, supervised learning consists of methods and techniques

that rely on prior information regarding the output values, rather than attempting to conduct the analysis without

any extra knowledge or intervention [8]. It includes algorithms for performing either classification or regression

analyses and predictions, such as Linear Regression for regression problems, Random Forest for classification
and regression problems, or Support Vector Machines for both classification and regression problems. To the

context of the current experimental study, for the classification problems the classifiers of Random Forest,

Support Vector Machine, K Nearest Neighbor, Logistic Regression, Multinomial Naive Bayes are exploited,

whereas for the regression problems the regressors of Ridge and Lasso are analyzed.

Random Forest

Random Forest (RF) is an ensemble classifier. It represents a set of many classifiers, in this case many

binary decision trees, in order to combine the decision of each classifier with the scope to classify new

examples. According to [9], assuming a training set drawn randomly for the distribution of the random vector ,

 and given an ensemble of classifiers , , … , , the margin function, i.e, the function that

measures the extent to which the average number of votes at , for the right class exceeds the average vote for

any other class, is defined as:

where is the indicator function. The margin measures the extent to which the average number of votes at ,

 for the right class exceeds the average vote for any other class. The lesser the margin the less confidence in

the classification. To this context, the definition for the generalization error is defined as:

where the subscripts , indicate that the probability is over the , space. The pseudocode for the RF model

is presented in Figure no 2 [10].

Figure no 2. RF model pseudocode.

Hyperparameter Optimization on Classification and Regression Algorithms

DOI: 10.9790/0661-2304013450 www.iosrjournals.org 37 | Page

Support Vector Machine

Support Vector Machine (SVM) finds a hyperdimensional plane that separates distinct classes. SVM

finds the hyperplane such that the margin is maximum. SVM algorithms are based on the concept of mapping
data points from low-dimensional into high-dimensional space to make them linearly separable; a hyperplane is

then generated as the classification boundary to partition data points. Assuming there are n data points, the

objective function of SVM is [11]:

where is a normalization vector and is the penalty parameter of the error term, which is an important

hyperparameter of all SVM models. The pseudocode for the SVM model is illustrated in Figure no 3 [11].

Figure no 3. SVM model pseudocode.

K Nearest Neighbor

K Nearest Neighbor (KNN) finds the K samples, which is the number of nearest points in the closest

proximity to the point that is to be predicted. Given a training set {(,), (,), … , (,)}, where

 is the feature vector of an instance and { , , … , } is the class of the instance, , for a

test instance , its class can be denoted by:

where is an indicator function, when = , otherwise ; the field involving the KNN

of [12]. The step required to implement the KNN algorithm is outlined in the pseudocode in Figure no 4 [13].

Figure no 4. KNN model pseudocode.

Logistic Regression

Logistic Regression (LR) is a kind of regression employed to predict the probability of a binary output

X from an input dataset. Consider a collection of independent variables denoted by the vector
 . Let the conditional probability that the outcome is present be denoted by .

The logit of the multiple logistic regression model is given by the equation [14]:

Hyperparameter Optimization on Classification and Regression Algorithms

DOI: 10.9790/0661-2304013450 www.iosrjournals.org 38 | Page

In which case the logistic regression model is:

For classification one against all, the training algorithm is constructed from several binary classifiers, which use
the logistic regression model shown above. The algorithm in pseudocode for one vs all is presented in Figure no

5 [15].

Figure no 5. LR model pseudocode.

Multinomial Naive Bayes

Multinomial Naive Bayes (MNB) is designed for multinomially distributed data based on the Naive

Bayes algorithm [16]. As explained in [12], assuming there are n features, and is the distribution of each

value of the target variable y, which equals the conditional probability P (| y) when a feature value i is

involved in a data point belonging to the class y; based on the concept of relative frequency counting, can be

estimated by a smoothed version of :

where is the sum of all and is the number of times that feature is in a data point

belonging to class . The smoothing priors are used for features that are not in the learning samples.

When , it is called Laplace smoothing; when , it is called Lidstone smoothing [17]. The pseudocode

of the model is shown in Figure no 6 [18].

Figure no 6. MNB model pseudocode.

Hyperparameter Optimization on Classification and Regression Algorithms

DOI: 10.9790/0661-2304013450 www.iosrjournals.org 39 | Page

Ridge

Ridge regression develops a model that minimizes the sum of the squared prediction error in the

training data and an L2-norm regularization, i.e., the sum of the squares of regression coefficients. The function
is as below [19], [20]:

This procedure can shrink the regression coefficients, resulting in better generalizability for predicting unseen

samples. In this algorithm, a regularization parameter is used to control the trade-off of penalties between the

bias and variance. A large corresponds to more penalties on variance, and a small corresponds to more

penalties on bias [21].

Lasso

Least Absolute Shrinkage and Selection Operator (LASSO) is another regularized version of Linear

Regression. LASSO regression applies L1-norm regularization to the Ordinary Least Squares loss function,

aiming to minimize the sum of the absolute value of the regression coefficients [22], [20]. The objective

function takes the form as below:

This L1-norm regularization typically sets most coefficients to zero and retains one random feature among the

correlated ones. Thus, LASSO regression results in a very sparse predictive model, which facilitates

optimization of the predictors and reduces the model complexity [23].

Hyperparameter Optimization
As soon as the ML model is constructed, the hyperparameter optimization occurs. Generally speaking,

hyperparameters are parameters that are not estimated from the model itself but instead are determined before

the training process takes place (e.g. C in SVM or k in KNN), and can have a significant impact on a model’s

results. In contrast, a parameter is an internal characteristic of the model, and its value can be estimated from the

data that is passed along in the model (e.g. beta coefficients in LR or support vectors in SVM). The process of

selecting the values for these hyperparameters is called hyperparameter tuning or hyperparameter optimization

[24]. This process results in the selection of the optimum hyperparameters for a ML algorithm, given a set of

data. Its practice is crucial before any application of the ML model and can greatly affect the model’s

performance. Many different methods can be deployed to determine the optimal parameters and return the best

fitted model [25]. The following are the most used ones.

Manual Search
Manual search is the act of manually selecting a model’s hyperparameters without using any search

method. This is commonly preferred when the practitioner is a domain expert and has extended knowledge on

the problem along with the data that is handled. The procedure involves the manual testing of various sets of

parameters until the best one is found. An essential factor is that the problem under investigation should not be

very complex for the manual selection of hyperparameters to be feasible.

Grid Search

Grid search is an exhaustive search that is performed on specific parameter values of a model. In this

case, a grid is predefined with all the possible values of each hyperparameter that will be tuned. After that, a

model is built for all possible combinations of this grid, which is later evaluated until the best set is selected. It is

more effective than manual search since it covers more possibilities, but it is computationally costly.

Random Search

Random search uses the same logic as grid search, but instead of performing a detailed search on the

defined search space, it randomly chooses and evaluates sample points. A probability distribution of values is

specified, and a number of samples are drawn from these distributions. Then, the performance of the model is

evaluated for each sample that was drawn.

Hyperparameter Optimization on Classification and Regression Algorithms

DOI: 10.9790/0661-2304013450 www.iosrjournals.org 40 | Page

Bayesian Optimization

Bayesian Optimization, also known as Sequential Model-Based Optimization (SMBO), uses the results

of the past evaluations to form a probabilistic model of the objective function and later uses this model to choose
the next set of hyperparameter values. The probabilistic model is called the surrogate model and is represented

by p(x|y); y being the performance metric for the model and x being the hyperparameter values [26]. In

hyperparameter optimization, the objective function is a function that maps the hyperparameter values to the

model’s chosen performance metric, either on a validation set or maybe by using cross validation.

To the context of the current experimental study, to achieve hyperparameter optimization, two (2)

diverse already existing frameworks are exploited, namely Scikit Learn and the HyperOpt.

Scikit Learn, or sklearn, is a Python library for ML and statistical modeling including classification,

regression and clustering. This package focuses on making easier the use of ML to non-specialists using a

general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API

consistency. For its creation, sklearn utilizes other libraries such as Numpy, Scikit or Libsvm for the
implementation of SVM among others [27].

HyperOpt is an open-source Python library for hyperparameter search. One of its core characteristics is

that it uses a form of SMBO, the Tree of Parzen Estimators (TPE) [28]. The SMBO sequentially narrows down

the search space of values using information from previous results. The TPE algorithm aims to achieve this by

optimizing the criterion of Expected Improvement (EI). Expected improvement is the expectation under some

model of that will exceed (negatively) some threshold [7]:

The basic idea of TPE is that, unlike what a Gaussian process approach would do, instead of modeling

directly the (i.e. the surrogate model in the case of hyperparameter optimization), the strategy changes to

model and separately, being the performance metric for the model and being the

hyperparameter values. The TPE defines using two (2) densities [7]:

where is the density formed by the observations such that corresponding loss was less than

 , and is the density formed by the remaining observations.

There are four (4) parts that we need to focus on when using HyperOpt [6]:

 Define an objective function that takes an input and returns a loss to minimize (i.e. cross validation).

 Specify a configuration space, which is the range of input values to evaluate. A number of options are

available in HyperOpt for describing this distribution:

o hp.choice(label,options): Used for categorical parameters, it returns one of the options, which

should be a list or tuple.

o hp.randint(label,upper): Returns a random integer between label and upper.

o hp.uniform(label,low,high): Returns a uniform value between low and high.

o hp.normal(label,mu,sigma): Returns a real value that’s normally distributed with mean mu and

standard deviation sigma.

 Define a search algorithm: the method used to construct the surrogate function and choose the next values

to evaluate. HyperOpt currently supports:
o Random Search

o Tree Parzen Estimator

o Adaptive Tree Parzen Estimator

 Create a “trials object” to store the results of the process.

Based on the abovementioned, HyperOpt works as follows:

 Step 1: Build a surrogate probability model of the objective function.

 Step 2: Locate the hyperparameters that best perform on the surrogate model.

 Step 3: Fit the hyperparameters to the objective function.

 Step 4: Update the surrogate model and adds the new results.

 Step 5: Repeat steps 2 to 4 until max iterations are reached.

Hyperparameter Optimization on Classification and Regression Algorithms

DOI: 10.9790/0661-2304013450 www.iosrjournals.org 41 | Page

III. Result
Datasets Description

A variety of datasets exists and is easily accessible through public databases. In the Financial sector,

models are used for fraud detection or loan default prediction. In Pharma and Medicine, researchers use diverse

ML techniques for drug discovery, clinical trial research or epidemic outbreak prediction. Other applications

involve computer vision or time series forecasting, which are utilized by many companies that offer their

services to the public. To perform a wide performance evaluation of the experimental study, and successfully

achieve the concept of hyperparameters optimization, a variety of datasets from different sectors and fields have

been chosen in order both to examine different cases, and to include datasets with diverse features. Each of them

is quite popular and therefore did not require extensive processing. This fact fitted along with the current work,

since the main purpose of the study was not to emphasize in difficult preprocessing techniques but to focus on

the results that come after. Table no 1 summarizes the datasets used in this study, where for each dataset, it
includes the name, the number of attributes, the number of rows, the field that the dataset belongs to and the

type of task that the dataset was used for.

Table no 1: Summary of used datasets.
Dataset Columns Rows Classes Domain Task Type

Iris 5 150 3 Flora Classification

Breast Cancer Wisconsin 11 569 2 Medicine Classification

Wine Quality (Red) 12 1599 10 Food / Drinks Classification

Titanic 8 887 2 Marine Classification

Banknote Authentication 5 1372 2 Banking Classification

MNIST 64 1797 10 Digits Classification

Melanoma 31 3632 3 Medicine Classification

Boston House Pricing 14 506 - Real Estate Regression

Adalone 8 4177 - Life Regression

The Iris Dataset involves predicting the flower species, based on given measurements of iris flowers

[29]. The rows of the table represent an iris flower, including its species and dimensions of its botanical parts,

sepal and petal, in centimeters. More specifically it includes information for sepal length in cm, sepal width in

cm, petal length in cm, petal width in cm, and the class (Iris Setosa, Iris Versicolour, Iris Virginica).

The Breast Cancer Winsconsin dataset is a well-known dataset for breast cancer diagnosis systems

[30]. Features are computed from a digitized image of a fine needle aspirate of a breast mass. They describe

characteristics of the cell nuclei present in an image, including information for the ID number, Diagnosis (M =

malignant, B = benign), radius (mean of distances from center to points on the perimeter), texture (standard

deviation of gray-scale values), perimeter, area, smoothness (local variation in radius lengths), compactness
(perimeter^2 / area - 1.0), concavity (severity of concave portions of the contour), concave points (number of

concave portions of the contour), symmetry, fractal dimension ("coastline approximation" - 1) of cell nucleus.

The Titanic dataset contains data for the real Titanic passengers [31], where each row represents one

passenger. It describes the survival status of individual passengers on the Titanic ship. The columns describe

different attributes about the person including whether they survived, their age, their passenger class, their sex

and the fare they paid.

The Wine Quality dataset involves predicting the quality of wines on a scale given chemical measures

of each wine [32], including information for the wines’ fixed acidity, volatile acidity, citric acid, residual sugar,

chlorides, free sulfur dioxide, total sulfur dioxide, density, pH, sulphates, alcohol and quality (score between 0

and 10).

The Banknote Authentication dataset involves predicting whether a given banknote is authentic given a
number of measures taken from a photograph [33]. Data was extracted from images that were taken from

genuine and forged banknote-like specimens. For digitization, an industrial camera usually used for print

inspection was used. The final images have a size of 400x400 pixels. Due to the object lens and the distance to

the investigated object, gray-scale pictures with a resolution of about 660 dpi were gained. Wavelet Transform

tools were used to extract features from images. In more detail, the dataset includes information for the variance

of Wavelet Transformed image, the skewness of Wavelet Transformed image, the kurtosis of Wavelet

Transformed image, the entropy of image, and the class (0 for authentic, 1 for inauthentic).

The MNIST dataset (Modified National Institute of Standards and Technology database) of

handwritten digits consists of a training set of 60,000 examples, and a test set of 10,000 examples [34]. The task

is to classify a given image of a handwritten digit into one of 10 classes representing integer values from 0 to 9,

inclusively. Its format though is a little chaotic to use and therefore a simpler csv file was created for

classification problems. The new csv format consists of a label in the beginning, which is the actual digit that the
handwritten digit is supposed to represent, and the subsequent values are the pixel values of the handwritten

digit.

Hyperparameter Optimization on Classification and Regression Algorithms

DOI: 10.9790/0661-2304013450 www.iosrjournals.org 42 | Page

The Melanoma dataset is a highly unbalanced dataset containing information about features regarding

melanoma detection. The goal is to predict whether the instance is a melanoma or a kind of nevus. It contains 31

features, and it consists of 3631 instances. The classes to choose from to predict are Class 1 for Melanoma,
Class 2 for Dysplastic Nevus, and Class 3 for Non Dysplastic Nevus.

The Boston House Pricing dataset contains information collected by the U.S Census Service

concerning housing in the area of Boston Mass. It was obtained from the StatLib archive and has been used

extensively throughout the literature to benchmark algorithms [35]. More specifically, the dataset contains

information for CRIM (Per capita crime rate by town), ZN (Proportion of residential land zoned for lots over

25,000 sq. ft), INDUS (Proportion of non-retail business across per town), CHAS (Charles River dummy

variable (= 1 if tract bounds river; 0 otherwise)), NOX (Nitric oxide concentration (parts per 10 million)), RM

(Average number of rooms per dwelling), AGE (Proportion of owner-occupied units built prior to 1940), DIS

(Weighted distances to five Boston employment centers), RAD (Index of accessibility to radial highways), TAX

(Full-value property tax rate per $10,000), PTRATIO (Pupil-teacher ratio by town), B (1000 (Bk - 0.63)², where

Bk is the proportion of [people of African American descent] by town), LSTAT (Percentage of lower status of
the population), MEDV (Median value of owner-occupied homes in $1000s).

The Abalone dataset’s objective is predicting the age of the abalone from physical measurements [36].

The age of abalone is decided by cutting the shell through the cone, staining it, and counting the number of rings

through a microscope. Other measurements are also used in this dataset to predict the age and a slight

modification was applied in it regarding the missing values and scaling of data. In deeper detail, the dataset

contains information for Sex (M, F, and I (infant)), Length (Longest shell measurement), Diameter

(perpendicular to length), Height (with meat in shell), Whole weight (whole abalone), Shucked weight (weight

of meat), Viscera weight (gut weight (after bleeding)), Shell weight (after being dried), Rings (+1.5 gives the

age in years).

Environment Setup

All the experiments were conducted using Python 3.5 [37] on a machine with a quad-core Intel i7-
8550U CPU and 16 GiB of memory. The Machine Learning and Hyperparameter Optimization methods are

implemented and evaluated using open-source Python libraries and frameworks including scikit-learn (version

0.23.2) [38], HyperOpt (version 0.2.5) [39] and also pandas (version 1.1.3) [40] and numpy (version 1.19.2) [41]

for some basic preprocessing before the models were applied.

Experimental Results

The process of the experimental phase that followed in this work is rather straightforward. As a first

step, the data preprocessing took place right before the separation of each dataset into train and test sets.

Following, every model mentioned in the Material And Methods section, was applied in the chosen data, thus

covering diverse combinations. At this stage, the default values for the parameters that sklearn assigns in every

model were applied. Since the goal is to compare the hyperparameters optimization results between both
frameworks mentioned in the Material And Methods section (i.e. sklearn, HyperOpt), we move on to evaluate

the performance of the diverse models on these values with the respective metrics. Afterwards, the proposed

hyperparameters are fitted in the same model that was fitted previously and the evaluation step takes place so as

to produce the final results and compare them between the two (2) frameworks.

Data Preprocessing

To begin with, during the preprocessing phase, as mentioned in the Material And Methods section, a

big issue in the classification tasks is the balance of the classes, where unbalanced classes can lead to overfitting

of the model. To address this, in the experiments the undersample of the majority class took place in order to

produce more data and use them on the training and test phases rather than reducing the dataset’s cases, since

some of the sets already contained very few data as it is. Moreover, since these datasets were chosen for their

popularity and characteristics, they did not need much tidying up before we started using them. As a result, we
were lucky enough to not run into any NaN values and therefore no technique was used to deal with this issue.

This helped with the end result quite much, since the goal of this study would not have been affected by their

existence.

The next step was to split the data into the training dataset and the test dataset, having a split ratio of

70/30. The rationale behind this is that we want to fit our model on the training data, but we also want to have a

different portion of the original dataset to make predictions on and to evaluate the performance of our model

with the appropriate metrics that fit the classification and regression tasks respectively. The only unique

occurrence in this step was in the Iris dataset in combination with the KNN algorithm. Here, we split the data in

a 15/85 ratio between training and test datasets respectively, because when the model was fitted, the number of

neighbors was greater than the number of samples in the data for some of the runs of HyperOpt. This resulted in

Hyperparameter Optimization on Classification and Regression Algorithms

DOI: 10.9790/0661-2304013450 www.iosrjournals.org 43 | Page

an error; thus, to avoid this, instead of the analogy that used in the rest of the cases, we applied the

aforementioned.

Sequentially, with the aim to avoid data leakage, scaling of the data is implemented after the split
strategy. The data is scaled on a range of 0 to 1 and this proved to be useful, not only for dodging the overfitting

but also for improving the overall accuracy of the models in both frameworks. Another important result that was

affected by scaling is the execution time of the hyperparameter tuning using HyperOpt. In many cases, it run the

process much faster, whereas before it was executed in a significant amount of time.

Afterwards, the implementation of HyperOpt and sklearn took place. The first step of the

hyperparameter tuning was to define the configuration space upon which the framework would choose the best

value for each case. The search space was defined for each hyperparameter of every algorithm that we used

separately, although the same search space was used for every experiment. The objective function was the cross-

validation score for both the classification and regression task, and the search algorithm we chose was the TPE

algorithm option, to utilize HyperOpt’s capabilities to the fullest.

Metrics

Regarding the metric functions, three (3) of the most commonly used were put into use: the accuracy

score, the cross-validation score and the RMSE (Root Mean Square Error) score.

The accuracy score, which is the fraction of number of correct predictions that came from our model

against the total number of observations, was used to compare the classification model’s performance, first we

measured the accuracy with the default values that sklearn assigned on each parameter and then we measured it

with the values that came from the tuning of those parameters with HyperOpt.

For the regression tasks we calculated the RMSE score. It is defined as the square root of the

differences between the predicted variables of the model and the corresponding observed values. It was

implemented to compare the results from the model that was fitted using the default parameters of sklearn

against the one that was fitted with the parameters that were tuned via HyperOpt.

The cross validation splits the data into groups. In our case, we choose it to be k=5 groups, which is the
default value of sklearn. It then proceeds to hold out a set at a time and train the model on the remaining set. In

the end, it combines the results of each iteration to produce the final result. This method was used as a metric of

evaluation during the hyperparameter tuning phase to find out which of the trials was the best.

Hyperopt’ s Performance

The resulting accuracy for all classification and regression models under both the sklearn and

HyperOpt frameworks, as well as the elapsed execution time for the case of the latter, have been compiled into

Table no 2. Note that the execution time for the cases where sklearn was employed is not presented in this table.

The reason for this is that in all these cases we used sklearn’s default values for the hyperparameters. On the

contrary, HyperOpt effectively calculates optimized values for the hyperparameters, hence possibly incurring a

non-negligible time overhead, which is, after all, of great interest within the scope of this work.

Table no 2: Accuracy of each experiment in both classification and regression models.
Dataset Sklearn HyperOpt Execution Time (HPO)

Classification (Metric: Accuracy)

Iris

RF 0.978 0.956 48min 57s

KNN 0.957 0.957 7min 55s

SVM 0.978 0.978 1min 49s

NB 0.933 0.8 29.5 s

LR 0.911 0.967 5min 8s

Breast Cancer

RF 0.965 0.947 48min 26s

KNN 0.965 0.959 12min 9s

SVM 0.982 0.982 1min 59s

NB 0.83 0.836 42.8s

LR 0.977 0.988 5min 6s

Titanic

RF 0.768 0.622 47min 42s

KNN 0.76 0.76 16min 1s

SVM 0.768 0.794 2min 18s

NB 0.798 0.798 55.8s

LR 0.764 0.764 5min 33s

Wine Quality

RF 0.652 0.575 46min 38s

KNN 0.565 0.648 15min 11s

SVM 0.583 0.617 10min 21s

Hyperparameter Optimization on Classification and Regression Algorithms

DOI: 10.9790/0661-2304013450 www.iosrjournals.org 44 | Page

NB 0.49 0.49 57s

LR 0.554 0.571 5min 3s

Banknote Authentication

RF 0.996 0.985 44min 1s

KNN 0.996 0.998 8min 13s

SVM 0.993 0.978 2min 20s

NB 0.679 0.679 31s

LR 0.976 0.991 5min

MNIST

RF 0.972 0.946 49min 28s

KNN 0.987 0.9833 16min 32

SVM 0.987 0.989 17min 38s

NB 0.893 0.893 50.9s

LR 0.967 0.972 6min 21s

Melanoma

RF 0.803 0.737 2h 5min 17s

KNN 0.7599 0.8162 1h 40min 1s

SVM 0.749 0.805 2h 53min 13s

NB 0.555 0.691 13min 10s

LR 0.682 0.704 1h 55min 28s

Regression (Metric: RMSE)

Boston House Pricing

Linear 4.64 4.64 1min 5s

Lasso 5.15 4.64 7min 11s

Ridge 4.64 4.71 8min 43s

Adalone

Linear 2.57 2.57 58.7s

Lasso 2.57 2.57 31min 51s

Ridge 2.57 2.57 32min 42s

Based on the results of Table no 2, it is observed that in RF, the execution time appears to have been

significantly affected when the number of estimators in the search space was increased. More specifically, by

increasing the number of searched estimators from 100 to 150, each process required around ~20 minutes more
to be completed.

Another factor that appears to be affecting the execution time is the process of scaling the datasets.

Between the StandardScaler and the MinMaxscaler, which were tested in this work, the latter was chosen. Apart

from its performance benefits, it enables the scaling of the data into values between 0 and 1, thus allowing for

frictionless compatibility with the Naive Bayes algorithm, which cannot be employed at all when negative

values exist among the data. Furthermore, models that use distance metrics are sensitive to the distribution of

input data. Scaling resolves this issue, hence enabling all the data to have the same influence over the distance

metrics.

Moreover, by examining the number of parameters in combination with the execution time elapsed, we

observe that, in the cases of the classification tasks, those two appear to be independent to each other, since the

models that have the most parameters are Random Forest, SVM, and KNN. On the other hand, the number of
parameters seems to be playing a crucial role in execution time for the regression tasks, since the

hyperparameter optimization for Linear Regression is executed relatively fast compared to the other two

regression models, which both have a significantly bigger amount of parameters.

On the Wine Quality dataset we observe that the accuracy is generally low. This could be explained by

the fact that the dataset’s dependent variable contains many classes which is a factor that may be tampering with

the results, as well as the information available; it is after all a dataset that could be used for regression tasks too.

Two of the most performant hyperparameter optimization procedures are observed in the cases of the

Wine Quality and the Titanic datasets. Both of them contain many features (12 and 8, respectively), and this

could lead to the assumption that datasets with many independent variables could benefit from hyperparameter

optimization.

We validate the above observation through the case of the Melanoma dataset. The dataset incorporates

31 distinct features, and is in fact the dataset with the greatest number of features among all the examined ones.
Indeed, we can verify that it performed better than the rest of the datasets in all cases, with the exception of the

Random Forest algorithm. In addition, we should note that the Melanoma dataset also exhibits the highest

execution time in general. However, even though for the rest of the datasets the Random Forest algorithm used

to be the slowest case, we observe that SVM turned out to be the slowest in this case.

Hyperparameters

Tables no 3 and no 4 contains the results of the values of the experimental phase for every

hyperparameter with regards to the classification and the regression tasks respectively. The first column includes

Hyperparameter Optimization on Classification and Regression Algorithms

DOI: 10.9790/0661-2304013450 www.iosrjournals.org 45 | Page

the default values that sklearn assigns in each model in the case that none of them is specified. What follows is

the values that HyperOpt assigned in each hyperparameter after the optimization process in each dataset. The

last column contains the search space for every hyperparameter which consists of the set of all the possible
values that the parameter could take, along with the type of the parameter. To this end, it should be noted the

following:

 n_jobs was set to -1 to use all processors

 random_state was set to a random number (i.e. 42) to not shuffle data and get different results each time

 verbose was set to 1 to show limited wordy information for the model

 class_prior was not specified so prior probabilities of classes would be adjusted according to the data

 min_impurity_split would be removed in newer version, so it was not included at all

 break_ties: was not included since if it is set to true the decision_function_shape is equal to ovr and the

number of classes is 2 and since we had a univariate result we excluded this

 class_weight was set to balanced since uses the values of y to automatically adjust weights inversely

proportional to class frequencies in the input data as n_samples / (n_classes * np.bincount(y)) [17]

 multi_class was set to multinomial since in this case the multinomial loss is minimized even when data is

binary

 intercept_scaling was set to the default value since it is useful only in certain cases

 bootstrap was set to True to use all of the training data to fit the model and not have a random variation

between trees at each example

Table no 3: Parameters summary from both frameworks on classification tasks.
Parameters of

Algorithm

Sklearn

(default)

HPO

Iris

HPO

Breast

Cancer

HPO

Titanic

HPO

Wine

Quality

HPO

Banknote

HPO

MNIST

HPO

Melano

ma

Search

Space

RF (Number of parameters = 19)

n_estimators 100 32 116 23 144 34 143 77 discreet:

[1, 150]

criterion gini gini entropy gini entropy entropy entropy entropy categorical:

[gini, entropy]

max_depth None 76 40 51 39 81 44 24 discreet:

[1, 100]

min_samples_split 2 7 4 5 5 7 3 2 discreet:

[2, 10]

min_samples_leaf 1 5 15 12 6 3 4 16 discreet:

[1, 50]

min_weight_fraction

_leaf

0.0 0.20

16

0.2864 0.2238 0.0107 0.009 0.0008 0.0001 continuous:

[0.0, 0.5]

max_features auto auto None sqrt None log2 sqrt None categorical:

[None,auto,

sqrt, log2]

max_leaf_nodes None 21 61 37 26 21 28 55 discreet: [2,65]

min_impurity_decre

ase

0.0 0.19

92

0.6012 0.0478 0.0003 0.0009 0.0165 0.0006 continuous:

[0.0, 0.9]

min_impurity_split None - - - - - - - -

bootstrap True True True True True True True TRue boolean: True

oob_score False True False False True False False True boolean: [True,

False]

n_jobs None -1 -1 -1 -1 -1 -1 -1 discreet: -1

random_state None 42 42 42 42 42 42 42 discreet: 42

verbose 0 0 0 0 0 0 0 0 discreet: 0

warm_start False False True False False False False True boolean: [True,

False]

class_weight None balan

ced

None None None balanced_s

ubsample

balanced

_subsam

ple

balanced categorical:

[None,

balanced,balanc

ed_subsample]

ccp_alpha 0.0 0.02

85

0.4754 0.0714 0.0017 0.0007 0.0175 0.000 continuous:

[0.0, 1.0]

max_samples None 0.25

61

0.3471 0.4696 0.5957 0.5784 0.4729 0.5235 continuous:

[0.0, 1.0]

KNN (Number of parameters = 8)

n_neighbors 5 9 16 19 90 18 3 1 discreet:

[1,100]

weights uniform unifo

rm

distance unifor

m

distance distance distance distance categorical:

[uniform,

distance]

algorithm auto brute brute brute brute kd_tree kd_tree brute categorical:

Hyperparameter Optimization on Classification and Regression Algorithms

DOI: 10.9790/0661-2304013450 www.iosrjournals.org 46 | Page

[auto, ball_tree,

kd_tre, brute]

leaf_size 30 48 37 19 48 40 46 16 discreet:

[1, 50]

p 2 11 2 4 12 4 3 1 discreet:

[1, 15]

metric minkows

ki

eucli

dean

minkows

ki

chebys

hev

euclidean euclidean minkows

ki

euclidean categorical:

[euclidean,

manhattan,

chebyshev,

minkowski]

metric_params None - - - - - - - -

n_jobs None -1 -1 -1 -1 -1 -1 -1 discreet: -1

SVM (Number of parameters = 16)

C 1.0 6.19

26

6.8039 15.354

9

19.389 14.3604 16.7241 7.0052 continuous:

[0.0, 20.0]

kernel rbf rbf rbf rbf rbf rbf rbf rbf categorical:

[linear, poly,

rbf, sigmoid]

precomputed - - - - - - - - -

degree 3 16 18 17 5 4 23 24 discreet: [1,30]

gamma scale scale auto scale scale scale scale scale categorical:

[scale, auto]

coef0 0.0 29.3

523

26.9973 21.55 15.951 17.8193 23.9593 25.4899 continuous:

[15.0, 30.0]

shrinking True False True False False False True False boolean: [True,

False]

probability False False False False False False True False boolean: [True,

False]

tol 0.001 0.71

73

1.527 1.176 1.5451 1.3344 0.2997 0.5149 continuous:

[0.0, 3.0]

cache_size 200 2000 2000 2000 2000 2000 2000 2000 discreet: 2000

class_weight None balan

ced

None None None None None None categorical:

[None,

'balanced']

verbose False False False False False False False False boolean: [True,

False]

max_iter -1 -1 -1 -1 -1 -1 -1 -1 discreet: -1

decision_function_s

hape

ovr ovo ovo ovr ovr ovr ovr ovo categorical:

[ovo, ovr]

break_ties False - - - - - - - -

random_state None 42 42 42 42 42 42 42 discreet: 42

MNB (Number of parameters = 3)

alpha 1.0 1.48

37

0.2123 0.2225 0.5744 0.9016

1.0476 0.2225 continuous:

[0.5, 1.5]

fit_prior None - - - - - - - -

class_prior True

False True True True True True True boolean: [True,

False]

LR (Number of parameters = 15)

C 1.0 43.8

63

6.0898 15.553

2

49.6688 18.4761 58.55 55.9101 continuous:

[0.01, 100]

class_weight None balan

ced

balanced balance

d

balanced balanced balanced balanced category:

balanced

dual False False False False True True False False boolean: [True,

False]

fit_intercept True True True True True True True False boolean: [True,

False]

intercept_scaling 1 1 1 1 1 1 1 1 discreet: 1

l1_ratio None None None 1 None 1 None None continuous: [0,

1]

max_iter 100 743 1017 1235 1043 1399 169 646 discreet: [100,

2000]

multi_class auto auto auto auto auto auto auto auto categorical:

[auto, ovr]

n_jobs None -1 -1 -1 -1 -1 -1 -1 discreet: -1

penalty l2 none l2 l1 l2 l2 l1 l2 categorical: [l1,

l2, elasticnet,

none]

random_state None 42 42 42 42 42 42 discreet: 42

solver lbfgs newt

on-

cg

newton-

cg

liblinea

r

liblinear liblinear saga newton-

cg

categorical:

[newton-cg,

lbfgs, liblinear,

Hyperparameter Optimization on Classification and Regression Algorithms

DOI: 10.9790/0661-2304013450 www.iosrjournals.org 47 | Page

sag, saga]

tol 0.0001 0.00

00

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 continuous:

[0.00001,

0.0001]

verbose 0 0 0 0 0 0 0 0 discreet: 0

warm_start False False True True False True True True boolean: [True,

False]

Table no 4: Parameters summary from both frameworks on regression tasks.
Parameters of

Algorithm

Sklearn (default) HPO

Boston House Pricing

HPO

Adalone

Search Space

Linear (Number of parameters = 4)

copy_X True True True boolean: [True, False]

fit_intercept True True True boolean: [True, False]

n_jobs None -1 -1 discrete: -1

normalize False False True boolean: [True, False]

Lasso (Number of parameters = 11)

alpha 1.0 0.0000 0.002 continuous: [0.0, 1.5]

copy_X True True True boolean: [True, False]

fit_intercept True True True boolean: [True, False]

max_iter 1000 123 2646 discrete: [100, 2000]

normalize False False False boolean: [True, False]

positive False False False boolean: [True, False]

precompute False False True boolean: [True, False]

random_state None 42 42 discrete: 42

selection cyclic Cyclic cyclic categorical: [cyclic, random]

tol 0.0001 0.0001 0.0025 continuous: [0.00001, 0.001]

warm_start False True False boolean: [True, False]

Ridge (Number of parameters = 8)

alpha 1.0 0.0766 0.000 continuous: [0.0, 1.5]

copy_X True False True boolean: [True, False]

fit_intercept True True True boolean: [True, False]

max_iter None 1803 113 discrete: [100, 2000]

normalize False True False boolean: [True, False]

random_state None 42 42 discrete: 42

solver auto Lsqr lsqr categorical: [auto, svd, cholesky,

lsqr, sparse_cg, sag, saga]

tol 0.001 0.000 0.0009 continuous: [0.00001, 0.0001]

IV. Discussion
Classification Results

Based on the results of Table no 3, it is observed that SVM Wine, Banknote and MNIST have the

greatest number of observations compared to the other datasets, whereas all of them have similar c values, with

a range between 14 and 16. An exception to this is the Melanoma dataset. Also, the rbf kernel has been chosen
to all the examples on the kernel parameter, and gamma value is equal to scale in 6 out of 7 datasets so we can

assume that they are not very affected by the cases that we examine.

As for the results of KNN, one would expect that the number of neighbors (i.e., the most important

parameter of the KNN algorithm) suggested by the hyperparameter tuning would match the number of instances

that each dataset contained. However, in the examples that were examined in this experimental study, this

definitely was not the case. To be more concrete, the dataset with the most observations was assigned the lowest

value of neighbors (i.e. 1), whereas the number of most neighbors was assigned on the Titanic dataset, which,

having 887 observations, would be probably considered medium-sized with respect to the size of the rest of the

datasets that were included in this study. Another noteworthy observation is that the number of the features in a

dataset affects the selection of a distance metric. More accurately, the datasets with fewer features tend to be

assigned with the option of the Euclidean distance, whereas datasets with a greater number of features are
assigned with the Chebyshev or Minkowski distance (i.e. sklearn’s default distance metric) (again though, with

the exception of the Melanoma dataset).

On the NB we also did not notice a big difference in the model’s performance. Apparently, it either

remained unaffected by the hyperparameter optimization, or was degraded with respect to its performance score.

The number of parameters that were tuned were 2 out of a total of 3 that the model depends on. The difference

was, again, insignificant, with many of the alpha values being around 1, which happens to be sklearn’s default

value or close to 0, and the class_prior value being True almost in every case.

In RF, one of the most important hyperparameters is the number of the estimators, which is actually the

number of the trees in the forest. This appears to be highly correlated with the number of the independent

variables in the dataset that is something that we anticipated. Breast cancer, Wine Quality, and MNIST, all have

Hyperparameter Optimization on Classification and Regression Algorithms

DOI: 10.9790/0661-2304013450 www.iosrjournals.org 48 | Page

a great number of features compared to the rest of the datasets. The value of the estimator parameter for each

one of them ranges between 100 and 144, while 150 is the max value of the search space for this particular

hyperparameter. An exception to this is the Melanoma dataset, where max features is another parameter that is
related to the number of features and the number of estimators, but in our cases, there seems to be no pattern in

this.

In the example of LR for the Titanic and Banknote datasets, liblinear is a good choice of a solver, but

for the Wine Quality dataset it is not the most appropriate choice, since it is a multiclass classification problem

and liblinear solver does not support multinomial loss. On the other hand, HyperOpt picked an optimal value for

the solver parameter in the case of the MNIST dataset, since the saga algorithm works faster for large datasets.

On top of all the aforementioned, Hyperopt provides its own visualization module. Through this

module it is easy to inspect and verify the results of Hyperopt’s trials object. Figure no 7 outlines the different

cases that were examined with regards to KNN, where each plotted point represents the best score achieved

during each iteration. To this end, it should be noted that the corresponding results were produced for all the

other classification algorithms (i.e. Support Vector Machines, Random Forest, Naive Bayes, and Logistic
Regression), contributing into the effective inspection of the produced results.

Iris Breast Cancer Titanic

 Wine Quality Banknote Authentication MNIST

Melanoma

Figure no 7. KNN visualized results.

Regression Results

Based on the results of Table no 4, in the cases of the regression tasks, it is obvious that

hyperparameter optimization did not improve significantly the performance of the models. The linear regression

case has only 4 hyperparameters to tune. The rest of them, which incidentally also are the ones that contribute

the heaviest in the final result of the model, are determined during the training process and not beforehand.

Therefore, the small effect on the performance could have been foreseen. The set of the parameters that was

proposed by HyperOpt ended up being rather similar to the default values that sklearn uses, while the RMSE

score was not affected at all. The same holds for the Abalone dataset, which had an RMSE of 2.57 in all the 3

algorithms and the 2 frameworks that was tested on. Since this dataset is quite large compared to the others, we

could draw the conclusion that size does not affect the overall accuracy of the model. Another notable
observation concerning the values of the parameters is that, in almost all cases, the alpha parameter is set to a

Hyperparameter Optimization on Classification and Regression Algorithms

DOI: 10.9790/0661-2304013450 www.iosrjournals.org 49 | Page

value close to 0 - if was equal to 0 it would be equivalent to ordinary least squares method that is solved by

Linear Regression on sklearn.

All these experiments constitute merely a subset of all the possible combinations of values that could
be applied on the algorithms’ hyperparameters. It is likely that a different set could produce the same result on a

specific dataset combined with an algorithm. This is made rather obvious even by a quick look in the above

table, where the groups of parameters of this study are displayed: we can observe that in many cases both

frameworks produce results with the exact same accuracy score. The random_state variable was used in

situations where a random sample was chosen in the process, with the purpose of reproducibility and also to

have a more stable and unified result.

As in the case of the classification experiments, Hyperopt provides its own visualization module.

Through this module it is easy to inspect and verify the results of Hyperopt’s trials object. Figure no 8 outlines

the different cases that were examined with regards to Lasso, where each plotted point represents the best score

achieved during each iteration. To this end, it should be noted that the corresponding results were produced for

all the other regression algorithms (i.e. Ridge), contributing into the effective inspection of the produced results.

Boston House Adalone

Figure no 8. Lasso visualized results.

V. Conclusion

In this manuscript we investigated how hyperparameter optimization works on supervised learning

models; more specifically on regression and classification algorithms. The conclusions that can be drawn from

the evaluation results in our study lead to doubts on hyperparameter optimization as a practice that should occur

in all cases of development of ML models. There are some factors that appear to affect the whole process. The

same set of factors is what should help us decide whether performing hyperparameter optimization worths its

trade-offs or not.

Into this context, an important factor is the performance of the model. In the cases where there was a

significant increase in the accuracy of the model, hyperparameter optimization is definitely worth trying.

However, in cases where the accuracy remained the same, or even decreased, it would probably be best to apply

the model with the default parameter values. Another factor that plays a key role in the whole process is the

execution time. A noteworthy example is the RF classifier experiment and its number of estimators

hyperparameter. In this case, time was affected significantly every time the search space for this parameter was
widened, albeit the corresponding accuracy did not show any satisfying results. Apart from this case, SVM and

LR showed positive results with respect to the performance, with a relatively small amount of execution time,

thereby indicating that hyperparameter optimization would be worth to be applied in such cases. Furthermore,

we should comment the results of the experiments related to the Melanoma dataset. All the produced results

performed quite well in comparison with the rest of the datasets, thus contributing to the conclusion that a large

number of independent variables is worth the time it takes for the hyperparameter tuning.

There is a lot of room for additional work to be conducted following this study. A first step would be

the inclusion of more learning models (e.g. clustering, time series, reinforcement learning) along with their

respective algorithms and their associated hyperparameters (i.e. XGBoost, Neural Networks, etc.) into the

exploration space. Another direction for future work would be the inclusion of a greater number of additional

datasets in the study. New datasets, with either similar or diverse features, could not only validate the results of
this study, but also lead to more robust evaluation results, broader conclusions and expanded sets of use cases

where hyperparameter optimization can indeed make a difference.

Acknowledgement

This research has been co-financed by the European Union and Greek national funds through the

Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH –

CREATE – INNOVATE (project code: DIASTEMA - T2EDK-04612).

Hyperparameter Optimization on Classification and Regression Algorithms

DOI: 10.9790/0661-2304013450 www.iosrjournals.org 50 | Page

References
[1]. The world’s most valuable resource is no longer oil, but data. Available online: https://www.economist.com/leaders/2017/05/06 /the-

worlds-most-valuable-resource-is-no-longer-oil-but-data

[2]. Data is everywhere and it powers everything we do!. Available online: https://www.kdnuggets.com/2020/08/data-everywhere-

powers-everything.html

[3]. Machine learning. Available online: https://searchenterpriseai.techtarget.com/definition/machine-learning-ML

[4]. Sala, R., Zambetti, M., Pirola, F., & Pinto, R. (2018). How to select a suitable machine learning algorithm: a feature-based, scope-

oriented selection framework. In 23rd Summer School" Francesco Turco"-Industrial Systems Engineering 2018 (Vol. 2018, pp. 87-

93). AIDI-Italian Association of Industrial Operations Professors.

[5]. Wistuba, M., Schilling, N., & Schmidt-Thieme, L. (2016, October). Hyperparameter optimization machines. In 2016 IEEE

International Conference on Data Science and Advanced Analytics (DSAA) (pp. 41-50). IEEE.

[6]. Bergstra, J., Yamins, D., & Cox, D. D. (2013, June). Hyperopt: A python library for optimizing the hyperparameters of machine

learning algorithms. In Proceedings of the 12th Python in science conference (Vol. 13, pp. 20). Citeseer.

[7]. Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011, December). Algorithms for hyper-parameter optimization. In 25th annual

conference on neural information processing systems (NIPS 2011) (Vol. 24). Neural Information Processing Systems Foundation.

[8]. Caruana, R., & Niculescu-Mizil, A. (2006, June). An empirical comparison of supervised learning algorithms. In Proceedings of the

23rd international conference on Machine learning (pp. 161-168).

[9]. Breiman, L. (2001) ‘Random Forests’. Machine Learning 45, 5–32.

[10]. Sirikulviriya, N., & Sinthupinyo, S. (2011, May). Integration of rules from a random forest. In International Conference on

Information and Electronics Engineering (Vol. 6, pp. 194-198).

[11]. Lim, C., Lee, S. R., & Chang, J. H. (2012). Efficient implementation of an SVM-based speech/music classifier by enhancing

temporal locality in support vector references. IEEE Transactions on Consumer Electronics, 58(3), 898-904.

[12]. Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: Theory and practice.

Neurocomputing, 415, 295-316.

[13]. Tay, B., Hyun, J. K., & Oh, S. (2014). A machine learning approach for specification of spinal cord injuries using fractional

anisotropy values obtained from diffusion tensor images. Computational and mathematical methods in medicine, 2014.

[14]. Hosmer Jr, et al. (2013). Applied logistic regression (Vol. 398). John Wiley & Sons.

[15]. Angel, L., Viola, J., Vega, M., & Restrepo, R. (2016, August). Sterilization process stages estimation for an autoclave using logistic

regression models. In 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA) (pp. 1-5). IEEE.

[16]. Naïve Bayes Algorithm: Everything you need to know. Available online: https://www.kdnuggets.com/2020/06/naive-bayes-

algorithm-everything.html

[17]. Kibriya, A. M., et al. (2004, December). Multinomial naive bayes for text categorization revisited. In Australasian Joint Conference

on Artificial Intelligence (pp. 488-499). Springer, Berlin, Heidelberg.

[18]. Lowd, D., & Domingos, P. (2005, August). Naive Bayes models for probability estimation. In Proceedings of the 22nd international

conference on Machine learning (pp. 529-536).

[19]. Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55-

67.

[20]. Cui, Z., & Gong, G. (2018). The effect of machine learning regression algorithms and sample size on individualized behavioral

prediction with functional connectivity features. Neuroimage, 178, 622-637.

[21]. Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the royal statistical society: series

B (statistical methodology), 67(2), 301-320.

[22]. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B

(Methodological), 58(1), 267-288.

[23]. Park, T., & Casella, G. (2008). The bayesian lasso. Journal of the American Statistical Association, 103(482), 681-686.

[24]. Feurer, M., & Hutter, F. (2019). Hyperparameter optimization. In Automated Machine Learning (pp. 3-33). Springer, Cham.

[25]. Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011, December). Algorithms for hyper-parameter optimization. In 25th annual

conference on neural information processing systems (NIPS 2011) (Vol. 24). Neural Information Processing Systems Foundation.

[26]. Tanay Agrawal (2020). Hyperparameter Optimization in Machine Learning: Make Your Machine Learning and Deep Learning

Models More Efficient.

[27]. F Pedregosa, et al. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825-2830.

[28]. Bergstra, J., et al. (2013). Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision

architectures. In International conference on machine learning, 115-123).

[29]. UCI Machine Learning Repository. Available online: https://archive.ics.uci.edu/ml/datasets/iris

[30]. UCI Machine Learning Repository. Available online:

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

[31]. Titanic - Machine Learning from Disaster. Available online: https://www.kaggle.com/c/titanic

[32]. Cortez, P., Cerdeira, A., Almeida, F., Matos, T., & Reis, J. (2009). Modeling wine preferences by data mining from

physicochemical properties. Decision support systems, 47(4), 547-553.

[33]. UCI Machine Learning Repository. Available online: https://archive.ics.uci.edu/ml/datasets/banknote+authentication

[34]. MNIST handwritten digit database. Available online: http://yann.lecun.com/exdb/mnist/

[35]. Harrison Jr, D., & Rubinfeld, D. L. (1978). Hedonic housing prices and the demand for clean air. Journal of environmental

economics and management, 5(1), 81-102.

[36]. Nash, W. J., et al. (1994). The population biology of abalone (haliotis species) in Tasmania. I. Blacklip Abalone (h. rubra) from the

north coast and islands of Bass Strait. Sea Fisheries Division, Technical Report, 48, p411.

[37]. Python. Available online: https://www.python.org/

[38]. Scikit-learn. Available online: https://scikit-learn.org/stable/

[39]. Hyperopt: Distributed Asynchronous Hyperparameter Optimization. Available online: http://hyperopt.github.io/hyperopt/

[40]. Pandas. Available online: https://pandas.pydata.org/

[41]. NumPy. Available online: https://numpy.org/

