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Abstract: This paper presents an iterative learning control (ILC) methodology-based optimal linear quadratic 

digital tracker (LQDT) for the five degree of freedom (five-DOF) active magnetic bearing (AMB) system as a 

multi-input multi-output sampled-date system. The combination of ILC and an observer is given out the perfect 

tracking responses and steady-state. The paper is organized as: (i) System-state observer Kalman filter 

identification (OKID) is used to construct control system. (ii). 
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I. System-state observer Kalman filter identification (OKID) is used to construct control 

system 
This part is derived as, apply the OKID method to construct the control loop. And after that, ILC is applied to 

achieve desired goal. 

A. Observer Kalman identification algorithm  

Basic observer equation 
In order to apply the observer Kalman filter identification method, the system state is required to perform as   

( 1) ( ) ( )x k Ax k Bu k   ,                                                                      (7.1a) 

( ) ( ) ( )y k Cx k Du k  ,                                                              (7.1b) 

 where 
1( ) nx k  , 

1( ) my k   and 
1( ) ru k   are state, output, and control input vectors, 

respectively, and 
n nA  , 

n rB  ,
m nC   and 

m rD   are system, input, output and 

direct transmission term system matrices, respectively.  

 

 Zero initial condition 

Assuming zero initial condition (0) 0,x   for 0,1, 2, , 1k l   

(0) 0x  , 

(0) (0)y Du , 

(1) (0)x Bu , 

(1) (0) (1)y CBu Du  , 

(2) (0) (1)x ABu Bu  , 

(2) (0) (1) (2)y CABu CBu Du   , 

  

1 1( 1) ( 1 ),
1

l ix l A Bu l i
i

    


 

1 1( 1) ( 1 ) ( 1)
1

l iy l CA Bu l i Du l
i
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( 1) for 1, 2, 3, ,y k k l    

can be grouped in a matrix form to yield 

,y YU   

where 

[ (0) (1) (2) ( 1)]y y y y y l  ,  

2[ ]lY D CB CAB CA B  ,  

and 

(0) (1) (2) ( 1)

0 (0) (1) ( 2)

0 0 (0) ( 3)

0 0 0 (0)

u u u u l

u u u l

U u u l

u

 
 


 
  
 
 
  







    



,  

m ly  ,
m rlY  , 

rl lU  ,  

 

 m  is the number of outputs, l  is the number of data samples and r  is the number of inputs. Equation 

y YU  is a matrix representation of the relationship between the input and output time histories. Matrix Y  

contains all the Markov parameters. Matrix U  is a block upper-triangular input matrix. When the states of 

system are inaccessible, an observer is usually applied to estimate the states from the information of input and 

output. Therefore, add and subtract the term (k),Gy  the observer of system can be rewritten as  

( 1) ( ) ( ) ( ) ( )x k Ax k Bu k Gy k Gy k      

( ) ( ) ( ) ( ) ( )A GC x k B GD u k Gy k      

( ) ( )Ax k Bv k  ,                                                                                    (6.2) 

where 

, [ , ],A A GC B B GD G      

and
( )

( )
( )

u k
v k

y k

 
  
 

 

 and G  is an n m  arbitrary matrix that can be used to make the desired stable matrix A . In fact, 

system (6) is an observer equation if the state ( )x k  is considered as an observer state vector. Therefore, the 

Markov parameters of system (1) will be referred to as the observer Markov parameters.  

From system (6), it is easy to show that 

( 1) ( ) ( ),x k Ax k Bv k    

( 2) ( 1) ( 1)x k Ax k Bv k      

2 ( ) ( ) ( 1),A x k ABv k Bv k     

   

( ) ( 1) ( 1)x k p Ax k p Bv k p        

1 2
( ) ( ) ( 1)

( 1)

p p p
A x k A Bv k A Bv k

Bv k p

 
    

  
  

and 

( ) ( ) ( )y k p Cx k p Du k p      

1 2
( ) ( ) ( 1)

( 1) ( )

p p p
CA x k CA Bv k CA Bv k

CBv k p Du k p

 
    

    
 

for 0, , 1k l p   , one has 
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p
y CA x YV  ,  

where 

( )
[ ( ) ( 1) ( 1)]

m l p
y y p y p y l

 
    ,  

( )
[ (0) (1) ( 1)]

n l p
x x x x l p

 
    ,  

( 1) [ ( ) ]
[ ]

p m r r m p
Y D CB CAB CA B

   
    

and 

( ) ( 1) ( 1)

( 1) ( ) ( 2)

( 2) ( 1) ( 3)

(0) (1) ( 1)

[ ( ) ] ( )

u p u p u l

v p v p v l

V v p v p v l

v v v l p

r r m p l p

  
 

 
 
    
 
 
   

   








   



.  

where 
p

A  is sufficiently small and mp n , so can be approximated by neglecting the first term 
p

CA x , 

such that 

y YV  

T TyV YVV  

1( )T TyV VV Y 
 

 

 Nonzero initial condition 

Consider the discrete multivariable linear system described by 

( 1) ( ) ( )x k Ax k Bu k                           (7.3a) 

( ) ( ) ( )y k Cx k Du k                                (7.3b) 

Add and subtract the term ( )Gy k to the right-hand side of the state equation, then Eq. (8) can be rewritten by 

( 1) ( ) ( ) ( ) ( )x k Ax k Bu k Gy k Gy k      

( ) ( ) ( ) ( ) ( )A GC x k B GD u k Gy k      

( 1) ( ) ( )x k Ax k Bv k                (7.4) 

For nonzero initial conditions, the above equation is easy to show that  

( 1) ( ) ( )x k Ax k Bv k    

( 2) ( 1) ( 1)x k Ax k Bv k      

2 ( ) ( ) ( 1)A x k ABv k Bv k     

  

( ) ( 1) ( 1)x k p Ax k p Bv k p      

1 2
( ) ( ) ( 1) ( 1)

p p p
A x k A Bv k A Bv k Bv k p

 
        Using the measurement equation yields 

( ) ( ) ( )y k p Cx k p Du k p      

1 2
( ) ( ) ( 1)

( 1) ( )

p p p
CA x k CA Bv k CA Bv k

CBv k p Du k p

 
    

    


 

p
y CA x YV                                    (7.5) 

where the states in x  are bounded and 
p

A is sufficiently small the above equation can be approximated by 

y YV   

where  
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( ) ( 1) ( 1)

( 1) ( ) ( 2)

( 2) ( 1) ( 3)

(0) (1) ( 1)

[ ( ) ] ( )

u p u p u l

v p v p v l

V v p v p v l

v v v l p

r r m p l p

  
 

 
 
    
 
 
   

   








   



 

 where, all the rows of V  must be linearly independent. The maximum value of p , which is the upper 

bound of the order of the deadbeat observer, is the number that maximizes the number ( )r m p r l p     

of the independent rows of V . So, ( 1)l r m p r    . On the other hand, the lower bound of p  must be 

chosen such that  max ,p r m n  , where r  and m  are the numbers of inputs and outputs, respectively, and 

n  is the order of the system. Obviously, p  might be smaller than the true order of the system for a multiple-

input multiple-output system, while for a single-input single-output system p  must be greater than or equal to 

the true order of the system. 

 

 Computation of observer Markov parameters 

The observer Markov parameters 1kY CA B
k

  include the system Markov parameters 1kY CA B
k

  

and the observer gain Markov parameters 1o kY CA G
k

 . The system Markov parameters and the observer 

gain Markov parameters are used to combine a Hankel matrix. 

- System Markov Parameters 

To recover the system Markov parameters in Y  from the observer Markov parameters in Y , partition Y  such 

that 

( 1)

0 1 2

p
Y D CB CAB CA B

Y Y Y Yp

 
  

 
 


 

 
 

         (7.6) 

where 

0
Y D , 

1

1 1( ) ( )  ( )

kY CA B
k

k kC A GC B GD C A GC G



      
  

 

(1) (2)
 Y Y

k k
 
  

  

for 1, 2, 3,k   .  

The system Markov parameters of the system can be reformulated as 

(1) (2)
( ) ( )

1 1 1
Y CB C B GD CG D Y Y D      .  

(1)
( )( )

2

( )

(2) (2)
2 1 1 2

Y C A GC B GD

CAB CGCB C A GC GD

Y Y Y Y D

  

   

  

 

(1) (2) (2)

2 2 1 1 2
Y CAB Y Y Y Y D    . 
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(1) 2( ) ( )
3

Y C A GC B GD    

2( )( )C A GCA AGC GCGC B GD      

2 ( )

2( )

CA B CGCAB C A GC GCB

C A GC GD

    



 

(2) (2) (2)
3 1 2 2 1 3

Y Y Y Y Y Y D    . 

Then, one has  

(1) (2) (2) (2)2
3 3 1 2 2 1 3

Y CA B Y Y Y Y Y Y D     .  

By induction, the general relationship between the system Markov parameters Y
k

 and the observer Markov 

parameters Y
k

 is 

0 0
Y Y D  ,  

(1) (2)

1

k
Y Y Y Yik k k ii

   
 for 1, 2, ,k p  ,  

(2)

1

p
Y Y Yik k ii

   
 for 1, ,k p   .  

- Observer Gain Markov Parameters 

To identify the observer gain ,G  first recovers the sequence of parameters as follows: 

1o kY CA G
k

  for 1, 2, 3,k   .  

 In terms of the observer gain Markov parameters, in fact, the first parameter of equation in the 

sequence is 

(2)
.

1 1
oY CG Y    

The next parameter in the sequence is obtained by considering 
(2)
2

Y  

(2)
( )

2
Y CAG CAG CGCG    

(2)
2 1 1
o oY Y Y  . 

Then, one has 

(2) (2)
2 2 1 1
o oY Y Y Y  .  

Similarly, one gets 

(2) 2
3

2( )

(2) (2)
3 1 2 2 1

Y CA G

CA G CGCAG CAGCG

o o oY Y Y Y Y



  

  

. 

Then, one has 

(2) (2) (2)
3 3 1 2 2 1
o o oY Y Y Y Y Y   .  

The general relationship can be summarized as follows: 

(2)
,

1 1
oY CG Y    

1(2) (2)

1

ko oY Y Y Yik k k ii
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for 2, 3, ,k p  ,  

(2)

1

p
o oY Y Yik k ii
   

 

for 1, ,k p   .  

 

 Eigensystem realization algorithm 

 The Hankel matrix ˆ ( 1)H k   from the combined observer Markov parameters is associated with the 

system and observer as 

1 1

1 2ˆ ( 1) ,

1 2

k k k

k k k
H k

k k k





   

     
 
   

    
 
 
         





   



  

 where 
   

ˆ ( 1)H k
m m r  

  


   

0   and 0   are sufficiently large arbitrary integers and 

[ ]oY Y
k k k

 
1 1[ ]k kCA B CA G  . Notice that it’s required  ( )m m r        and

p  . However, a large   may induce a large numerical computation error. When the combined observer 

Markov parameters are determined, the eigen-system realization algorithm (ERA) method is used to obtain the 

desired discrete system realization[ , , , ]A B C G  through singular value decomposition (SVD) of the Hankel 

matrix.  

 The ERA processes the factorization of the block data matrix, started for 1,k   using the singular 

value decomposition ˆ (0) TH R S  , where the columns of matrices R  and S  are orthonormal and   is 

a rectangular matrix of the form as follows 

0

0 0

n
 

   
  

 ,  

 where [ , , , , , , ]
1 2 1min min

diag nn n n
     


    contains monotonically non-

increasing entries 0.
1 2 1min min

n n n
         


    Here, some singular values 

( , , )
1

min
n n

 


   are relatively small ( )
1 minmin

nn
 


  and negligible in the sense that they 

contain more noise information than system information. In order to construct the low order observer of the 

system, let’s define [ , , , ] 
1 2min min

diagn n    . In other words, the reduced model of order minn  

after deleting singular values ( , , )
1

min
n n

 


   is then considered as the robustly controllable and 

observable part of the realized system with an acceptable closed-loop performance. Simultaneous realizations of 

the system and observer by the ERA are given as 

  1/2 1/2ˆ (0) [ ][ ]T TH R S R S P Q       

where 

1

C

CA
P

CA

 
 
 
 
 

  


 and

1
Q B AB A B

 
  

 , 
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then 

1/2 1/2ˆ (1) ,
min minmin min

TA V H Sn nn n
      

 B G First ( r m ) columns of 
1/2

min min

TSn n  

C  First m  rows of 1/2

minmin
V nn   

In order to more improve the performance, this paper used the iterative learning control to achieve this goal. 

This proposed method use 2,  and 3    

 

B. Iterative learning control  

 This part will leads us go through an optimal tool, herein distances tracking error of AMB system are 

reduced, and steady-state is improved. The propose tool based on learning by the past active of some tasks in the 

system. In order to achieve the high performance and keep the advantage of the high gain system for sampled-

data AMB system. Consider the discrete-time system   minimum phase as  

(kT) (kT) (kT) (kT)x Ax Bu dcj dj dj
           (7.7a) 

(kT) (kT) (kT) (kT)y Cx Du scj dj dj
           (7.7b) 

 where (0) (0),x xcj  and j is iteration number, (kT),d (kT)s  are unknown disturbances. Then 

can imagine there exists an equivalently artificial system model. 

(kT) (kT) (kT)x Ax Bua a a   

(kT) (kT) (kT) (kT)y Cx Du sa a a a    

  
(kT)sa denotes to actual steady-state error signal between the actual output of the system 

(t)ycj
and pre-specified trajectory signal. Where the artificial control can be determined as  

*(kT) (kT) (kT) (kT) (kT)u K x S r C C ua a a a a u aa
      

where    

1( ),T TK R B P Na a a a
   

1 1( )( ) ,
T

S R C DK A BK B D Qa a a a d
      

  
  

(kT) (kT),C S sa aad
   

* 1 1( [( )] } ,T TC I B A B K Ra a m a a
     

,TN C Q Da a  

,TR R D Q Da a a   

Then (kT)sa is determined as  

(kT) (kT)
10

j
s eaj ii

  
 

Where  (kT) (kT) (kT),
1 (i 1)

e y r
i c

 
 

 

Then apply optimal error compensation ILC leads to  

(kT)

*(kT) (kT) (kT) (kT)

u
d

K x S r C C uud d d d dd
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1( ),T TK R B P N
d d d d

   

1 1( )( ) ,
T

S R C DK A BK B D Q
d d d d d

      
  

  

(kT) (kT),C S s
d d d

   

* 1 1( [( )] } ,T TC R I B A B K Rmd d d d
      

,TN C Q D
d

  

,TR R D Q D
d d d
   

 An optimal LQDT with pre-specified measurement output and control input trajectories for the 

discrete-time controllable and observable system with both an input-to-output direct-feedthrough term and 

known system disturbances is summarized as follows [16]. 

 Consider the controllable and observable linear discrete-time system with an input-to-output direct-

feedthrough term and known/estimated system disturbances ( )d k  and ( )s k  

( 1) ( ) ( ) ( ),x k Gx k Hu k d k
d d d

       (7.8a) 

( ) ( ) ( ) ( ),y k Cx k Du k s k
d d d

    (7.9b) 

  where ,n nG  ,n mH  ,
p n

C


  and 
p m

D


  are state, input, output, 

and direct-feedthrough matrices, respectively. ( ) nx k
d

 is the state vector, ( ) mu k
d

 is the control 

input, and ( )
p

y k
d

  is the measurable output.The design goal is to determine the optimal control sequence 

(0),u
d

(1),u
d

(2),u
d

, ( 1)u N
d f

  that minimizes the linear quadratic performance index for a finite 

time process 

1
( , ) ( ) ( ) ( ) ( )

2

T
J x u y N r N S y N r N

d d d f f d f f
      
      

 

1
1 * *( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 0

N
Tf T

y k r k Q y k r k u k u k R u k u k
dd d d d d d dk


      
      
          





    


 (14) 

 where Q
d

 is a p p  positive definite or positive semi-definite real symmetric matrix, R
d

is an 

m m  positive definite real symmetric matrix, S  is a p p  positive definite or positive semi-definite real 

symmetric matrix, ( )r k is a pre-specified output trajectory, and 
* ( )u k
d

 is a pre-specified input trajectory. The 

resulting continuous-time state-feedback control law is given by  

* *( ) ( ) ( ) ( ) ( ),u k K x k E r k C k C u kud d d d d d
      (7.10) 

where 

1 ,K R P
d d

     
1

1 ,
T TT TE R D H I G HK C DK Qnd d d d d
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1
1( ) ( )

1
1 ( )

( ) ( ),

T TT TC k R H G HK I C DK D Q s knd d d d d

T TTR H G HK I G HK I Pd kn nd d d

E s k Z d k
d d

 
        
   

 
        
   

  



  

   
1

1 T TTZ R H G HK I G HK I Pn nd d d d

 
        
   

  

 
1

* 1 ,
TT TC R H G HK I K I Ru n md d d d

 
       
   

  

,TR R D Q D
d d d
   

,TN C Q D
d d
  

,TR R H PH
d d
   

,T TP H PG N
d

    

and P  satisfies the algebraic Riccati equation 

 

 

1

1
.

T T TP G PG C Q C P R P
d d

T
T T T TG PG C Q C H PG N

d d

T T TR H PH H PG N
d d

  

   


  
 



 (7.11) 

 

C. Sampled-data controlled system 
Let the corresponding digitally controlled model of (x) be described as 

( ) ( ) ( ) ( )  ,  (0)
0

x t Ax t Bu t d t x x
d d d d

                                                 (7.12a)   

( ) ( ) ( )y t Cx t s t
d d

  ,                                                                                          (7.12b) 

 where ( ) mu t
d

  is piecewise-constant, such that (t) ( ),u u kT
d d

 for ( 1) ,kT t k T    and 

0,T   is the period of sampling and hold. Let (t)u
d

 be a discrete-time state-feedback control law of the for 

* * *( ) ( ) ( ) ( ) ( ),u kT K x kT E r kT C kT C u kTud d d d d d
      

( 1) ,kT t k T    

 where 
m nK

d
  and 

m p
E

d


  are the feedback and feed-forward digital gains, 

respectively, ( )C kT
d

is the compensatory signal, and 
*( )r kT  is a piecewise-constant reference input vector 

to be determined in terms of ( )r kT  for tracking purpose. The digital reference input vector with tracking 

purpose is specified as 
*( ) ( 1)r k r k  . For the direct-feedthrough term-free case. The viewpoint has been 

proved in [18-21]. The overall digitally controlled closed-loop system becomes 
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( ) ( ) [ ( )

* *( ) ( ) ( )],

x t Ax t B K x kT
d d d d

E r kT T C kT C u kTud d d

   

  



                                               (7.13) 

(0)
0

x x
d

 , 

for ( 1) ,kT t k T    , where the controller is realized using a zero-order-hold, the discrete-time model is 

described as  

(( 1) ) ( ) ( ) ( )x k T G x kT Hu kT H d kT
d d d d

    ,                                     (7.14a) 

( ) ( ) ( )y kT Cx kT s kT
d d

              (7.14b) 

where 

ATG e , 

1 1( )H G I A B   , if
1A exists 

Or 

1
 

( 1)!0

iT iH A B
ii


 


, if

1A does not exist, and 

1 1( )H G I A Ind
   , if

1A exists 

 

Then the control system is constructed as follows  

 
Figure 2.1 Iterative learning control for five DOF AMB system 

 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Figure. 2.2  The actual output responses, (a) y1(t) (b) y2(t) (c) y3(t) (d) y4(t) 
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(a) 

 
(b) 

Figure. 2.3 System orbit, (a) left rotor orbit (b) right rotor orbit 

 

 
(a) 
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(b) 

 
(c) 

Figure 2.4 control signals, (a) 
1

i i
xb

 (b) 
1

i i
yb

 and (c) i izb
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Figure 2.5 Open-loop step response 

 

 
Figure 2.6 Closed-loop step response 

 

 
Figure 2.7 the z axis response 
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Figure 2.8 System state responses 

 

 
Figure 2.9 System poles 

 

II. Summary 
 This study proposed the quite good controller for sampled-date active magnetic bearing system. To 

achieve the specified-goal this paper have to equipped some advanced technic as state-observer Kalman filter to 

estimate system state,  use iterative learning control tool to reduce tracking error and develop the transient 

responses signal, and based on the linear quadratic digital tracker is built as background of this proposed 

controller. Then simulation results are given to demonstrate how effective of the proposed methodology on the 

system. 
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Table 3.1: The system parameters 

Parameter Description Value Unit 

    
m  The mass of the rotor 2.56478 kg 

L  The length of the rotor 0.505 m 

  diameter of rotor 0.0166 M 

J  
The coefficient of inertia of rotor about X–Y 

axes 
4.004e-2 kg m2 

J z  
The polar mass moment of inertia of rotor about 

Z-axis 
6.565e-4 kg m2 

kri  The current stiffness of the RAMB  80 N/A 

krp  The position stiffness of the  RAMB 2.2e5 N/m 

kai  The current stiffness of the TAMB 40 N/A 

kap  The position stiffness of the AMB 3.6e4 N/m 

a  The distance between CG and left RAMB 0.160 m 

b  The distance between CG and right RAMB 0.190 m 

c  
The distance between CG and external 

disturbances 
0.263 m 

,x yb b  The nominal air gaps in X–Y axes of RAMB 0.4 mm 

0z  The nominal air gap in Z-axis of TAMB 0.5 mm 
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