# Load Flow Modeling and Performance Analysis of Suleja 132/33 kV Sub-transmission Station

## Onah, C. O., Agber, J. U., Ufene, F. A.

Federal University of Agriculture, Makurdi, Nigeria Abuja Electricity Distribution Company, Suleja Business Unit, Nigeria

Abstract – The load flow analysis of an interconnected power system is highly imperative as it reveals the electrical performance and power flow (real and reactive) for specified conditions when the system is operating under steady-state. Therefore, this paper presents the load flow modeling and performance analysis of Suleja 132/33 kV sub-transmission station to ascertain its steady-state operating conditions and adequately mitigate the losses associated with the network. Electrical Transient Analyzer Program (ETAP) software was employed in the modeling and analysis of the load flow using the single line diagram (SLD) with the actual data obtained from the station. The results obtained from the load flow analysis showed several voltage violations at Abuja steel, Jere, Madalla, Rafinsanyi, Suleja town and Tommy buses with magnitudes of 93.631%, 87.149%, 89.268%, 89.165%, 90.503% and 94.767 % respectively. The results from the analysis also indicated that before compensation, an overall system loss of 1457.5 kW and 4425.8 kVAr was observed. The losses in the network were compensated using the ETAP Optimal Capacitor Placement (OCP) module. The OCP module optimally sized and placed capacitors on the affected buses, which improved the bus voltages of the entire network. The results from the OCP revealed that it optimally sized and placed four capacitors at Suleja town bus, Tommy bus, Abuja steel bus and Jere bus with total bank rating of 12000 kVAr, 6000 kVAr, 6000 kVAr and 13500 kVAr respectively. Consequently, an improvement of the bus voltages from 93.631%, 95.602%, 96.127%, 87.149%, 89.268%, 89.165%, 90.503%, 94.767% to 97.634%, 102.299%, 99.192%, 98.754%, 100.498%, 100.382%, 101.888%, 98.31% for Abuja Steel bus, Bus 3, Bus 4, Jere bus, Madalla bus, Rafinsanyi bus, Suleja Town bus and Tommy bus respectively were recorded. The total active and reactive power losses were also reduced from 1457.5 kW and 4425.8 kVAr to 1408.4 kW and 4078.6 kVAr respectively.

Keywords: Power generation, Load flow, Steady-state, Power loss, Optimal capacitor placement, ETAP

Date of Submission: 13-07-2021

Date of Acceptance: 29-07-2021

## I. Introduction

\_\_\_\_\_

The power flow analysis, which is also known as load flow study is an important tool involving numerical analysis applied to a power system. The study reveals the electrical performance and power flows (real and reactive) for a specified condition when the system is operating under steady-state. Power flow studies are typically used to obtain the magnitude and phase angle of the voltage at each bus and the real and reactive power flow in each line and are considered one of the most intensively used tools in power system analysis [1 - 4].

In a three-phase alternating current (AC) power system, active and reactive power flow from the generating stations to the load through different network buses and branches. This flow of active and reactive power in an electric power system is referred to as power flow or load flow. Power flow studies provide a systematic mathematical approach for the determination of important information about the power system [5 -7].

Load flow solution is the core requirement for designing a new power system and for planning an extension of the existing one for increasing demand. These analyses require a large number of load flow solutions under both normal and abnormal operating conditions, i.e. during cases of transmission lines or generators outages. Similarly, load flow analysis is highly relevant in the study of the transient behavior of the electric power system by providing the initial conditions [8, 9].

Under the steady-state condition, the network equations are expressed in the form of simple algebraic equations. The loads and generation continuously change in a real power system, but for the solution of load flow equations, it is assumed that loads and generation are fixed for a particular value over suitable periods.

For the past three decades, several methods of numerical analysis have been applied in solving load flow analysis problems. The prevalent iterative methods are the Gauss-Seidel, the Newton-Raphson and Fast Decoupled method [11]. With the industrial developments in society, the power system increases and the dimension of the load flow equation also kept increasing to several thousand. With such increases, any numerical method cannot converge to a correct solution. Thus, power engineers have to seek more

reliable methods. The problem that faces the power industry is how to determine which method is most suitable for a power system analysis. In load flow analysis, high degree accuracy and faster solution time are required to determine which method is best to use.

In this paper, detailed load flow modeling and performance analysis of the electric power subtransmission system is reported with Suleja 132/33 kV sub-transmission station as the case study using the Newton-Raphson method in an Electrical Transient Analyzer Program (ETAP) environment.

#### II. **Classification Of Buses For Load Flow Analysis**

In load flow analysis, four quantities are associated with each bus. These quantities include voltage magnitude V, phase angle  $\delta$ , active power P and reactive power Q. In the analysis, two out of the four quantities are specified and the remaining two quantities are to be determined through the solutions of the load flow equations [12]. The buses are categorized based on the two specified variables as summarized in Table 1.

#### 2.1 P-V buses

This is a voltage controlled bus. For P-V buses, active power P and voltage magnitude V are specified as known variables, while reactive power and phase angle are to be resolved through the analysis. Usually, PV buses should have some controllable reactive power resources and can thus maintain bus voltage magnitude at a desirable value [13]. Generally, the buses of power plants can be taken as PV buses, because voltages at these buses can be controlled with the reactive power capacity of their generators. Some substations that have enough reactive power compensation devices to control the voltage are also considered as PV buses.

#### 2.2 P-Q buses

For P-Q buses, the active P and reactive power Q are specified as known parameters, and the voltage magnitude and the phase angle are to be resolved. Usually, substation buses are taken as PQ buses where the load powers are given constants. When output P and Q are fixed in some power plants, these buses can also be taken as P-Q buses. Most buses in power systems belong to the P-Q type in load flow analysis.

#### 2.3 Slack bus

In load flow analysis, only one slack bus is required in the power system, which is specified by a constant voltage magnitude and phase angle. Therefore, voltage magnitude and phase angle are given as known variables at the slack bus, while the active power and reactive power are the variables to be solved using power flow equations. The effective generator at this bus supplies the losses to the network. This is necessary because the magnitude of losses will not be known until the calculation of currents is complete [13].

| Table 1. Summary of classification of buses |           |                      |                        |                                                             |  |  |
|---------------------------------------------|-----------|----------------------|------------------------|-------------------------------------------------------------|--|--|
| S/N                                         | Bus Type  | Specified Quantities | Unspecified Quantities | Remarks                                                     |  |  |
| 1                                           | P-V bus   | P, V                 | Q, δ                   | A generator is present at the machine bus                   |  |  |
| 2                                           | P-Q bus   | P, Q                 | ν   , δ                | About 80% buses are P-Q type                                |  |  |
| 3                                           | Slack bus | $V$ , $\delta$       | P, Q                   | $ V $ , $\delta$ are assumed if not specified as 1.0 and 0° |  |  |

#### c 1 · · · · **T** 11 4 G

#### III. **Formulation Of Load Flow Problem**

In the load flow problem, the analysis is restricted to a balanced three-phase power system for the analysis to be performed on a single-phase basis. The first step in the analysis is the formulation of suitable equations for the power flows in the system. The power system is a large interconnected system, where several buses are connected by transmission lines. At any bus, complex power is injected into the bus by the generators and complex power is drawn by the loads. The nodal equation for a power system network using  $Y_{bus}$  can be described by equation (1).

 $I = Y_{bus} V$ 

In a general form for an n-bus system, the nodal equation can be defined by equation (2).

$$I_{i} = V_{i}Y_{ii} + \sum_{\substack{j=1 \\ j \neq i}}^{n} V_{j}Y_{ij} \qquad for \ i = 1, 2, \cdots, n$$
(2)

The complex power injection into bus i, is given by equation (3).

$$S_i = P_i + jQ_i = V_i I_i^*$$
(3)

where \* indicates a complex conjugate value,  $P_i$  and  $Q_i$  are the active and reactive power at bus *i* respectively.

Equation (3) is rewritten as equation (4) and the injected currents obtained as equation (5).

$$S_{i}^{*} = P_{i} - jQ_{i} = V_{i}^{*}I_{i}$$

$$(4)$$

$$I_{i} = \frac{P_{i} - jQ_{i}}{V_{i}^{*}}$$

(5)

From equations (2) and (5), the expression in equation (6) is obtained.

$$\frac{P_{i} - jQ_{i}}{V_{i}^{*}} = Y_{ii}V_{i} + \sum_{\substack{j=1 \ j \neq i}}^{n} Y_{ij}V_{j}$$

(6)

$$V_{i} = \frac{1}{Y_{ii}} \left[ \frac{P_{i} - jQ_{i}}{V_{i}^{*}} - \sum_{\substack{j=1\\j \neq i}}^{n} Y_{ij}V_{j} \right]$$

(7)

Equation (7) represents a mathematical formulation for load flow problems resulting in a system of non-linear algebraic equations, which must be solved by iterative techniques [13, 14]. In this paper, the Newton-Raphson technique is adopted for the analysis.

## 3.1 Newton-Raphson technique of load flow analysis

Newton-Raphson technique is an iterative technique, which approximates the set of non-linear simultaneous equations to a set of linear equations using Taylor's series expansion and the terms are restricted to first-order approximation [15]. Two methods of solutions for the load flow using Newton-Raphson technique are obtainable, which are rectangular coordinate and the polar coordinate. The load flow problem formulated in polar form as adopted in this paper, using the nodal current equation (9) in terms of the bus admittance matrix is given by equation (10).

$$I_{i} = \sum_{j=1}^{n} Y_{ij} V_{j}$$
(9)

Expressing equation (9) in polar form yields equation (10).

$$I_{i} = \sum \left| Y_{ij} \right| V_{j} \not \simeq \theta_{ij} + \delta_{j}$$

(10)

The complex power at bus i is given by the expression in equation (11).

$$P_i - jQ_i = V_i^* I_i$$

(11)

Equation (12) is obtained from equations (10) and (11).

$$P_{i} - jQ_{i} = \left| V_{i} \right| \angle - \delta_{i} \sum_{j=1}^{n} \left| Y_{ij} \right| \left| V_{j} \right| \angle \theta_{ij} + \delta_{j}$$

The distinction between the real and imaginary parts can be obvious through the expansion of equation (12), which leads to equations (13) and (14).

$$P_{i} = \sum_{j=1}^{n} |V_{i}| |V_{j}| |Y_{ij}| \cos(\theta_{ij} - \delta_{i} + \delta_{j})$$
(13)
$$Q_{i} = -\sum_{j=1}^{n} |V_{i}| |V_{j}| |Y_{ij}| \sin(\theta_{ij} - \delta_{i} + \delta_{j})$$
(14)

The equations (13) and (14) represent a set of non-linear algebraic equations in terms of voltage magnitude V

in per unit and  $\delta$  in radians [11]. Application of Taylor's series expansion to equations (13) and (14) about the initial estimate but neglecting all higher order terms, a set of linear equations as described by equation (15) can be obtained.

$$\begin{bmatrix} \Delta P_{2}^{(k)} \\ \overline{\partial \delta_{2}} & \cdots & \frac{\partial P_{2}^{(k)}}{\partial \delta_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \overline{\partial V_{2}} \\ \vdots \\ \frac{\Delta P_{n}^{(k)}}{\Delta Q_{2}^{(k)}} \\ \vdots \\ \Delta Q_{n}^{(k)} \end{bmatrix} = \begin{bmatrix} \frac{\partial P_{n}^{(k)}}{\partial \delta_{2}} & \cdots & \frac{\partial P_{n}^{(k)}}{\partial \delta_{n}} \\ \frac{\partial P_{2}^{(k)}}{\partial V_{2}} \\ \vdots \\ \frac{\partial P_{2}^{(k)}}{\partial \delta_{2}} \end{bmatrix} = \begin{bmatrix} \frac{\partial P_{n}^{(k)}}{\partial \delta_{2}} & \cdots & \frac{\partial P_{n}^{(k)}}{\partial \delta_{n}} \\ \frac{\partial P_{n}^{(k)}}{\partial V_{2}} \\ \vdots \\ \frac{\partial P_{2}^{(k)}}{\partial \delta_{2}} & \cdots & \frac{\partial P_{2}^{(k)}}{\partial \delta_{n}} \\ \frac{\partial Q_{2}^{(k)}}{\partial V_{2}} \\ \vdots \\ \frac{\partial P_{n}^{(k)}}{\partial \delta_{2}} \\ \vdots \\ \frac{\partial P_{n}^{(k)}}{\partial \delta_{2}} \\ \vdots \\ \frac{\partial P_{n}^{(k)}}{\partial \delta_{2}} \\ \frac{\partial P_{2}^{(k)}}{\partial \delta_{n}} \\ \frac{\partial Q_{2}^{(k)}}{\partial V_{2}} \\ \frac{\partial Q_{2}^{(k)}}{\partial V_{n}} \\ \frac{\partial Q_{2}^{(k)}}{\partial V_{n}} \\ \frac{\partial Q_{n}^{(k)}}{\partial V_{n}} \\ \frac{\partial Q_$$

From equation (15), the Jacobian matrix expresses the linearized relationship between small changes in voltage angle  $\Delta \delta_i^{(k)}$  and voltage magnitude  $\Delta |V_i^{(k)}|$  with small changes in active and reactive power  $\Delta P_i^{(k)}$  and  $\Delta Q_i^{(k)}$ . The elements of the Jacobian matrix are the partial derivatives of equations (13) and (14), evaluated at  $\Delta \delta_i^{(k)}$  and  $\Delta |V_i^{(k)}|$ . Equation (15) can be written in short form as equation (16).

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} J_1 & J_2 \\ J_3 & J_4 \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta | V | \end{bmatrix}$$
(16)

where,  $J_1$ ,  $J_2$ ,  $J_3$  and  $J_4$  are the elements of the Jacobian matrix.

The terms  $\Delta P_i^{(k)}$  and  $\Delta Q_i^{(k)}$  represent the difference between the scheduled and calculated values at bus *i*, referred to as the power residuals, given by equations (17) and (18).

$$\Delta P_i^{(k)} = P_i^{\text{schedued}} - P_i^{(k)}$$
(17)
$$\Delta Q_i^{(k)} = Q_i^{\text{schedued}} - Q_i^{(k)}$$
(icalculated )

(18) The new estimates for bus voltage magnitudes and phase angles are given by equations (19) and (20) respectively.

$$|V_{i}|^{(k+1)} = |V_{i}|^{(k)} + \Delta |V_{i}|^{(k)}$$
(19)
$$\delta_{i}^{(k+1)} = \delta_{i}^{(k)} + \Delta \delta_{i}^{(k)}$$
(20)

#### IV. Simulation

The simulation for the model of the case study was performed in Electrical Transient Analyzer Program (ETAP) environment using the Newton-Raphson technique (Polar coordinate method).

4.1 Data collation

The essential data used for study was obtained from the Abuja Electricity Distribution Company (AEDC), Suleja business unit. Data collated include the Single Line Diagram (SLD) of the 132/33 kV Suleja sub-transmission Station, equipment ratings, line and load data.

#### 4.2 Single line diagram

The single line diagram as obtained from the station is as shown in Fig. 1. The Suleja sub-transmission power network comprises four (4) power transformers, seventeen (17) circuit breakers, fourteen (14) current Transformers, four (4) potential transformers and eight (8) isolating switches. The network draws power from the grid at a voltage level of 132 kV through Minna line 1 and 2. The 132 kV voltage level is been stepped down to 33 kV using two (2) power transformers. The power network consists of four (4) 33 kV feeders (i.e. Suleja town line, Jere line, Tommy line and Abuja Steel line). The Suleja Town 33 kV line is stepped down into and two (2) 11 kV feeders (i.e. Rafinsanyi and Madalla) also using two (2) power transformers.



Figure 1: Single line diagram of the 132/33 kV Suleja sub-transmission power network

## 4.3 Equipment rating

The equipment ratings as obtained and used in this paper are shown in the Tables. Table 1 represents the transformer data while Table 2 depicts ratings of other equipment. Table 3 shows the load data.

| Table 1: Transformer Data |                              |          |           |  |  |  |
|---------------------------|------------------------------|----------|-----------|--|--|--|
| Component                 | Туре                         | R        | ating     |  |  |  |
| Transformer               | TR1                          | 30       | MVA       |  |  |  |
|                           | TR2                          | 45       | MVA       |  |  |  |
|                           | Т3                           | 15       | 15 MVA    |  |  |  |
|                           | T4                           | 15       | 15 MVA    |  |  |  |
| Component                 | Table 2: Equipment D<br>Type | ata<br>R | ating     |  |  |  |
| Component                 | Туре                         | R        | ating     |  |  |  |
| Circuit Breaker           | CB 1-4                       | 145 k    | V/1600A   |  |  |  |
|                           | CB 11-12                     | 12 kV    | V/1250A   |  |  |  |
|                           | CB 5-10; 13-17               | 33 k     | V/400A    |  |  |  |
| Current Transformer       |                              | Primary  | Secondary |  |  |  |
|                           | CT 1,3                       | 600A     | 1A        |  |  |  |
|                           | CT 2                         | 75.4     | 14        |  |  |  |

|                             | CT 4                                                                                        | 200A                       | 1A                               |
|-----------------------------|---------------------------------------------------------------------------------------------|----------------------------|----------------------------------|
|                             | CT 11-12                                                                                    | 400A                       | 5A                               |
|                             | CT 5-10;13-14                                                                               | 1200A                      | 5A                               |
| Potential Transformer       | PT 1                                                                                        | 132 kV                     | 110V                             |
|                             | PT 2-4                                                                                      | 33 kV                      | 110V                             |
| <b>Isolating Switches</b>   | SW 1-6                                                                                      | 132 kV/1600A               |                                  |
|                             | SW 7-8                                                                                      | 33 kV                      | V/400A                           |
|                             |                                                                                             |                            |                                  |
|                             |                                                                                             |                            |                                  |
|                             | Table 3: Load Data                                                                          |                            |                                  |
| Component                   | Table 3: Load Data     Type                                                                 | Ra                         | ting                             |
| <b>Component</b><br>Feeders | Table 3: Load Data<br>Type<br>Load 1                                                        | Ra<br>27                   | ting<br>70A                      |
| Component<br>Feeders        | Table 3: Load Data<br>Type<br>Load 1<br>Load 2                                              | <b>R</b> a<br>27<br>21     | ting<br>70A<br>10A               |
| Component<br>Feeders        | Table 3: Load Data<br>Type<br>Load 1<br>Load 2<br>Load 3                                    | Ra<br>27<br>21             | ting<br>70A<br>10A<br>25A        |
| Component<br>Feeders        | Table 3: Load Data         Type         Load 1         Load 2         Load 3         Load 4 | Ra<br>27<br>21<br>19<br>26 | ting<br>70A<br>10A<br>95A<br>50A |

| Table 4: Resistance              | e and reactance values |           |
|----------------------------------|------------------------|-----------|
| uivalent Area (mm <sup>2</sup> ) | Resistance             | Reactance |

| Equivalent Area (mm <sup>2</sup> ) | Resistance<br>(Ohms/km) | Reactance<br>(Ohms/km) |
|------------------------------------|-------------------------|------------------------|
| 150                                | 0.223                   | 0.245                  |

The route lengths of the corresponding lines are given below in table 3.5.

| Table 5: Route length of the lines |       |                 |                   |  |  |  |
|------------------------------------|-------|-----------------|-------------------|--|--|--|
| Lines                              |       |                 | Route Length (km) |  |  |  |
|                                    | From  | То              |                   |  |  |  |
| Suleja Town                        | Bus 3 | Suleja Town Bus | 20                |  |  |  |
| Jere                               | Bus 3 | Jere Bus        | 25                |  |  |  |
| Abuja Steel                        | Bus 4 | Abuja Steel Bus | 8                 |  |  |  |
| Tommy                              | Bus 4 | Tommy Bus       | 4                 |  |  |  |

#### Results V.

The load flow analysis was carried out on the Suleja sub-transmission network with the results presented in this section.



Figure 2: Simulated model of the Suleja Substation

| Table 6: Load flow report before compensation |     |        |      |        |        |       |       |                    |         |         |
|-----------------------------------------------|-----|--------|------|--------|--------|-------|-------|--------------------|---------|---------|
| Bus                                           |     | Volt   | age  | Gene   | ration | Lo    | oad   | Load               | l Flow  |         |
| ID                                            | kV  | %Mag   | Ang  |        |        | MW    | Mvar  | ID                 | MW      | Mvar    |
| ABUJA<br>STEEL BUS                            | 33  | 93.631 | -3.0 | 0      | 0      | 7.817 | 5.863 | Bus4               | -7.817  | -5.863  |
| Bus-2                                         | 132 | 100    | 0.0  | 0      | 0      | 0     | 0     | Bus4               | 16.755  | 13.964  |
|                                               |     |        |      |        |        |       |       | MAIN BUS           | -8.377  | -6.982  |
|                                               |     |        |      |        |        |       |       | MAIN BUS           | -8.377  | -6.982  |
| Bus3                                          | 33  | 95.602 | -2.9 | 0      | 0      | 0     | 0     | JERE BUS           | 10.155  | 7.887   |
|                                               |     |        |      |        |        |       |       | SULEJA TOWN<br>BUS | 6.371   | 5.043   |
|                                               |     |        |      |        |        |       |       | MAIN BUS           | -16.526 | -12.931 |
| Bus4                                          | 33  | 96.127 | -2.7 | 0      | 0      | 0     | 0     | ABUJA STEEL<br>BUS | 7.996   | 6.059   |
|                                               |     |        |      |        |        |       |       | TOMMY BUS          | 8.730   | 6.584   |
|                                               |     |        |      |        |        |       |       | Bus-2              | -16.725 | -12.643 |
| JERE BUS                                      | 33  | 87.149 | -3.8 | 0      | 0      | 9.377 | 7.033 | Bus3               | -9.377  | -7.033  |
| MADALLA<br>BUS                                | 11  | 89.268 | -4.3 | 0      | 0      | 2.915 | 2.186 | SULEJA TOWN<br>BUS | -2.915  | -2.186  |
| MAIN BUS                                      | 132 | 100    | 0    | 33.342 | 28.339 | 0     | 0     | Bus3               | 16.587  | 14.375  |
|                                               |     |        |      |        |        |       |       | Bus-2              | 8.377   | 6.982   |
|                                               |     |        |      |        |        |       |       | Bus-2              | 8.377   | 6.982   |
| RAFINSANYI<br>BUS                             | 11  | 89.165 | -4.4 | 0      | 0      | 3.151 | 2.363 | SULEJA TOWN<br>BUS | -3.151  | -2.363  |
| SULEJA<br>TOWN BUS                            | 33  | 90.503 | -3.4 | 0      | 0      | 0     | 0     | Bus3               | -6.075  | -4.718  |
|                                               |     |        |      |        |        |       |       | RAFINSANYI<br>BUS  | 3.156   | 2.454   |
|                                               |     |        |      |        |        |       |       | MADALLA BUS        | 2.919   | 2.264   |
| TOMMY BUS                                     | 33  | 94.767 | -2.9 | 0      | 0      | 8.624 | 6.468 | Bus4               | -8.624  | -6.468  |

 Table 7: Branch losses summary report before compensation

| CKT/Branch       | CKT/Branch From-To Bus Flow To-From |         | Bus Flow | Losses  |        |        |
|------------------|-------------------------------------|---------|----------|---------|--------|--------|
| ID               | MW                                  | Mvar    | MW       | Mvar    | kW     | kvar   |
| ABUJA STEEL LINE | -7.817                              | -5.863  | 7.996    | 6.059   | 178.4  | 196.0  |
| TR2              | 16.755                              | 13.964  | -16.725  | -12.643 | 29.4   | 1321.1 |
| JERE LINE        | 10.155                              | 7.887   | -9.377   | -7.033  | 777.9  | 854.6  |
| SULEJA TOWN LINE | 6.371                               | 5.043   | -6.075   | -4.718  | 295.9  | 325.1  |
| TR1              | -16.526                             | -12.931 | 16.587   | 14.375  | 60.9   | 1444.0 |
| TOMMY LINE       | 8.730                               | 6.584   | -8.624   | -6.468  | 106.0  | 116.4  |
| T4               | -2.915                              | -2.186  | 2.919    | 2.264   | 4.2    | 77.7   |
| Т3               | -3.151                              | -2.363  | 3.156    | 2.454   | 4.9    | 90.9   |
|                  | ·                                   |         | ·        | ·       | 1457.5 | 4425.8 |

| Table 8: Load flow report after compensation |     |                    |      |        |     |             |         |                    |        |         |
|----------------------------------------------|-----|--------------------|------|--------|-----|-------------|---------|--------------------|--------|---------|
| Bus                                          |     | Voltage Generation |      | ation  | L   | oad         | Load    | Load Flow          |        |         |
| ID                                           | kV  | %Mag               | Ang  |        |     | MW          | Mvar    | ID                 | MW     | Mvar    |
| ABUJA STEEL BUS                              | 33  | 97.634             | -3.7 | 0      | 0   | 8.500       | 0.655   | Bus4               | -8.500 | -       |
| D 2                                          | 120 | 100                | 0.0  | 0      | 0   | 0           | 0       | Duct               | 19 000 | 0.655   |
| Bus-2                                        | 152 | 100                | 0.0  | 0      | 0   | 0           | 0       | Dus4               | 18.000 | 2.900   |
|                                              |     |                    |      |        |     |             |         | MAIN BUS           | -9.000 | -       |
|                                              |     |                    |      |        |     |             |         | MAIN BUS           | -9.000 | - 1.480 |
|                                              |     |                    |      |        |     |             |         |                    |        | 1.480   |
| Bus3                                         | 33  | 102.299            | -3.6 | 0      | 0   | 0           | 0       | JERE BUS           | 12.755 | -       |
|                                              |     |                    |      |        |     |             |         | SULEIA TOWN        | 8 000  | 3.350   |
|                                              |     |                    |      |        |     |             |         | BUS                | 0.099  | 6.039   |
|                                              |     |                    |      |        |     |             |         | MAIN BUS           | -      | 9.389   |
| <b>D</b> (                                   |     | 00.400             | • •  | 0      | 0   | 0           | 0       |                    | 20.855 | 0 = 0 0 |
| Bus4                                         | 33  | 99.192             | -2.9 | 0      | 0   | 0           | 0       | ABUJA STEEL<br>BUS | 8.625  | 0.793   |
|                                              |     |                    |      |        |     |             |         | TOMMY BUS          | 9.355  | 1.243   |
|                                              |     |                    |      |        |     |             |         | Bus-2              | -      | -       |
|                                              |     |                    |      |        |     |             |         |                    | 17.979 | 2.036   |
| JERE BUS                                     | 33  | 98.754             | -7.8 | 0      | 0   | 12.041      | -4.135  | Bus3               | -      | 4.135   |
| MADALLADUS                                   | 11  | 100 /08            | 7.0  | 0      | 0   | 3 605       | 2 771   | SULEIA TOWN        | 12.041 |         |
| WIADALLA DUS                                 | 11  | 100.470            | -1.) | 0      | 0   | 5.075       | 2.771   | BUS                | -3.075 | 2.771   |
| MAIN BUS                                     | 132 | 100                | 0    | 33.342 | 28. | 0           | 0       | Bus3               | 20.918 | -       |
|                                              |     |                    |      |        | 339 |             |         | <b>D</b>           | 0.000  | 7.890   |
|                                              |     |                    |      |        |     |             |         | Bus-2              | 9.000  | 1.480   |
|                                              |     |                    |      |        |     |             |         | Bus-2              | 9.000  | 1.480   |
| RAFINSANYI BUS                               | 11  | 100.382            | -7.9 | 0      | 0   | 3.994       | 2.995   | SULEJA TOWN        | -3.994 | -       |
| SULE IA TOWN BUS                             | 33  | 101 888            | 6.0  | 0      | 0   | 0.000       | 12 457  | BUS<br>Bus3        | 7 700  | 2.995   |
| SULEJA TOWN BUS                              | 55  | 101.000            | -0.9 | 0      | 0   | 0.000       | -12.437 | D A FINICA NUM     | -7.700 | 0.477   |
|                                              |     |                    |      |        |     |             |         | RAFINSANYI<br>BUS  | 4.000  | 3.110   |
|                                              |     |                    |      |        |     |             |         | MADALLA BUS        | 3.700  | 2.870   |
| TOMMY BUS                                    | 33  | 98.310             | -3.3 | 0      | 0   | 9.281       | 1.162   | Bus4               | -9.281 | -       |
| 1011111 200                                  |     | ,0.010             | 0.0  | Ŭ      | Ŭ   | ,. <u>.</u> | 11102   | 2000               | .201   | 1.162   |

## Load Flow Modeling and Performance Analysis of Suleja 132/33 kV...

| Table 9: Voltage profile of buses before/after compensation |             |             |             |              |  |  |
|-------------------------------------------------------------|-------------|-------------|-------------|--------------|--|--|
| Bus ID                                                      | Before Co   | mpensation  | After Com   | Compensation |  |  |
|                                                             | Voltage (%) | Angle (deg) | Voltage (%) | Angle (deg)  |  |  |
| ABUJA STEEL BUS                                             | 93.631      | -3.0        | 97.634      | -3.7         |  |  |
| Bus-2                                                       | 100         | 0.0         | 100         | 0            |  |  |
| Bus3                                                        | 95.602      | -2.9        | 102.299     | -3.6         |  |  |
| Bus4                                                        | 96.127      | -2.7        | 99.192      | -2.9         |  |  |
| JERE BUS                                                    | 87.149      | -3.8        | 98.754      | -7.8         |  |  |
| MADALLA BUS                                                 | 89.268      | -4.3        | 100.498     | -7.9         |  |  |
| MAIN BUS                                                    | 100         | 0.0         | 100         | 0            |  |  |
| RAFINSANYI BUS                                              | 89.165      | -4.4        | 100.382     | -7.9         |  |  |
| SULEJA TOWN BUS                                             | 90.503      | -3.4        | 101.888     | -6.9         |  |  |
| TOMMY BUS                                                   | 94.767      | -2.9        | 98.310      | -3.3         |  |  |

# Table 10: System losses summary before/after compensation System Losses

| Before Co | mpensation | After Compensation |        |  |
|-----------|------------|--------------------|--------|--|
| kW        | kvar       | kW                 | kvar   |  |
| 1457.5    | 4425.8     | 1408.4             | 4078.6 |  |



Figure 3: Voltage magnitude before compensation



Figure 4: Voltage magnitude after compensation



Figure 5: System losses before/after compensation

## VI. Discussion

Fig. 5 is the simulated model of the single line diagram of the Suleja substation in ETAP environment while the load flow result is presented in Table 6. The results indicate voltage violations at Abuja steel bus, Jere bus, Madalla bus, Rafinsanyi bus, Suleja town bus and Tommy bus with percentage magnitudes of 93.631%,

87.149%, 89.268%, 89.165%, 90.503% and 94.767 % respectively. The normal range of bus voltages is assumed to be 95-105 %. Jere bus has the highest voltage violation.

Table 7 shows a summary of the branch losses associated with the network before compensation. The result clearly shows that Jere line and transformer T4 has the highest and lowest branch losses of 777.9 kW and 4.2 kW respectively. An overall system loss of 1457.5 kW and 4425.8 kVAr was experienced by the network.

The load flow result presented in Table 8 represents the report obtained after compensation is made. The compensation is achieved through optimal sizing and placement of capacitor banks at affected buses. This compensation led to an overall improvement of the voltage profile of buses in the system network. The graphical representation of the bus voltages before and after compensation is depicted in Figures 3 and 4 respectively.

Table 9 presents the voltage profile of buses before and after compensation with the indication of improvement in the voltage magnitude of all the buses that hitherto fell outside the acceptable value limit of 0.95£V£1.05. Table 10 is a representation of the summary of system losses before and after compensation. Reduction in the overall system loss was observed to be from 1457.5 kW to 1408.4 kW for active power loss and from 4425 kVAr to 4078.6 kVAr for the reactive power loss.

#### VII. Conclusion

The Load flow modeling and performance analysis of Suleja 132 kV sub-transmission station using ETAP are presented in this paper. A detailed mathematical model of the Newton-Rahson (polar coordinate) for load flow solution is discussed. Also, presented are the results of simulation of the modeled network of the case study, which include bus voltage magnitudes, phase angles, the power flow and losses of the station. The initial results of the load flow analysis showed that six (6) buses had their voltage magnitudes fell outside the specified statutory limit of  $0.95 \le V \le 1.05$  p.u. These buses include Abuja steel bus, Jere bus, Madalla bus, Rafinsanyi bus, Suleja town bus and Tommy bus with magnitudes of 0.936 p. u, 0.871 p.u, 0.892 p.u, 0.891 p.u, 0.905 p.u and 0.947 p.u. respectively. Since the quality of power supply for any given system depends on the voltage at the buses and transmission power, it is highly imperative to keep the bus voltage within the specified statutory limit and reduce the active power loss to a minimum. Thus, the need for compensation through optimal sizing and placement of capacitor banks at the affected buses. The compensation led to overall performance improvement in voltage profile of all the buses that hitherto fell outside the acceptable value limit of  $0.95 \le V \le 1.05$  p.u. and reduction in system power loss.

The application of a compensating device on the six (6) buses of the Suleja 132 kV sub-transmission network whose voltage value fell outside the statutory limit showed improvement on voltage magnitudes of the buses to 1.0 p.u. and also reduced the total active power loss from 1457.5 kW to 1408.4 kW, indicating a 3.36% reduction in the total active power loss for the system. Hence, the results of this paper suggest that the load flow of a power system can be performed using Newton-Raphson technique on sub-transmission station and the application of a compensating device as adopted can improve voltage and power profile of the power system.

#### References

- [1]. Bhowmik, P. S., Rajan, D. V. and Bose, S. P., Load Flow Analysis: An Overview, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 6(3), 2012, 263 - 268.
- [2]. Powell, L., Power System Load Flow Analysis, McGraw-Hill Companies Inc., New York, USA, 2005.
- [3]. Patel, Y., Tandel, D. and Katti, D., Simulation and Analysis of 220 kV Substation, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 3(11), 2014, 13020 13027.
- [4]. Onojo, O. J., Ononiwu, G. C. and Okozi, S. O., Analysis of Power Flow of Nigerian 330 kV Grid System (Pre and Post) using MATLAB, 1(2), 2013, 59 - 66.
- [5]. Mander, D. K. and Virdi, G. S., Result Analsis on Load Flow by using Newton-Raphson Method, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 6(7), 2017, 5835 – 5844.
- [6]. Abdulkareem, A., Awosope, C. O. A., Orovwode, H. E. and Adelakun, A. A., Power Flow Analysis of Abule- Egba 33 kV Distribution Grid System with Real Network Simulation, IOSR Journal of Electrical and Electronics Engineering, 9(2), 2014, 1 -14.
- [7]. Idoniboyeobu, D. C., Analysis for Electrical Load Flow Studies in Port Harcourt, Nigeria using Newton-Raphson Fast Decoupled Techniques, American Journal of Engineering, 6(12), 2017, 230 240.,
- [8]. Maruf, A. A. and Garba, K. U., Determination of Bus Voltages, Power Losses and Load Flow in Northern Nigeria 330 kV Transmission Sub-Grid, International Journal of Advancement in Research and Technology, 2(3), 2013, 1 - 9.
- [9]. Garces, A., ALinear Three-phase Load Flow for Power Distribution Systems, IEEE Transactions on Power Systems, 31(1), 2016, 1-4.
- [10]. Vijayvargia, A., Jain, S., Meena, S., Gupta, V. and Lalwani, M., Comparison Between Different Load Flow Methodolgies by Analyzing various Bus Systems, International Journal of Electrical Engineering, 9(2), 2016, 127 - 138.
- [11]. Afolabi, O. A., Ali, W. H., Cofie, P., Fuller, J., Obiomon, P. and Kolawole, E. S., Analysis of Load Flow Problem in Power System Planning Studies, Energy and Power Engineering, 7, 2015, 509 - 523.
- [12]. Nasir, U., Tauqeer, T. and Uddin, Z. S., Performance Optimization of 132 kV LESCO Transmission Network using PSS/E Software, Science International Journal, 26(5), 2015, 1 - 4.
- [13]. Wang, X., Song, Y. and Irving, M., Modern Power System Anaysis, Springer Science+Buusiness Media, New York, U.S.A., 2008.

- [14]. Okakwu, I. K., Ogujor, E. A. and Oriaifo, P. A., Load Flow Assessment of the Nigerian 330 kV Power System, American Journal of Electrical and Electronic Engineering, 5(4), 2017, 159 165.
- [15]. Salgar, S. A., Load Flow Analysis for 220 kV Line Case study, International Journal of Innovation in Engineering Research and Technology, 2(5), 2015, 1 - 12.

Onah, C. O, et. al. "Load Flow Modeling and Performance Analysis of Suleja 132/33 kV Subtransmission Station." *IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE)*, 16(4), (2021): pp. 38-48.