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 Abstract : This paper presents an error detection method with majority logic decoding. The majority logic 
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I. INTRODUCTION  
The impact of technology scaling—smaller dimensions, higher integration densities, and lower 

operating voltages—has come to a level that reliability of memories is put into jeopardy, not only in extreme 

radiation environments like spacecraft and avionics electronics, but also at normal terrestrial environments. 

Especially, SRAM memory failure rates are increasing significantly, therefore posing a major reliability concern 

for many applications. Some commonly used mitigation techniques are: 

• Triple Modular Redundancy (TMR); 

• Error Correction Codes (ECCs). 

TMR is a special case of the von Neumann method consisting of three versions of the design in parallel, with a 

majority voter selecting the correct output. As the method suggests, the complexity overhead would be three 

times plus the complexity of the majority voter and thus increasing the power consumption. For memories, it 

turned out that ECC codes are the best way to mitigate memory soft errors. Among the ECC codes that meet the 

requirements of higher error correction capability and low decoding complexity, cyclic block codes have been 

identified as good candidates, due to their property of being majority logic (ML) decodable. A subgroup of the 
low-density parity check (LDPC) codes, which belongs to the family of the ML decodable codes, namely the 

difference-set cyclic codes (DSCCs), which is widely used in the Japanese teletext system or FM multiplex 

broadcasting systems. 

 

II. ERROR CORRECTING CODES 
An error-correcting code is an algorithm for expressing a sequence of numbers such that any errors 

which are introduced can be detected and corrected based on the remaining numbers. The study of error 

correcting codes and the associated mathematics is known as coding theory. Error detection is much simpler 

than correction and one or more ‗check‘ digits are commonly embedded in credit card numbers in order to 
detect mistakes. Early space probes like mariner used a type of error-correcting code called a block code and 

more recent space probe use convolution codes. Error correcting codes are also used in CD players, high speed 

modems, and cellular phones. Modems use error detection when they compute checksums, which are sums of 

the digits in a given transmission modulo some number. 

 

III. BLOCK CODES 
In coding theory, block codes refers to the large and important family of error-correcting codes that 

encode data in blocks. There is a vast number of examples for block codes, many of which have a wide range of 

practical applications. The main reason why the concept of block codes is so useful is that, it allows coding 
theorists, mathematicians and computer scientists to study the limitations of all block codes in a unified way. 

Such limitations often take the form of bounds that relate different parameters of the block code to each other 

such as its rate and its ability to detect and correct errors. Examples of block codes are Reed-Solomon codes, 

Hamming codes, Hadamard codes, Expander codes, Golay codes and Reed-Muller codes. These examples also 

belong to the class of linear codes, and hence they are called linear codes. 

 

IV. DIFFERENT SET CYCLIC CODES 
Codes exist which are capable of correcting large numbers of random errors. Such codes are rarely used in 

practical data transmission systems, however, because the equipment necessary to realize their capabilities-that 
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is, to actually correct the errors-is usually prohibitively complex and expensive. The problem of finding simply 

implemented decoding algorithms or, equivalently, codes which can be decoded simply with existing methods is 

perhaps the outstanding unsolved problem in coding theory today. Difference-set cyclic code is a new class of 
random-error-correcting cyclic code which has two desirable features as  

 The binary members of the class are nearly as powerful as the best-known codes in the range of 

interest. 

 They can be decoded with the simplest known decoding algorithm 

 

V. Low-Density Parity Check (Ldpc) Codes 
In information theory, a low-density parity-check (LDPC) code is a linear error correcting code.LDPC 

codes are capacity-approaching codes, which means that practical constructions exist that allow the noise 

threshold to be set very close to the theoretical maximum for a symmetric memory-less channel, the noise 
threshold defines an upper bound for the channel noise, up to which the probability of lost information can be 

made as small as desired. LDPC codes are finding increasing use in applications requiring reliable and highly 

efficient information transfer over bandwidth or return channel-constrained links in the presence of data-

corrupting noise. Although implementation of LDPC codes has lagged behind that of other codes, notably turbo 

codes, the absence of encumbering software patents has made LDPC attractive to some. 

 

VI. Majority Logic Decoding (Mld) 
MLD is based on a number of parity check equations which are orthogonal to each other, so that, at 

each iteration, each codeword bit only participates in one parity check equation, except the very first bit which 

contributes to all equations. For this reason, the majority result of these parity check equations decide the 

correctness of the current bit under decoding. 

 

VII. Existing System 
PLAIN ML DECODER 

The ML decoder is a simple and powerful decoder, capable of correcting multiple random bit-flips 
depending on the number of parity check equations. It consists of four parts:  

 a cyclic shift register 

 an XOR matrix 

 a majority gate 

 an XOR for correcting the codeword bit under decoding 

 
Fig. 1: Plain ML Decoder 

 

PLAIN MLD WITH SYNDROME FAULT DETECTOR 

In order to improve the decoder performance, alternative designs may be used. One possibility is to add 

a fault detector by calculating the syndrome, so that only faulty codeword‘s are decoded. Since most of the 

codeword‘s will be error-free, no further correction will be needed, and therefore performance will not be 

affected. Although the implementation of an SFD reduces the average latency of the decoding process, it also 
adds complexity to the design. 

The SFD is an XOR matrix that calculates the syndrome based on the parity check matrix. Each parity 

bit results in a syndrome equation. Therefore, the complexity of the syndrome calculator increases with the size 

of the code. 
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The input signals x is initially stored into the cyclic shift register and shifted through all the taps. The 

intermediate values in each tap are then used to calculate the results{Bj} of the checksum equations from the 

XOR matrix. In the Nth cycle, the result has reached the final tap, producing the output signal y. 
As an initial step, codeword x is loaded into the cyclic shift register, the decoding starts by calculating 

the parity check equations hardwired in the XOR matrix. The resulting sums {Bj} are then forwarded to the 

majority gate for evaluating its correctness. If the number of 1‘s received in {Bj} is greater than the number of 

0‘s that would mean that the current bit under decoding is wrong and a signal to correct it would be triggered. 

Otherwise, the bit under decoding would be correct and no extra operations would be needed on it. In the next 

step, the content of the registers are rotated and the above procedure is repeated until all codeword bits have 

been processed. Finally, the parity check sums should be zero if the codeword has been correctly decoded. 

 

 
Fig. 2: Plain MLD with SFD 

 

 
Fig. 3: Existing System Flowchart 

After the initial step, in which codeword is loaded into the cyclic shift register, the decoding starts by calculating 

the parity check equations hardwired in the XOR matrix. The resulting sums are then forwarded to the majority 

gate for evaluating its correctness. If the number of 1‘s received is greater than the number of 0‘s that would 

mean that the current bit under decoding is wrong and a signal to correct it would be triggered. Otherwise, the 

bit under decoding would be correct and no extra operations would be needed on it. In the next step, the content 

of the registers are rotated and the above procedure is repeated until all codeword bits have been processed. 
Finally, the parity check sums should be zero if the Codeword has been correctly decoded. 

 

Disadvantages Of The Existing System 
 The plain ML Decoder needs as many cycles as the number of bits in the input signal, which is also the 

number of taps, , in the decoder. This is a big impact on the performance of the system, depending on the 

size of the code . For example, for a codeword of 73 bits, the decoding would take 73 cycles, which would 

be excessive for most applications.   



High Performance Error Detection with Different Set Cyclic Codes for Memory Applications 

www.iosrjournals.org                                                             10 | Page 

 The syndrome fault detector results in a quite complex module, with a large amount of additional hardware 

and power consumption in the system. 

 

VIII. Proposed System 
This section presents a modified version of the ML decoder that improves the designs presented before. 

Starting from the original design of the ML decoder introduced in, the proposed ML detector/decoder (MLDD) 

has been implemented using the difference-set cyclic codes (DSCCs). This code is part of the LDPC codes, and, 

based on their attributes, they have the following properties 

• Ability to correct large number of errors; 

• Sparse encoding, decoding and checking circuits synthesizable into simple hardware; 

• Modular encoder and decoder blocks that allow an efficient Hardware implementation; 

• Systematic code structure for clean partition of information and code bits in the memory 
Since performance is important for most applications, we have chosen an intermediate solution, which provides 

a good reliability with a small delay penalty for scenarios where up to five bit-flips may be expected and it is 

based on the following hypothesis: 

Given a word read from a memory and affected by up to five bit-flips, all errors can be detected in only three 

decoding cycles. 

In general, the decoding algorithm is still the same as the one in the plain ML decoder version. The difference is 

that, instead of decoding all codeword bits by processing the ML decoding during cycles, the proposed method 

stops intermediately in the third cycle. 

The figure below shows the proposed MLDD which consists of following parts:  

 a cyclic shift register 

 an XOR matrix 

 a majority gate an XOR for correcting the codeword bit under decoding 

 control unit 

 tristate buffer 

 

 
Fig. 4: Proposed System 

 

The figure shows the basic ML decoder with an N-tap shift register, an XOR array to calculate the orthogonal 

parity check sums and a majority gate for deciding if the current bit under decoding needs to be inverted. Those 

components are the same as the ones for the plain ML decoder. The additional hardware to perform the error 

detection is the control unit which triggers a finish flag when no errors are detected after the third cycle and the 

output tristate buffers. The output tristate buffers are always in high impedance unless the control unit sends the 
finish signal so that the current values of the shift register are forwarded to the output y.     
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Fig. 5: Proposed System Flowchart 

In general, the decoding algorithm is still the same as the one in the plain ML decoder version. The difference is 

that, instead of decoding all codeword bits by processing the ML decoding during cycles, the proposed method 

stops intermediately in the third cycle, as illustrated in Flow chart. If in the first three cycles of the decoding 

process, the evaluation of the XOR matrix for all is ―0,‖ the codeword is determined to be error-free and 

forwarded directly to the output. If they contain in any of the three cycles at least a ―1,‖ the proposed method 

would continue the whole decoding process in order to eliminate the errors. 

 

CONTROL UNIT 

 

 
Fig. 6: Control Unit 

 

The control unit manages the detection process. It uses a counter that counts up to three, which distinguishes the 

first three iterations of the ML decoding. In these first three iterations, the control unit evaluates the by 

combining them with the OR1 function. This value is fed into a three-stage shift register, which holds the results 

of the last three cycles. In the third cycle, the OR2 gate evaluates the content of the detection register. When the 

result is ―0,‖ the FSM sends out the finish signal indicating that the processed word is error-free. In the other 

case, if the result is ―1,‖ the ML decoding process runs until the end. 

 

ADVANTAGES OF THE PROPOSED SYSTEM 
 Ability to correct large number of bit flips. 

 It takes lesser decoding cycles. 

 Uses less memory and low power consumption. 
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IX. Simulation Results 

 
 

X. Conclusion 
In this paper, a fault-detection mechanism, MLDD, has been presented based on ML decoding using 

the DSCCs.In the proposed technique it is able to detect any pattern of up to five bit-flips in the first three cycles 

of the decoding process. This improves the performance of the design with respect to the traditional MLD 
approach. On the other hand, the MLDD error detector module has been designed in a way that is independent 

of the code size. This makes area overhead quite reduced compared with other traditional approaches such as the 

syndrome calculation (SFD) 
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