
IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE)

e-ISSN: 2278-1676,p-ISSN: 2320-3331, Volume 8, Issue 4 (Nov. - Dec. 2013), PP 07-12
www.iosrjournals.org

www.iosrjournals.org 7 | Page

High Performance Error Detection with Different Set Cyclic

Codes for Memory Applications

Karthik.N
1
, T.N.Suresh

2

1(Department of EEE, Hindustan University, India)
2(Department of EEE, Sri Venkateswara College of Engineering & Technology, India)

 Abstract : This paper presents an error detection method with majority logic decoding. The majority logic

decodable words are suitable for memory application due to their capability to correct large number of errors,

but they require a large decoding time that impacts the memory performance. So in the proposed fault detection

method they significantly reduce the memory access time.

Keywords: Triple Modular Redundancy, Error Correction Codes, Majority Logic, Low Density parity checks,

Difference Set Cyclic Codes, Syndrome Fault Detector, Majority Logic Detector/Decoder.

I. INTRODUCTION
The impact of technology scaling—smaller dimensions, higher integration densities, and lower

operating voltages—has come to a level that reliability of memories is put into jeopardy, not only in extreme

radiation environments like spacecraft and avionics electronics, but also at normal terrestrial environments.

Especially, SRAM memory failure rates are increasing significantly, therefore posing a major reliability concern

for many applications. Some commonly used mitigation techniques are:

• Triple Modular Redundancy (TMR);

• Error Correction Codes (ECCs).

TMR is a special case of the von Neumann method consisting of three versions of the design in parallel, with a

majority voter selecting the correct output. As the method suggests, the complexity overhead would be three

times plus the complexity of the majority voter and thus increasing the power consumption. For memories, it

turned out that ECC codes are the best way to mitigate memory soft errors. Among the ECC codes that meet the

requirements of higher error correction capability and low decoding complexity, cyclic block codes have been

identified as good candidates, due to their property of being majority logic (ML) decodable. A subgroup of the
low-density parity check (LDPC) codes, which belongs to the family of the ML decodable codes, namely the

difference-set cyclic codes (DSCCs), which is widely used in the Japanese teletext system or FM multiplex

broadcasting systems.

II. ERROR CORRECTING CODES
An error-correcting code is an algorithm for expressing a sequence of numbers such that any errors

which are introduced can be detected and corrected based on the remaining numbers. The study of error

correcting codes and the associated mathematics is known as coding theory. Error detection is much simpler

than correction and one or more ‗check‘ digits are commonly embedded in credit card numbers in order to
detect mistakes. Early space probes like mariner used a type of error-correcting code called a block code and

more recent space probe use convolution codes. Error correcting codes are also used in CD players, high speed

modems, and cellular phones. Modems use error detection when they compute checksums, which are sums of

the digits in a given transmission modulo some number.

III. BLOCK CODES
In coding theory, block codes refers to the large and important family of error-correcting codes that

encode data in blocks. There is a vast number of examples for block codes, many of which have a wide range of

practical applications. The main reason why the concept of block codes is so useful is that, it allows coding
theorists, mathematicians and computer scientists to study the limitations of all block codes in a unified way.

Such limitations often take the form of bounds that relate different parameters of the block code to each other

such as its rate and its ability to detect and correct errors. Examples of block codes are Reed-Solomon codes,

Hamming codes, Hadamard codes, Expander codes, Golay codes and Reed-Muller codes. These examples also

belong to the class of linear codes, and hence they are called linear codes.

IV. DIFFERENT SET CYCLIC CODES
Codes exist which are capable of correcting large numbers of random errors. Such codes are rarely used in

practical data transmission systems, however, because the equipment necessary to realize their capabilities-that

High Performance Error Detection with Different Set Cyclic Codes for Memory Applications

www.iosrjournals.org 8 | Page

is, to actually correct the errors-is usually prohibitively complex and expensive. The problem of finding simply

implemented decoding algorithms or, equivalently, codes which can be decoded simply with existing methods is

perhaps the outstanding unsolved problem in coding theory today. Difference-set cyclic code is a new class of
random-error-correcting cyclic code which has two desirable features as

 The binary members of the class are nearly as powerful as the best-known codes in the range of

interest.

 They can be decoded with the simplest known decoding algorithm

V. Low-Density Parity Check (Ldpc) Codes
In information theory, a low-density parity-check (LDPC) code is a linear error correcting code.LDPC

codes are capacity-approaching codes, which means that practical constructions exist that allow the noise

threshold to be set very close to the theoretical maximum for a symmetric memory-less channel, the noise
threshold defines an upper bound for the channel noise, up to which the probability of lost information can be

made as small as desired. LDPC codes are finding increasing use in applications requiring reliable and highly

efficient information transfer over bandwidth or return channel-constrained links in the presence of data-

corrupting noise. Although implementation of LDPC codes has lagged behind that of other codes, notably turbo

codes, the absence of encumbering software patents has made LDPC attractive to some.

VI. Majority Logic Decoding (Mld)
MLD is based on a number of parity check equations which are orthogonal to each other, so that, at

each iteration, each codeword bit only participates in one parity check equation, except the very first bit which

contributes to all equations. For this reason, the majority result of these parity check equations decide the

correctness of the current bit under decoding.

VII. Existing System
PLAIN ML DECODER

The ML decoder is a simple and powerful decoder, capable of correcting multiple random bit-flips
depending on the number of parity check equations. It consists of four parts:

 a cyclic shift register

 an XOR matrix

 a majority gate

 an XOR for correcting the codeword bit under decoding

Fig. 1: Plain ML Decoder

PLAIN MLD WITH SYNDROME FAULT DETECTOR

In order to improve the decoder performance, alternative designs may be used. One possibility is to add

a fault detector by calculating the syndrome, so that only faulty codeword‘s are decoded. Since most of the

codeword‘s will be error-free, no further correction will be needed, and therefore performance will not be

affected. Although the implementation of an SFD reduces the average latency of the decoding process, it also
adds complexity to the design.

The SFD is an XOR matrix that calculates the syndrome based on the parity check matrix. Each parity

bit results in a syndrome equation. Therefore, the complexity of the syndrome calculator increases with the size

of the code.

High Performance Error Detection with Different Set Cyclic Codes for Memory Applications

www.iosrjournals.org 9 | Page

The input signals x is initially stored into the cyclic shift register and shifted through all the taps. The

intermediate values in each tap are then used to calculate the results{Bj} of the checksum equations from the

XOR matrix. In the Nth cycle, the result has reached the final tap, producing the output signal y.
As an initial step, codeword x is loaded into the cyclic shift register, the decoding starts by calculating

the parity check equations hardwired in the XOR matrix. The resulting sums {Bj} are then forwarded to the

majority gate for evaluating its correctness. If the number of 1‘s received in {Bj} is greater than the number of

0‘s that would mean that the current bit under decoding is wrong and a signal to correct it would be triggered.

Otherwise, the bit under decoding would be correct and no extra operations would be needed on it. In the next

step, the content of the registers are rotated and the above procedure is repeated until all codeword bits have

been processed. Finally, the parity check sums should be zero if the codeword has been correctly decoded.

Fig. 2: Plain MLD with SFD

Fig. 3: Existing System Flowchart

After the initial step, in which codeword is loaded into the cyclic shift register, the decoding starts by calculating

the parity check equations hardwired in the XOR matrix. The resulting sums are then forwarded to the majority

gate for evaluating its correctness. If the number of 1‘s received is greater than the number of 0‘s that would

mean that the current bit under decoding is wrong and a signal to correct it would be triggered. Otherwise, the

bit under decoding would be correct and no extra operations would be needed on it. In the next step, the content

of the registers are rotated and the above procedure is repeated until all codeword bits have been processed.
Finally, the parity check sums should be zero if the Codeword has been correctly decoded.

Disadvantages Of The Existing System
 The plain ML Decoder needs as many cycles as the number of bits in the input signal, which is also the

number of taps, , in the decoder. This is a big impact on the performance of the system, depending on the

size of the code . For example, for a codeword of 73 bits, the decoding would take 73 cycles, which would

be excessive for most applications.

High Performance Error Detection with Different Set Cyclic Codes for Memory Applications

www.iosrjournals.org 10 | Page

 The syndrome fault detector results in a quite complex module, with a large amount of additional hardware

and power consumption in the system.

VIII. Proposed System
This section presents a modified version of the ML decoder that improves the designs presented before.

Starting from the original design of the ML decoder introduced in, the proposed ML detector/decoder (MLDD)

has been implemented using the difference-set cyclic codes (DSCCs). This code is part of the LDPC codes, and,

based on their attributes, they have the following properties

• Ability to correct large number of errors;

• Sparse encoding, decoding and checking circuits synthesizable into simple hardware;

• Modular encoder and decoder blocks that allow an efficient Hardware implementation;

• Systematic code structure for clean partition of information and code bits in the memory
Since performance is important for most applications, we have chosen an intermediate solution, which provides

a good reliability with a small delay penalty for scenarios where up to five bit-flips may be expected and it is

based on the following hypothesis:

Given a word read from a memory and affected by up to five bit-flips, all errors can be detected in only three

decoding cycles.

In general, the decoding algorithm is still the same as the one in the plain ML decoder version. The difference is

that, instead of decoding all codeword bits by processing the ML decoding during cycles, the proposed method

stops intermediately in the third cycle.

The figure below shows the proposed MLDD which consists of following parts:

 a cyclic shift register

 an XOR matrix

 a majority gate an XOR for correcting the codeword bit under decoding

 control unit

 tristate buffer

Fig. 4: Proposed System

The figure shows the basic ML decoder with an N-tap shift register, an XOR array to calculate the orthogonal

parity check sums and a majority gate for deciding if the current bit under decoding needs to be inverted. Those

components are the same as the ones for the plain ML decoder. The additional hardware to perform the error

detection is the control unit which triggers a finish flag when no errors are detected after the third cycle and the

output tristate buffers. The output tristate buffers are always in high impedance unless the control unit sends the
finish signal so that the current values of the shift register are forwarded to the output y.

High Performance Error Detection with Different Set Cyclic Codes for Memory Applications

www.iosrjournals.org 11 | Page

Fig. 5: Proposed System Flowchart

In general, the decoding algorithm is still the same as the one in the plain ML decoder version. The difference is

that, instead of decoding all codeword bits by processing the ML decoding during cycles, the proposed method

stops intermediately in the third cycle, as illustrated in Flow chart. If in the first three cycles of the decoding

process, the evaluation of the XOR matrix for all is ―0,‖ the codeword is determined to be error-free and

forwarded directly to the output. If they contain in any of the three cycles at least a ―1,‖ the proposed method

would continue the whole decoding process in order to eliminate the errors.

CONTROL UNIT

Fig. 6: Control Unit

The control unit manages the detection process. It uses a counter that counts up to three, which distinguishes the

first three iterations of the ML decoding. In these first three iterations, the control unit evaluates the by

combining them with the OR1 function. This value is fed into a three-stage shift register, which holds the results

of the last three cycles. In the third cycle, the OR2 gate evaluates the content of the detection register. When the

result is ―0,‖ the FSM sends out the finish signal indicating that the processed word is error-free. In the other

case, if the result is ―1,‖ the ML decoding process runs until the end.

ADVANTAGES OF THE PROPOSED SYSTEM
 Ability to correct large number of bit flips.

 It takes lesser decoding cycles.

 Uses less memory and low power consumption.

High Performance Error Detection with Different Set Cyclic Codes for Memory Applications

www.iosrjournals.org 12 | Page

IX. Simulation Results

X. Conclusion
In this paper, a fault-detection mechanism, MLDD, has been presented based on ML decoding using

the DSCCs.In the proposed technique it is able to detect any pattern of up to five bit-flips in the first three cycles

of the decoding process. This improves the performance of the design with respect to the traditional MLD
approach. On the other hand, the MLDD error detector module has been designed in a way that is independent

of the code size. This makes area overhead quite reduced compared with other traditional approaches such as the

syndrome calculation (SFD)

Acknowledgements
The author wish to thank the Management of Hindustan University, Padur Chennai for their support

and encouragement to carry out this work.

References
[1]. E. J. Weldon, Jr., ―Difference-set cyclic codes,‖ Bell Syst. Tech. J., vol.45, pp. 1045–1055, 1966.

[2]. Y. Kato and T. Morita, ―Error correction circuit using difference-set cyclic code,‖ in Proc. ASP-DAC, 2003, pp. 585–586.

[3]. S. Lin and D. J. Costello, Error Control Coding, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 2004

[4]. P. Ankolekar, S. Rosner, R. Isaac, and J. Bredow, ―Multi-bit error correction methods for latency-contrained flash memory systems,‖

IEEE Trans. Device Mater. Reliabil., vol. 10, no. 1, pp. 33–39, Mar. 2010.

[5]. I. S. Reed, ―A class of multiple-error-correcting codes and the decoding scheme,‖ IRE Trans. Inf. Theory, vol. IT -4, pp. 38–49, 1954.

[6]. T. Shibuya and K. Sakaniwa, ―Construction of cyclic codes suitable for iterative decoding via generating idempotents,‖ IEICE Trans.

Fundamentals, vol. E86-A, no. 4, pp. 928–939, 2003.

