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Abstract:  The binary adder is the critical element in most digital circuit designs including digital signal 

processors (DSP) and microprocessor data path units. As such, extensive research continues to be focused on 

improving the power delay performance of the adder. In VLSI implementations, parallel-prefix adders are 

known to have the best performance. Parallel-prefix adders (also known as carry-tree adders) are known to 

have the best performance in VLSI designs. This paper investigates three types of carry-tree adders (the Kogge-

Stone, sparse Kogge-Stone, and spanning tree adder) and compares them to the simple Ripple Carry Adder 

(RCA). In this project Xilinx-ISE tool is used for simulation, logical verification, and further synthesizing . 
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I. Introduction 
Arithmetic is the oldest and most elementary branch of Mathematics. The name Arithmetic comes from 

the Greek word άριθμός (arithmos). Arithmetic is used by almost everyone, for tasks ranging from simple day to 

day work like counting to advanced science and business calculations. As a result, the need for faster and 

efficient Adders in computers has been a topic of interest over decades.  Addition is a fundamental operation for 
any digital system, digital signal processing or control system. A fast and accurate operation of a digital system is 

greatly influenced by the performance of the resident adders. Adders are also very important component in digital 

systems because of their extensive use in other basic digital operations such as subtraction, multiplication and 

division. Hence, improving performance of the digital  adder  would  greatly  advance  the  execution  of  binary  

operations  inside  a  circuit compromised of such blocks. The performance of a digital circuit block is gauged by 

analyzing its power dissipation, layout area and its operating speed.  

      To humans, decimal numbers are easy to comprehend and implement for performing arithmetic. However, 

in digital systems, such as a microprocessor, DSP (Digital Signal Processor) or ASIC (Application-Specific 

Integrated Circuit), binary numbers are more pragmatic for a given computation. This occurs because binary 

values are optimally efficient at representing many values. 

Binary adders are one of the most essential logic elements within a digital system. In addition, binary 
adders are also helpful in units other than Arithmetic Logic Units (ALU), such as multipliers, dividers and 

memory addressing. Therefore, binary addition is essential that any improvement in binary addition can result in 

a performance boost for any computing system and, hence, help improve the performance of the entire system. 

          Binary adders are one of the most essential logic elements within a digital system. In addition, binary 

adders are also helpful in units other than Arithmetic Logic Units (ALU), such as multipliers, dividers and 

memory addressing. Therefore, binary addition is essential that any improvement in binary addition can result in 

a performance boost for any computing system and, hence, help improve the performance of the entire system. 

The major problem for binary addition is the carry chain. As the width of the input operand increases, the length 

of the carry chain increases. Figure 1 demonstrates an example of an 8- bit binary add operation and how the 

carry chain is affected. This example shows that the worst case occurs when the carry travels the longest 

possible path, from the least significant bit (LSB) to the most significant bit (MSB). In order to improve the 

performance of carry-propagate adders, it is possible to accelerate the carry chain, but not eliminate it. 
Consequently, most digital designers often resort to building faster adders when optimizing computer 

architecture, because they tend to set the critical path for most computations. 

 
Figure 1  Binary Adder Example. 
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II. REVIEW Of ADDERS 
FULL ADDER  

          A Full Adder is a combinational circuit that performs the arithmetic sum of three input bits. It consists of 

three inputs and two outputs. Three of the input variables can be defined as A, B, Cin and the two output 

variables can be defined as S, Cout. The two input variables that we defined earlier A and B represents the two 

significant bits to be added. The third input Cin represents the carry bit. We have to use two digits because the 

arithmetic sum of the three binary digits needs two digits. The two outputs represents S for sum and Cout for 

carry. For designing a full adder circuit, two half adder circuits and an OR gate is required. It is the simplest way 

to design a full adder circuit. To design a full adder  two XOR gates, two AND gates, one OR gate is required 

 
Figure 2 Full adder structure 

 
          S = A ^ B ^ C 

          cout  =  A.B  +  (A ^ B).Cin  

 

PROPOGATION DELAY IN FULL ADDERS 

         Real logic gates do not react instantaneously to the inputs, and therefore digital circuits have a maximum 

speed. Usually, the delay through a digital circuit is measured in gate-delays, as this allows the delay of a design 

to be calculated for different devices. AND and OR gates have a nominal delay of 1 gate-delay, and XOR gates 

have a delay of 2, because they are really made up of a combination of ANDs and ORs. 

A full adder block has the following worst case propagation delays: 

o From Ai or Bi to Ci+1: 4 gate-delays (XOR → AND → OR) 

o From Ai or Bi to Si: 4 gate-delays (XOR → XOR) 
o From Ci to Ci+1: 2 gate-delays (AND → OR) 

o From Ci to Si: 2 gate-delays (XOR) 

Because the carry-out of one stage is the next's input, the worst case propagation delay is then: 

o 4 gate-delays from generating the first carry signal (A0/B0 → C1). 

o 2 gate-delays per intermediate stage (Ci → Ci+1). 

o 2 gate-delays at the last stage to produce both the sum and carry-out outputs (Cn1 → Cn and Sn-1). 

So for an n-bit adder, we have a total propagation delay, tp of: 

              tp = 4+2(n-2)+2 = 2n+2 

 
Figure 3 Delay in a full adder 

 This is linear in n, and for a 32-bit number, would take 66 cycles to complete the calculation. This is 

somewhat rather slow, and restricts the word length in our device We would like to find ways to speed it up. 

 

CARRY – LOOK AHEAD ADDER 

         A fast method of adding numbers is called carry-look ahead adder. This method doesn't require the carry 

signal to propagate stage by stage, causing a bottleneck. Instead it uses additional logic to expedite the 

propagation and generation of carry information, allowing fast addition at the expense of more hardware 

requirements. Rather than waiting for carry signals to ripple from the least significant to the most significant bit, 

CLA adders divided the inputs into groups of r bits and implement the logic equations to determine if each 

group will generate or propagate carry.  

http://en.wikipedia.org/wiki/Adder_%28electronics%29
http://implement-logic.blogspot.com/2011/08/half-adder-circuit.html
http://implement-logic.blogspot.com/2011/08/half-adder-circuit.html
http://implement-logic.blogspot.com/2011/07/universal-gate-nor.html
http://implement-logic.blogspot.com/2011/07/normal-0-false-false-false-en-us-x-none.html
http://en.wikibooks.org/w/index.php?title=File:Full-Adder_Propagation_Delay.svg&page=1
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        An overview of the adder’s 4 stages is shown in the figure 2.5 with stage 1 and the top and stage 4 at the 

bottom. In stage 1 the local generate and propagate signals for each bit are created. In stage 2 these signals are 

combined into 9 bit block signals. In stage 4 the carry into each block is calculated and these signals begin 
traveling back up the adder tree. In stage 3 the carry into local carry signals to calculate the final sum bits. Each 

group is created, and into each bit is created. Finally, stage 1 uses the propogate and generates blocks to give the 

sum as the output. The carry look ahead shows good performance for the lower order bits that is it shows better 

performance for sum of less number of bits. The 32-bit carry look ahead adder shows better performance than 

64-bit carry look ahead adder. Even the 64-bit adder shows better performance than 128 bit adder. As the bit 

size increases the performance decreases in the carry look ahead adder.  

 
Figure 4 Simple Adder Tree Structure 

 

III. Parallel Prefix Adders 
         Parallel prefix adders employs 3- stage structure of carry look ahead adder The improvement is in the 

carry generation stage which is the most intensive one. The below figure shows the structure of ling adder. The 

ling adder uses predetermined propagates and generate in 1st stage of design. The 2nd stage uses the carry 

calculation paralleled to reduce time .the 3rd stage is the simple adder block to calculate the sum  

 
Figure 5 Structure of the parallel prefix adder 

 
Figure 6 Buffer & Processing component structure 

 

The parallel prefix graph for representation of prefix addition is shown as 
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Figure 7 Parallel prefix adder structure 

 

Some of the parallel prefix adders are : 

 Kogge-Stone adder 

 Sparse kogge stone  adder 

 Spanning carry lookahead adder 

 

Kogge stone adder  

The Kogge–Stone adder is a parallel prefix form carry look-ahead adder. It generates the carry signals 
in O(log n) time, and is widely considered the fastest adder design possible. It is the common design for high-

performance adders in industry. 

Kogge-Stone prefix tree is among the type of prefix trees that use the fewest logic levels. A 16-bit 

example is shown in Figure 2.11. In fact, Kogge-Stone is a member of Knowles prefix tree. The 16-bit prefix 

tree can be viewed as Knowles [1,1,1,1]. The numbers in the brackets represent the maximum branch fan-out at 

each logic level. The maximum fan-out is 2 in all logic levels for all width Kogge-Stone prefix trees. 

The key of building a prefix tree is how to implement Equation according to the specific features of 

that type of prefix tree and apply the rules described in the previous section. Gray cells are inserted similar to 

black cells except that the gray cells final output carry outs instead of intermediate G/P group. The reason of 

starting with Kogge-Stone prefix tree is that it is the easiest to build in terms of using a program concept. The 

example in Figure 8 is 16-bit (a power of 2) prefix tree. It is not difficult to extend the structure to any width if 

the basics are strictly followed. 

 
Figure 8 A 16-bit Kogge-Stone Prefix Tree 

For the Kogge-Stone prefix tree, at the logic level 1, the inputs span is 1 bit (e.g. group (4:3)  take the 

inputs at bit 4 and bit 3). Group (4:3) will be taken as inputs and combined with group (6:5) to generate group 

(6:3) at logic level 2. Group (6:3) will be taken as inputs and combined with group (10:7) to generate group 

(10:3) at logic level 3, and so on so forth. 

 

Sparse Kogge Stone Adder 

The sparse Kogge-Stone adder consists of several smaller ripple carry adders (RCAs) on its lower half, 

a carry tree on its upper half. It terminates with RCAs. The number of carries generated is less in a sparse 

KoggeStone adder compared to the regular Kogge-Stone adder. The functionality of the GP block, black cell 

and the gray cell remains exactly the same as in the regular Kogge-Stone adder. The sparse Kogge-Stone adder, 

this design terminates with a 4- bit RCA. As the FPGA uses a fast carry-chain for the RCA, it is interesting to 

compare the performance of this adder with the sparse Kogge-Stone and regular Kogge-Stone adders. 

 

 

 

http://en.wikipedia.org/wiki/Carry_look-ahead_adder
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Adder_(electronics)
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Spanning carry look ahead adder 

Another carry-tree adder known as the spanning tree carry-lookahead (CLA) adder is like the sparse 

Kogge-Stone adder, this design terminates with a 4- bit RCA. As the FPGA uses a fast carry-chain for the RCA, 

it is interesting to compare the performance of this adder with the sparse Kogge-Stone and regular Kogge-Stone 

adders.  

 
Figure 10 16 bit Spanning tree carry look ahead adder 

 

BINARY ADDER SCHEMES  
Adders are one of the most essential components in digital building blocks, however, the performance 

of adders become more critical as the technology advances. The problem of addition involves algorithms in 

Boolean algebra and their respective circuit implementation. Algorithmically, there are linear-delay adders like 
ripple-carry adders (RCA), which are the most straightforward but slowest. Adders like carry-skip adders 

(CSKA), carry-select adders (CSEA) and carry-increment adders (CINA) are linear-based adders with optimized 

carry-chain and improve upon the linear chain within a ripple-carry adder. Carry-lookahead adders (CLA) have 

logarithmic delay and currently have evolved to parallel-prefix structures. Other schemes, like Ling adders, 

NAND/NOR adders and carry-save adders can help improve performance as well. 

 

IV. Simulation Results 
RIPPLE CARRY ADDER 

The simplest way of doing binary addition is to connect the carry-out from the previous bit to the next 
bit's carry-in. Each bit takes carry-in as one of the inputs and outputs sum and carry-out bit and hence the name 

ripple-carry adder. 

 
Figure 11 RTL view of 16 bit Ripple carry adder. 

Figure 9 Block diagram of 16-Bit Sparse Kogge-Stone Adder[16]. 
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Figure 12 Simulated wave form of 16 bit ripple carry adder. 

 

16 bit Kogge-Stone adder 

Kogge-Stone prefix tree is among the type of prefix trees that use the fewest logic levels. In fact, 

Kogge-Stone is a member of Knowles prefix tree. 

 
Figure 13 RTL View of 16 bit Kogge stone adder 

 
Figure 14 Simulated wave form of Kogge stone adder. 

 

sparse 16 bit Kogge-Stone adder  

Another carry-tree adder known as the spanning tree carry-lookahead (CLA) adder is like the sparse 

Kogge-Stone adder, this design terminates with a 4- bit RCA. As the FPGA uses a fast carry-chain for the RCA, 

it is interesting to compare the performance of this adder with the sparse Kogge-Stone and regular Kogge-Stone 

adders.         

 
Figure 15 RTL View of 16-bit Sparse-Kogge stone Adder 
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Figure 16 Simulated wave form of 16 bit sparse-Kogge stone adder 

 

16-bit Spanning Tree Carry Look ahead Adder 

           Another carry-tree adder known as the spanning tree carry-lookahead (CLA) adder is like the sparse 

Kogge-Stone adder, this design terminates with a 4- bit RCA. As the FPGA uses a fast carry-chain for the RCA, 

it is interesting to compare the performance of this adder with the sparse Kogge-Stone and regular Kogge-Stone 

adders.  

 
Figure 17 RTL View of 16-bit Spanning Tree Carry Look ahead Adder 

 

 
Figure 18 Simulated waveform of 16 bit spanning  carry look head adder. 

 

Performance Comparative Analysis 
The below comparison table is drawn from the analysis of four adders in terms of delay,memory and LUT’s 

drawn from synthesis report.   

Table 1 Comparison briefs of simulated adders 

ADDER NAME Memory(KB) Delay(ns) LUT’S 

KOGGE STONE 186972 25.084 36 

SPARSE KOGGE STONE 187036 19.502 51 

SPANNING TREE 186716 28.050 32 

RIPPLE CARRY ADDER 189372 31.947 38 

   

V. Conclusion: 
The Adders namely ripple carry adder, Kogge stone adder , sparse Kogge stone adder and spanning tree 

adder are discussed in detail. VERILOG code was written for all the modules. Each individual modules was 

tested for its correct functionality.This project has resulted in the development of Adders Design with reduced 

delay and  memory advantage. The Delay measurement and memory analysis of the adders is being done. 
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From synthesis report the adders designed kogge stone adder , sparse kogge stone adder and spanning tree 

adder is being compared with the normal ripple carry adder in terms of delay and memory. From the synthesis 

report the delay is less for SPARSE KOGGE STONE adder and the memory is less for SPANNING TREE is 
concluded. In future all the proposed architectures are designed using parallel prefix adders are used in the 

design of MAC unit. 
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