
IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE)

e-ISSN: 2278-1676,p-ISSN: 2320-3331, Volume 8, Issue 4 (Nov. - Dec. 2013), PP 13-20
www.iosrjournals.org

www.iosrjournals.org 13 | Page

Evaluation of High Speed and Low Memory Parallel Prefix

Adders

*
 A.Madhu Babu

1
, K.Harikrishna

2

1 PG Student (M. Tech), Dept. of ECE, Chirala Engineering College, Chirala., A.P, India.
2 Associate Professor, Dept. of ECE, Chirala Engineering College, Chirala., A.P, India.

Abstract: The binary adder is the critical element in most digital circuit designs including digital signal

processors (DSP) and microprocessor data path units. As such, extensive research continues to be focused on

improving the power delay performance of the adder. In VLSI implementations, parallel-prefix adders are

known to have the best performance. Parallel-prefix adders (also known as carry-tree adders) are known to

have the best performance in VLSI designs. This paper investigates three types of carry-tree adders (the Kogge-

Stone, sparse Kogge-Stone, and spanning tree adder) and compares them to the simple Ripple Carry Adder

(RCA). In this project Xilinx-ISE tool is used for simulation, logical verification, and further synthesizing .

Keywords: DSP, Adders, Delay, Power.

I. Introduction
Arithmetic is the oldest and most elementary branch of Mathematics. The name Arithmetic comes from

the Greek word άριθμός (arithmos). Arithmetic is used by almost everyone, for tasks ranging from simple day to

day work like counting to advanced science and business calculations. As a result, the need for faster and

efficient Adders in computers has been a topic of interest over decades. Addition is a fundamental operation for
any digital system, digital signal processing or control system. A fast and accurate operation of a digital system is

greatly influenced by the performance of the resident adders. Adders are also very important component in digital

systems because of their extensive use in other basic digital operations such as subtraction, multiplication and

division. Hence, improving performance of the digital adder would greatly advance the execution of binary

operations inside a circuit compromised of such blocks. The performance of a digital circuit block is gauged by

analyzing its power dissipation, layout area and its operating speed.

 To humans, decimal numbers are easy to comprehend and implement for performing arithmetic. However,

in digital systems, such as a microprocessor, DSP (Digital Signal Processor) or ASIC (Application-Specific

Integrated Circuit), binary numbers are more pragmatic for a given computation. This occurs because binary

values are optimally efficient at representing many values.

Binary adders are one of the most essential logic elements within a digital system. In addition, binary
adders are also helpful in units other than Arithmetic Logic Units (ALU), such as multipliers, dividers and

memory addressing. Therefore, binary addition is essential that any improvement in binary addition can result in

a performance boost for any computing system and, hence, help improve the performance of the entire system.

 Binary adders are one of the most essential logic elements within a digital system. In addition, binary

adders are also helpful in units other than Arithmetic Logic Units (ALU), such as multipliers, dividers and

memory addressing. Therefore, binary addition is essential that any improvement in binary addition can result in

a performance boost for any computing system and, hence, help improve the performance of the entire system.

The major problem for binary addition is the carry chain. As the width of the input operand increases, the length

of the carry chain increases. Figure 1 demonstrates an example of an 8- bit binary add operation and how the

carry chain is affected. This example shows that the worst case occurs when the carry travels the longest

possible path, from the least significant bit (LSB) to the most significant bit (MSB). In order to improve the

performance of carry-propagate adders, it is possible to accelerate the carry chain, but not eliminate it.
Consequently, most digital designers often resort to building faster adders when optimizing computer

architecture, because they tend to set the critical path for most computations.

Figure 1 Binary Adder Example.

Evaluation Of High Speed And Low Memory Parallel Prefix Adders

www.iosrjournals.org 14 | Page

II. REVIEW Of ADDERS
FULL ADDER

 A Full Adder is a combinational circuit that performs the arithmetic sum of three input bits. It consists of

three inputs and two outputs. Three of the input variables can be defined as A, B, Cin and the two output

variables can be defined as S, Cout. The two input variables that we defined earlier A and B represents the two

significant bits to be added. The third input Cin represents the carry bit. We have to use two digits because the

arithmetic sum of the three binary digits needs two digits. The two outputs represents S for sum and Cout for

carry. For designing a full adder circuit, two half adder circuits and an OR gate is required. It is the simplest way

to design a full adder circuit. To design a full adder two XOR gates, two AND gates, one OR gate is required

Figure 2 Full adder structure

 S = A ^ B ^ C

 cout = A.B + (A ^ B).Cin

PROPOGATION DELAY IN FULL ADDERS

 Real logic gates do not react instantaneously to the inputs, and therefore digital circuits have a maximum

speed. Usually, the delay through a digital circuit is measured in gate-delays, as this allows the delay of a design

to be calculated for different devices. AND and OR gates have a nominal delay of 1 gate-delay, and XOR gates

have a delay of 2, because they are really made up of a combination of ANDs and ORs.

A full adder block has the following worst case propagation delays:

o From Ai or Bi to Ci+1: 4 gate-delays (XOR → AND → OR)

o From Ai or Bi to Si: 4 gate-delays (XOR → XOR)
o From Ci to Ci+1: 2 gate-delays (AND → OR)

o From Ci to Si: 2 gate-delays (XOR)

Because the carry-out of one stage is the next's input, the worst case propagation delay is then:

o 4 gate-delays from generating the first carry signal (A0/B0 → C1).

o 2 gate-delays per intermediate stage (Ci → Ci+1).

o 2 gate-delays at the last stage to produce both the sum and carry-out outputs (Cn1 → Cn and Sn-1).

So for an n-bit adder, we have a total propagation delay, tp of:

 tp = 4+2(n-2)+2 = 2n+2

Figure 3 Delay in a full adder

 This is linear in n, and for a 32-bit number, would take 66 cycles to complete the calculation. This is

somewhat rather slow, and restricts the word length in our device We would like to find ways to speed it up.

CARRY – LOOK AHEAD ADDER

 A fast method of adding numbers is called carry-look ahead adder. This method doesn't require the carry

signal to propagate stage by stage, causing a bottleneck. Instead it uses additional logic to expedite the

propagation and generation of carry information, allowing fast addition at the expense of more hardware

requirements. Rather than waiting for carry signals to ripple from the least significant to the most significant bit,

CLA adders divided the inputs into groups of r bits and implement the logic equations to determine if each

group will generate or propagate carry.

http://en.wikipedia.org/wiki/Adder_%28electronics%29
http://implement-logic.blogspot.com/2011/08/half-adder-circuit.html
http://implement-logic.blogspot.com/2011/08/half-adder-circuit.html
http://implement-logic.blogspot.com/2011/07/universal-gate-nor.html
http://implement-logic.blogspot.com/2011/07/normal-0-false-false-false-en-us-x-none.html
http://en.wikibooks.org/w/index.php?title=File:Full-Adder_Propagation_Delay.svg&page=1

Evaluation Of High Speed And Low Memory Parallel Prefix Adders

www.iosrjournals.org 15 | Page

 An overview of the adder’s 4 stages is shown in the figure 2.5 with stage 1 and the top and stage 4 at the

bottom. In stage 1 the local generate and propagate signals for each bit are created. In stage 2 these signals are

combined into 9 bit block signals. In stage 4 the carry into each block is calculated and these signals begin
traveling back up the adder tree. In stage 3 the carry into local carry signals to calculate the final sum bits. Each

group is created, and into each bit is created. Finally, stage 1 uses the propogate and generates blocks to give the

sum as the output. The carry look ahead shows good performance for the lower order bits that is it shows better

performance for sum of less number of bits. The 32-bit carry look ahead adder shows better performance than

64-bit carry look ahead adder. Even the 64-bit adder shows better performance than 128 bit adder. As the bit

size increases the performance decreases in the carry look ahead adder.

Figure 4 Simple Adder Tree Structure

III. Parallel Prefix Adders
 Parallel prefix adders employs 3- stage structure of carry look ahead adder The improvement is in the

carry generation stage which is the most intensive one. The below figure shows the structure of ling adder. The

ling adder uses predetermined propagates and generate in 1st stage of design. The 2nd stage uses the carry

calculation paralleled to reduce time .the 3rd stage is the simple adder block to calculate the sum

Figure 5 Structure of the parallel prefix adder

Figure 6 Buffer & Processing component structure

The parallel prefix graph for representation of prefix addition is shown as

Evaluation Of High Speed And Low Memory Parallel Prefix Adders

www.iosrjournals.org 16 | Page

Figure 7 Parallel prefix adder structure

Some of the parallel prefix adders are :

 Kogge-Stone adder

 Sparse kogge stone adder

 Spanning carry lookahead adder

Kogge stone adder

The Kogge–Stone adder is a parallel prefix form carry look-ahead adder. It generates the carry signals
in O(log n) time, and is widely considered the fastest adder design possible. It is the common design for high-

performance adders in industry.

Kogge-Stone prefix tree is among the type of prefix trees that use the fewest logic levels. A 16-bit

example is shown in Figure 2.11. In fact, Kogge-Stone is a member of Knowles prefix tree. The 16-bit prefix

tree can be viewed as Knowles [1,1,1,1]. The numbers in the brackets represent the maximum branch fan-out at

each logic level. The maximum fan-out is 2 in all logic levels for all width Kogge-Stone prefix trees.

The key of building a prefix tree is how to implement Equation according to the specific features of

that type of prefix tree and apply the rules described in the previous section. Gray cells are inserted similar to

black cells except that the gray cells final output carry outs instead of intermediate G/P group. The reason of

starting with Kogge-Stone prefix tree is that it is the easiest to build in terms of using a program concept. The

example in Figure 8 is 16-bit (a power of 2) prefix tree. It is not difficult to extend the structure to any width if

the basics are strictly followed.

Figure 8 A 16-bit Kogge-Stone Prefix Tree

For the Kogge-Stone prefix tree, at the logic level 1, the inputs span is 1 bit (e.g. group (4:3) take the

inputs at bit 4 and bit 3). Group (4:3) will be taken as inputs and combined with group (6:5) to generate group

(6:3) at logic level 2. Group (6:3) will be taken as inputs and combined with group (10:7) to generate group

(10:3) at logic level 3, and so on so forth.

Sparse Kogge Stone Adder

The sparse Kogge-Stone adder consists of several smaller ripple carry adders (RCAs) on its lower half,

a carry tree on its upper half. It terminates with RCAs. The number of carries generated is less in a sparse

KoggeStone adder compared to the regular Kogge-Stone adder. The functionality of the GP block, black cell

and the gray cell remains exactly the same as in the regular Kogge-Stone adder. The sparse Kogge-Stone adder,

this design terminates with a 4- bit RCA. As the FPGA uses a fast carry-chain for the RCA, it is interesting to

compare the performance of this adder with the sparse Kogge-Stone and regular Kogge-Stone adders.

http://en.wikipedia.org/wiki/Carry_look-ahead_adder
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Adder_(electronics)

Evaluation Of High Speed And Low Memory Parallel Prefix Adders

www.iosrjournals.org 17 | Page

Spanning carry look ahead adder

Another carry-tree adder known as the spanning tree carry-lookahead (CLA) adder is like the sparse

Kogge-Stone adder, this design terminates with a 4- bit RCA. As the FPGA uses a fast carry-chain for the RCA,

it is interesting to compare the performance of this adder with the sparse Kogge-Stone and regular Kogge-Stone

adders.

Figure 10 16 bit Spanning tree carry look ahead adder

BINARY ADDER SCHEMES
Adders are one of the most essential components in digital building blocks, however, the performance

of adders become more critical as the technology advances. The problem of addition involves algorithms in

Boolean algebra and their respective circuit implementation. Algorithmically, there are linear-delay adders like
ripple-carry adders (RCA), which are the most straightforward but slowest. Adders like carry-skip adders

(CSKA), carry-select adders (CSEA) and carry-increment adders (CINA) are linear-based adders with optimized

carry-chain and improve upon the linear chain within a ripple-carry adder. Carry-lookahead adders (CLA) have

logarithmic delay and currently have evolved to parallel-prefix structures. Other schemes, like Ling adders,

NAND/NOR adders and carry-save adders can help improve performance as well.

IV. Simulation Results
RIPPLE CARRY ADDER

The simplest way of doing binary addition is to connect the carry-out from the previous bit to the next
bit's carry-in. Each bit takes carry-in as one of the inputs and outputs sum and carry-out bit and hence the name

ripple-carry adder.

Figure 11 RTL view of 16 bit Ripple carry adder.

Figure 9 Block diagram of 16-Bit Sparse Kogge-Stone Adder[16].

Evaluation Of High Speed And Low Memory Parallel Prefix Adders

www.iosrjournals.org 18 | Page

Figure 12 Simulated wave form of 16 bit ripple carry adder.

16 bit Kogge-Stone adder

Kogge-Stone prefix tree is among the type of prefix trees that use the fewest logic levels. In fact,

Kogge-Stone is a member of Knowles prefix tree.

Figure 13 RTL View of 16 bit Kogge stone adder

Figure 14 Simulated wave form of Kogge stone adder.

sparse 16 bit Kogge-Stone adder

Another carry-tree adder known as the spanning tree carry-lookahead (CLA) adder is like the sparse

Kogge-Stone adder, this design terminates with a 4- bit RCA. As the FPGA uses a fast carry-chain for the RCA,

it is interesting to compare the performance of this adder with the sparse Kogge-Stone and regular Kogge-Stone

adders.

Figure 15 RTL View of 16-bit Sparse-Kogge stone Adder

Evaluation Of High Speed And Low Memory Parallel Prefix Adders

www.iosrjournals.org 19 | Page

Figure 16 Simulated wave form of 16 bit sparse-Kogge stone adder

16-bit Spanning Tree Carry Look ahead Adder

 Another carry-tree adder known as the spanning tree carry-lookahead (CLA) adder is like the sparse

Kogge-Stone adder, this design terminates with a 4- bit RCA. As the FPGA uses a fast carry-chain for the RCA,

it is interesting to compare the performance of this adder with the sparse Kogge-Stone and regular Kogge-Stone

adders.

Figure 17 RTL View of 16-bit Spanning Tree Carry Look ahead Adder

Figure 18 Simulated waveform of 16 bit spanning carry look head adder.

Performance Comparative Analysis
The below comparison table is drawn from the analysis of four adders in terms of delay,memory and LUT’s

drawn from synthesis report.

Table 1 Comparison briefs of simulated adders

ADDER NAME Memory(KB) Delay(ns) LUT’S

KOGGE STONE 186972 25.084 36

SPARSE KOGGE STONE 187036 19.502 51

SPANNING TREE 186716 28.050 32

RIPPLE CARRY ADDER 189372 31.947 38

V. Conclusion:
The Adders namely ripple carry adder, Kogge stone adder , sparse Kogge stone adder and spanning tree

adder are discussed in detail. VERILOG code was written for all the modules. Each individual modules was

tested for its correct functionality.This project has resulted in the development of Adders Design with reduced

delay and memory advantage. The Delay measurement and memory analysis of the adders is being done.

Evaluation Of High Speed And Low Memory Parallel Prefix Adders

www.iosrjournals.org 20 | Page

From synthesis report the adders designed kogge stone adder , sparse kogge stone adder and spanning tree

adder is being compared with the normal ripple carry adder in terms of delay and memory. From the synthesis

report the delay is less for SPARSE KOGGE STONE adder and the memory is less for SPANNING TREE is
concluded. In future all the proposed architectures are designed using parallel prefix adders are used in the

design of MAC unit.

Acknowledgements
The authors would like to thank the anonymous reviewers for their comments which were very helpful

in improving the quality and presentation of this paper.

References
[1] B. Ramkumar and Harish M Kittur , ― Low-Power and Area-Efficient Carry Select Adder ―, IEEE Transactions on very large scale

integration (VLSI) systems, vol.20, no.2,pp.371-375, Feb .2012

[2] Dilip P. vasudevan, parag k.lala, james patrik parkerson, ― Self- checking carry-select adder design based on two rail en-coding‖,IEEE

Trans, CIRCUITS AND SYSTEMS—I , December 2007

[3] http://en.wikibooks.org/wiki/Digital_Circuits/Adders.html

[4] Yu-Ting Pai and Yu-Kumg Chen, ―The fastest carry look ahead adder,‖ IEEE trans . International Workshop on Electronic Design,

Test and Applications,vol.22. Feb .2004

[5] http://umunhum.stanford.edu /farland/notes.html

[6] Dayu Wang, Xiaoping Cui, Xiaojing Wang, ―Optimized design of Parallel Prefix Ling Adder,‖IEEE Trans. pp.941-944, oct.2011

[7] B.Bhaskar, M.Kanagasabapathy, V.S.Kanchana Bhaaskaran, ―A hybrid adiabatic parllel prefix addition scheme for low power‖, IEEE

Trans , International Conference on Recent Trends in Information Technology, pp.389-393 , june 2011

[8] G. W. Hanson, Fundamentals of Nanoelectronics. Englewood Cliffs,NJ: Prentice-Hall, 2008.

[9] R. Zhang, K. Walus, W. Wang, and G. A. Jullien, ―Performance comparisonof quantum-dot cellular automata adders,‖ in Proc. IEEE

Int. Symp.Circuits Syst., 2005, pp. 2522–2526.

[10] Architecture of FPGAs and CPLDs: A Tutorial - Computer ...www.eecg.toronto.edu/~jayar/pubs/brown/survey.pdfFile Format:

PDF/Adobe Acrobat - Quick View.

Authors Profile:
A. Madhu Babu is Pursuing his M. Tech from Chirala Engineering College, Chirala in the

department of Electronics & Communications En-gineering (ECE) with specialization in VLSI

& Embedded systems.

K. Hari Krishna is working as an Associate Professor in the department of Electronics &

Communication Engin-eering in Chirala Engineering College, Chirala. She completed masters

from JNTUK. She has over 8 years of teaching and two years industrial experience.

