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Abstract:  The contribution is concerned on the introduction of mem-devices as a replacement for the 

nonlinear part of the hyperbolicity problem in circuit theory. These memory devices whose properties cannot be 

reproduced with standard resistors, capacitors and inductors were considered as “fundamental” circuit 

elements. In this paper, we focused on the purely imaginary eigenvalues (PIE) obtained from extended 

Duffing(Do), Duffing Van Der Pol (DVPo)  and Bonhoeffer Van Der Pol (BVPo) oscillators. This work is based 

on semistate or differential-algebraic circuits equations, matrix notions and diagraph theory. We discovered 

that PIE only exist in extended Duffing Van Der Pol oscillators and extended Bonhoeffer van Der Pol 

oscillators due to the presence of LC block. 
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I. Introduction 
Recently, there is strong interest in circuit elements with history-dependent properties. These form a 

general class of memory elements which includes memory resistors (memristors), memory capacitors 

(memcapacitors) and memory inductors (meminductors)[1]. They can be considered as time- and history-

dependent generalizations of their standard counterparts.  Special interest is devoted to devices determined by 

three pairs of circuit variables: current-voltage (memristors), charge-voltage (memcapacitors), and flux-current 

(meminductors). Two other pairs (charge-current and voltage-flux) are linked through equations of 

electrodynamics, and therefore do not give rise to any new device. Devices defined by the relation of charge and 

flux (which is the integral of the voltage) are not considered as a separate group since such devices can be 

redefined in the current-voltage basis. Systems whose properties cannot be reproduced with standard resistors, 

capacitors and inductors. In other words, there is no possible combination of standard circuit elements that can 

reproduce the dynamical properties of certain memory elements. In this sense, memristors, memcapacitors and 

meminductors can be considered as “fundamental” circuit elements.Nonetheless, these latter memory systems 

are still of great importance since they provide a complex functionality within a single electronic structure. The 

area of research of memristors is more advanced both technologically and theoretically than that of 

memcapacitors and meminductors. In fact, although some experimental systems have been identified as 

memcapacitive and meminductive, their number is still small and possibly applications for them are less 

developed[1,2]. 

Moreover, qualitative theory plays a key role in the analysis of nonlinear electrical and electronic 

circuits. Qualitative results are related e.g. to stability properties of equilibria and operating points [3, 4, 5, 6, 7], 

oscillations [8, 9, 10, 11], bifurcations [12, 13, 14] or chaotic phenomena [3, 15, 16, 17, 18, 19, 20, 21,22]. 

These references are just a sample of the huge literature addressing qualitative aspects in electrical and 

electronic engineering (cf. also [23] and references therein). Recent approaches are based on the use of semistate 

(differential- algebraic) circuit models, accommodating both nodal and hybrid techniques for setting up the 

circuit equations [24, 25, 26, 27, 28, 29, 30, 31, 32]. In the previous research there is qualitative properties of 

electrical circuits [33, 34] by focusing on the hyperbolicity problem. A linear time-invariant VIRLC circuit (that 

is, a circuit composed of independent voltage and current sources, and linear time-invariant resistors, inductors, 

and capacitors) is said to be hyperbolic if all the eigenvalues arising in the state-space description of the 

dynamics are away from the imaginary axis. Non-hyperbolic configurations exhibiting purely imaginary 

eigenvalues (PIEs) are important in linear circuit theory because they are responsible for proper oscillations. 

This problem is also relevant in the nonlinear context since purely imaginary eigenvalues may be responsible for 

Hopf bifurcations resulting in practice in nonlinear oscillations.  

In this research work, our aim is to present a full characterization of so-called topologically non-

hyperbolic configurations, which are those yielding purely imaginary eigenvalues for all positive values of the 

capacitances and inductances involved in the extended Duffing (Do), Duffing Van Der Pol and Bonhoeffer Van 

Der Pol electronic circuits. Our second goal is to extend the hyperbolicity analysis to circuits with memristors 

and other mem-devices (memcapacitors and meminductors) [ 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]; these 

devices, whose origin can be traced back to the 1971 paper [45] by Leon Chua, are taking a very relevant role in 
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electronics, stemming from the report of the design of a nanometer memristor by HP in 2008[46]. Our approach 

is based on the use of time-domain branch-oriented circuit models which capture explicitly the circuit topology; 

the differential-algebraic form of these models drives the spectral study to a matrix pencil setting. We will also 

make use of several concepts and results coming from digraph theory. All this material is compiled in Section 2. 

The first goal mentioned above is tackled in Section 3, where we extend the scope of the framework introduced 

in [34]; note that the results of [34] are restricted to circuits with one LC-loop or one LC-cutset only. 

 

II. Digraphs 

Many properties of an electrical circuit can be expressed in terms of its underlying directed graph or 

digraph. We compile below, for later use, some elementary notions coming from digraph theory[47, 48 ,49]. 

Let n and b stand for the number of circuit nodes and branches. After choosing a reference node, the 

reduced incidence matrix  is defined as  with 

 

                                                                  1      if branch j leaves node i  

 

                                        =                 -1      if branch j enters node i 

 

                                                                  0      if branch j is not incident with node i. 

 

 

Provided that the circuit is connected, the reduced incidence matrix has maximal row rank. The matrix 

U is split as ( ), where ) describes the incidence between 

resistive (resp. capacitive, inductive, memristive, voltage source, current source) branches and nodes[47, 48, 49 

]. 

A key role in our analysis will be played by certain types of loops and cutsets. A subset 

K of the set of branches of a connected digraph is a cutset if the deletion of K results in a disconnected 

digraph, and it is minimal with respect to this property (namely, the deletion of any proper subset of K does not 

disconnect the digraph). Loops and cutsets defined by specific types of branches can be characterized in terms 

of the incidence matrix, as stated in Lemmas 1 and 2 below. Both are standard results in graph theory (see e.g. 

[50,51]). We denote by (resp. ) the submatrix of the reduced incidence matrix formed by the columns 

defined by the branches in K (resp. not in 𝜅). 

 

Lemma 1: Letbe a subset of the set of branches of a connected digraph 𝒢. 𝜅does not contain cutsets if and only 

if Ker = {0}, that is, iff = 0  x = 0. 

 

Lemma 2: Letbe a subset of the set of branches of a connected digraph 𝒢. 𝜅does not contain loops if and only if 

Ker = {0}, that is, iff = 0  y = 0. 

 

Theorem 1: The matrix pencil  has a zero eigenvalue if and only if the circuit has at least one IC-cutset or one 

VL-loop. 

 

Theorem 2: A VIRLC circuit has a PIE for all positive values of capacitances and inductances if and only if, 

after open-circuiting current sources and short-circuiting voltage sources, the reduced circuit exhibits an LC 

block. 

 

Theorem 3: Assume that, at a given equilibrium, the matrices  are diagonal with positive entries, 

that memductance  as positive definite, and that the current does not have either cutsets formed just 

by current sources and/or capacitors and/or memcapacitors or loops defined by voltage sources and/or inductors 

and/or meminductors. Disregarding  null eigenvalues associated with mem-devices, the circuit has a pair of 

purely imaginary eigenvalues for all positive values of capacitances, memcapacitances, inductances and 

meminductances if and only if, after open-circuiting current sources and short-circuiting voltage sources, the 

reduced circuit exhibits a capacitive-inductive block.     

 

III. Circuit Model and Equilibria 

The circuit model for the extended Duffing, Duffing Van Der Pol and Bonhoeffer Van Der Pol may be 

expanded to accommodate also memristors, memcapacitors and meminductors. 
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In case of memristor, the flux-controlled memristor can be expressed as:  

 

                                                                                                                                       (1) 

 

Also, the charge-controlled memristor can be represented as: 

 

                                                                                                                                                                (2) 

 

The current-voltage relation to  is: 

 

                                                   ).v                                                                                                (3) 

 

Where  is the memductance and  . 

 

           In a charge-controlled setting, the voltage current relation is:  

 

                                                                                                                                                           (4) 

 

Where  is the memristance. 

Both and  must be actually nonlinear or else linear resistor. 

 

        The memcapacitor is governed by: 

 

                                                              .v                                                                                          (5) 

While meminductance can be expressed as: 

 

                                                                                                                                                         (6)  

In equation (5) and (6), depends on  and  depends on . 

 

 

3.1 (a) Duffing Van Der Pol Model 

Assuming the circuit model (7) to be flux –controlled memristor, then: 

 

                                                                                                                                                   (7a) 

                                                                                                                                             (7b) 

                                                                                                                                                    (7c) 

                                                                                                                                                       (7d) 

                                                                                                                                                       (7e) 

                                                                                                                                                       (7f) 

                                                                                                                                                          (7g) 

                                                                                                                                                      (7h) 

                                                                                                                                              (7i) 

                                                                                                                                                     (7j) 

                                                                                                                                                    (7k) 

                                                                                                                                   (7l) 

                                                                                                                                  (7m) 

                                                                                                                                   (7n) 

 

Where the subscripts Lc mmm ,, correspond to memristors, memcapacitors and meminductors respectively.At 

equilibrium all voltages and currrents in , are null and so  and . 

               The results above can be of linearization of circuits with mem-devices at equilibria       i.e 

 and , which shows that linearization display a null eigenvalue whose geometric 
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multiplicity equals the total number of mem-devices. The remaining eigenvalues are defined by the eigenvalue-

eigenvector equations obtained after short-circuiting voltage sources and open-circuitng current sources. 

 

                                                                                                                                        (8a) 

                                                                                                                                       (8b) 

                                                                                                                                     (8c) 

                                                                                                                                    (8d) 

             

                                                                                                                                     (8e) 

                                                                                                                            (8f) 

                                                                                                                                   (8g) 

                                                                                                                                    (8h) 

                                                                                                                         (8i) 

                                                                                                                          (8j) 

                                                                                                                 (8k) 

 

Using Schur reduction, equation 8a-8k can be reduced to 

 

                                                                                                                                      (9a) 

                                                                                                                             (9b) 

                                                                                                                                    (9c) 

                                                                                                                         (9d) 

                                                                                                                               (9e) 

                                                                                                                       (9f) 

                                                                                                                             (9g) 

                                                                                                                  (9h) 

 

The matrix notion of reduced equation 9 (a-h) can be given as shown below; 
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where , ,  ,  ,  ,  ,  ,  ,  ,  ,   are the eigenvectors associated with purely imaginary 

eigenvalues. Moreover, a pair of purely imaginary eigenvalues for all positive values of ,  if and only 

if, after open-circuiting current sources and short-circuiting voltage sources, which eventually shows that 

equation (9) has been reduced and the circuit exhibits a capacitance-inductance(LC)block. This fact support 

Theorem 3 with analog of Theorem 2 for circuits with mem-devices, where  indicate the total number of 

memristor, memcapacitor and meminductor. 

 

3.2 Bonhoeffer Van Der Pol oscillator (BVPo) 

           Semistate equations derived from BVP Oscillator circuit may be expanded to accommodate memristor, 

memcapacitor and meminductor. 

 

                                                                                                                         (10a) 

                                                                                                                     (10b) 
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                                                                                                                         (10c) 

 

                                                                                                                                 (10d) 

                                                                                                                                 (10e) 

                                                                                                                                 (10f) 

                                                                                                                               (10g) 

                                                                                                                                   (10h) 

                                                                                                                      (10i) 

                                                                                                                               (10j) 

                                                                                                                              (10k) 

                                                                                                      (10l) 

 

Apply Linearization of circuits at equilibrium, the remaining eigenvalues are: 

 

                                                                                                                         (11a) 

                                                                                                                     (11b) 

                                                                                                                   (11c) 

                                                                                                                               (11d) 

                                                                                                                              (11e) 

                                                                                                                       (11f) 

                                                                                                                                (11g) 

                                                                                                                               (11h) 

                                                                                                       (11i) 

 

Using Schur reduction, equation 11 (a-i) can be reduced to: 

 

                                                                                                                        (12a) 

                                                                                                                  (12b) 

                                                                                                                    (12c) 

                                                                                                               (12d) 

                                                                                                                 (12e) 

                                                                                                                     (12f) 

                                                                                                                              (12g) 

                                                                                                   (12h) 

 

The matrix notion of the above equation 12 (a-h) can be denoted as follows; 
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where , ,  ,  ,  ,  ,  ,  ,  ,  ,  are eigenvectors associated with PIE. 
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For a pair of purely imaginary eigenvalues for all positive values of ,  if and only if, after 

open-circuiting current sources and short-circuiting voltage sources, the reduced circuit exhibits a capacitance-

inductance(LC)block. Equation (12) shows that the eigenvalue is non-zero due to the presence of LC block.This 

fact also support Theorem 3 with analog of Theorem 2 for circuits with mem-devices, where  indicate the total 

number of memristor, memcapacitor and meminductor. 

 

3.0 Duffing Oscillator (Do) 

The differential-algebraic model for a duffing oscillator to accommodate the mem-devices can be expressed as: 

 

                                                                                                                            (13a) 

                                                                                                                                    (13b) 

                                                                                                                                (13c) 

                                                                                                                                  (13d) 

                                                                                                                                   (13e) 

                                                                                                                                (13f) 

                                                                                                                    (13g) 

                                                                                                                   (13h) 

                                                                                                           (13i) 

 

With the application of Linearization of circuits with mem-devices at equilibria. The remaining eigenvalues are; 

 

                                                                                                                        (14a) 

                                                                                                                                 (14b) 

                                                                                                                              (14c) 

 

                                                                                                                               (14d) 

                                                                                                                   (14e) 

                                                                                                                              (14f) 

                                                                                                                  (14g) 

                                                                                                          (14h) 

 

By means of a Schur reduction, we may describe equation above as 

 

                                                                                                                         (15a) 

                                                                                                                                  (15b) 

                                                                                                                         (15c) 

                                                                                                                                (15d) 

                                                                                                                    (15e) 

                                                                                                                   (15f) 

 

Also, equation (15) can the denoted in matrix diagraph as shown below; 
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Where , , , , , , , ,  are the eigenvectors for the pure Imaginary eigenvalue and the equation 

(15) above, the reduced circuit in which all positive values of , C,  , does not exhibits a capacitance-

inductance(LC)block, therefore a pair of purely imaginary eigenvalues does not exist ( Theorem 1). 

 

IV. Concluding remarks 

In this paper we have characterized nonlinear systems with passive component “memristor”, yielding 

purely imaginary eigenvalues (PIEs) for all values of the capacitances and inductances. We observe that both 

extended Duffing Van Der Pol and Bonhoeffer Van Der Pol systems obeys purely imaginary eigenvalues due to 

the presence of LC- block, while PIEs does not exist in extended Duffing system. A block must include at least 

one capacitive and one inductive element for PIE to exist. Therefore, Duffing system can only have LC-block 

only in the absence of resistor and presence of inductor so that the eigenvalue will be non-zero. Our approach 

captures explicitly the circuit topology by means of branch-oriented DAE models, in which we introduce other 

mem-devices, namely, memcapacitor and meminductor in the hyperbolic analysis. 
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