A Decision Support Technique to Design Solar Power System for Sindh Agriculture University Tandojam

Zulfiqar Ali Effendi* Mrs. Aisha Kousar** Aziza Aftab Memon***

*Lecturer IEEM Mehran University of Engineering and Technology Jamshoro ** Lecturer Chemical Department Mehran University of Engineering and Technology Jamshoro *** Assistant Professor Chemical Department Mehran University of Engineering and Technology Jamshoro

Abstract: Pakistan's energy requirements are increasing day by day and not only economic growth but political stability is linked with the availability of energy resources. At present the total generation installed capacity is 21,000 MW. The peak demand is 15,000 MW, but the production is only 9,000-10,000 MW, resulting in 10-12 hours of load shedding. The root cause of the faulty fuel mix is the use of furnace oil as the main fuel to produce thermal electricity. This energy crisis has destroyed at least 50 percent of the industrial sector that has led to increase in the rate of unemployment. It has badly affected the fixed income group because costs of goods and services have increased. Due to the electricity crises a common man look to the available short term alternatives such as generators and Uninterrupted Power Supply (UPS) units but they are not environmental friendly nor have enough storing capacity to provide continuous energy. Due to above problems, the report has been formulated which divert the attention of the policy makers of Sindh Agriculture University Tandojam for bringing the university to the solar system. This process was done using both software and manual analysis, to determine the tilt angle, azimuth degrees, Photovoltaic module size, size of the inverters, batteries and charge controller. At the other hand we also estimated the cost efficiency of solar power system as compare to HESCO in which we analyze the basic appliances like tube lights, savers, fans and computers. The total load of the all faculties and departments are 3. 51.498 Watts per month and the monthly expenditure are paid by university is Rs.11,59,943. But as compare to solar power system the monthly expenditure for same load is just Rs.2, 68,504 and it has a 25 years life as well. If we compare the HESCO and solar power system we would save approximately 76.8% monthly cost. The result of this study can be referred by the policy makers and decision takers of Government and as well as private sectors. We all are causing the problem of pollution, but we need to realize that there are many other power sources for running appliances, and that these options need to be taken advantages.

I. Introduction

Energy crises Scenario of Pakistan

Pakistan has been facing an energy crisis since 2007. The main reason for the current crisis is that in the past no efforts were made to ensure increase in power generation capacity along with increase in population growth. An energy crisis is any great shortfall in the supply of energy resources to an economy. Electricity is the basic need of human life. It has great importance as it is directly related to every country's economy.

Pakistan's energy requirements are increasing day by day and not only economic growth but political stability is linked with the availability of energy resources. At present the total generation installed capacity is 21,000 MW. The peak demand is 15,000 MW, but the production is only 9,000-10,000 MW, resulting in 10-12 hours of load shedding. The root cause of the faulty fuel mix is the use of furnace oil as the main fuel to produce thermal electricity. The months of January to May have very low hydropower available since reservoirs are empty and snow melt will not, start till June. The Tarbela reservoir receives about 95 percent of its water through snow melt. The natural gas is in short supply and is available only to produce 29 percent MW of electricity. As over 50 percent of current generation is dependent on furnace oil, it is not viable for the government to purchase and provide oil at such high price. Therefore, many plants are either shut or transfer the cost to consumer. When the price of electricity is raised, the whole economy gets disturbed as a result of producing much below their capacity. Wapda and KESC purchase expensive oil and inflation and increase in the price of items of everyday use.

Energy crisis has destroyed at least 50 percent of the industrial sector that has led to increase in the rate of unemployment. It has badly affected the fixed income group because costs of goods and services have increased.

The current shortage of electricity of Pakistan clearly implies failure on the part of the government to tackle it. Corruption is another major reason. The government should have developed electricity through alternative resources of energy like nuclear energy, natural gas exploration, natural gas import, solar energy, coal and wind energy.

Due to the electricity crises a common man looked to the available short term alternatives such as generators and Uninterrupted Power Supply (UPS) units. Generators are expensive to buy (average cost Rs 37,500 and per year average for five years comes out to Rs 7,500) and expensive to operate, at an average of Rs 5,882 per month and an annual cost of Rs 70,560. The noise and air pollution they cause is damaging to health and buyer don't like to visit market when there is no light.

The UPS on the other hand is cheaper at Rs 15,000 for five years but the cost of the battery is 15000 and its life is 12 months and per year average comes out to 4,000 but with an average running and maintenance cost of Rs 12,240. Moreover, it has a running cost of Rs 1,000 per month.

However, UPS does not store enough energy to meet the long hours of load shedding and also consumes a considerable amount of energy from the grid. In addition, its acid batteries cause immense air pollution which is difficult to tolerate for a long period of time.

Due to above problems, different people conducted surveys in which they wanted to know the real diversion of people to the reliable alternative system. Ninety percent of the people were showed their willing to adopt a solar energy option because they understand it's environmental and sustainability advantage. People expressed their concerns as well. Interestingly, they believe that the constraints in providing alternative energy to their units are not of a financial or technical nature but have more concerned with governance issues.

Minimum 10km/hr wind velocity is required for the installation of wind mill at that site but here at Tandojam i.e. 2 km/hr velocity of wind there for wind mill is not recommended. Pakistan, has capacity of producing 350,000 MW, 2.9 million MW, 2500 MW wind energy in coastal areas, solar Energy and Geothermal respectively. (source: Alternative Energy Development Board Ministry of Water and Power Government of Pakistan

Due to above facts the report has been formulated which divert the attention of the policy makers of Sindh Agriculture University Tandojam for bringing the university to the solar system. Further this project get more advantage when government provide subsidy on the import of silica based glass solar panels and frequent trainings must be provide regarding the assembly and the maintenance of solar panels/products.

Objective of the study

To help the decision makers for bringing the Sindh Agriculture University Tandojam from HESCO to Solar Power System.

Estimation tool

For the estimation of electric load, solar panel array sizing, solar charge controller sizing, and battery bank seizing for SAU Tandojam electric load calculator has been used.

		oad C	alculator	mption (kilow	watt hours) is
Name:	more info o	mat y		Date	7/31/2012
	Appliance*	Qty	Watts (Volts x Amps)	Hrs/Day	Watt Hrs/Day
1	TUBELIGHTS	546	40	10	218400
2	SAVERS	36	14	10	5040
3	FANS	183	100	10	183000
4	COMPUTERS	49	100	10	49000
5					0
6					0
7					0
8					0
9					0
10					0
11					0
12					0
13					0
14					0
15					0
16		_			0
17		_			0
18		_			0
19		_			U
20					0
	Total Watt Hrs Per Day: 455,440 Total Kilowatt Hrs Per Month (30 Days): 13,663 (write down this value and enter it into Step 1 of solar panel sizing calculator)				

Diagram-1 Electric lo ad Calculator

	-		• 0	
cor	nnected	Solar Panel A	Array Sizing	
mo Step 1:	re info o	Determine the size of the sola	ar panel array you will need.	
Ho	w many kilowa	tt-hours (kwh) does your home/loo	cation use per month?	
(Ti cli	(This value is usually printed on your electric bill. If you don't have a bill, or don't know your consumption, click on load calculator' at the top of this page to go through the steps to determine this value.)			
	13663 kilowa	itt-hours per month		
Step 2:		and the anisian and an of any	has not devide the winter	
Se	elect the State-	mine the minimum number of sun City Closest to your location (curre	nrs per day during the winter. ently only US states are provided)	
Г	Select the State-City Closest to your location (currently only US states are provided)			
2.	2.99 Minimum sun-hours for the winter times			
10	10 Manually enter the minimum sun-hours for your location.			
Step 3:				
The total watt	age of Solar Pa	nels that you need is:		
	59,206 Watt	s, or 59.21 kilowatts	This value takes into account losses due to system inefficiencies.	
Step 4:				
How many so	olar panels do y	ou need? That depends on the pa	anel you choose.	
	24	40 •	results below.	
These solar	panels are 24	0 watts each.		
So you will	need 247 of th	em, which makes a total watta	ge of 59280 watts.	

Diagram-2 Solar Panel Array Sizing

Diagram-3 Solar Charge Controller Sizing

Solar Charge Controller Sizing
This calculator helps you size the solar charge controller(s) needed for your system.
Step 1:
Wattage of solar panel array: 59280 Watts
(taken from the previous calculation of solar panels)
Step 2:
Choose the voltage of your battery bank:
12 -
Step 3:
You will need a charge controller(s) that can support at least:
4940.00 Amps
Special Note:
Since your amperage is greater then 60 amps, you will need to wire at least 83 controllers in
The maximum size charge controller we offer is 60 amps

Diagram-4	Battery Bank Sizing			
Bat	ttery Bank Sizing			
connected calculator will help	you size the battery bank for your system.			
Step more info o	E0.200 ML			
vvattage of solar panel array:	59,200 Watts			
Step 2				
How many days of backup power	r do you want in case of cloudy/rainy days?			
04-11-2				
Step 5				
What is the lowest temperature your battery bank will experience?				
	145 Degrees Fahrenheit			
Results				
You need a battery bank that has a capacity of	You need a battery bank that has a capacity of 14,539 amp hrs at 12V			
Select a battery amperage:	Select a hattery voltage			
200				
Amp-Hour capacity of this battery is:	200 amp-hrs			
Voltage of this battery:	12 volts			
Number of rows in parallel	73			
Total number of these batteries you will need	73			
Total Amp-Hours of this Battery Bank is:	14,600 Amps-Hours			

Diagram-4 Battery Bank Sizing

Design of PV System for SAU Tandojam

First time an Agriculture College associated with Agriculture Research Institute was established at Sakrand in District Nawabshah in 1939-40, and named as the King George-V Institute of Agriculture and This college paved the way for raising the status of the college to the full-fledged university on 1st March, 1977, named as Sindh Agriculture University, Tando Jam established under Act of 1977. Now the following faculties are prevailed in the university.

• Faculties of the University

Faculty of Agricultural Engineering Faculty of Agricultural Social Science Faculty of Crop Production Faculty of Animal Husbandry and Veterinary Sciences Faculty of Crop Protection

• Institutes of the University

Information technology Center

Institute of Food Sciences and Technology

- Farm Power Machinary Workshop
- Central Library
- Administration Block

II. Faculty of Agriculture Engineering

A total electric load of 45544 Watts was consumed by Faculty of Agricultural Engineering comprises of 22344 Watts in lights, 18300 Watts in fans and 4900 Watts in computers.

Solar Panels		
No of solar panels required	247 N0	
Capacity of single solar panel	240 Watts	
Solar panel produce	59280 Watts	
Cost of each panel	36000	
Total cost of solar panel	RS: 88,92,000	
Charge Controller		

One charge controller of 4940 an	nps is required
Cost	RS:350,000
Batteries	
Required Amp:s	15000 AMP/HRS
Battery Capacity	200 AMP/HRS
No of batteries for system	75 OF 12Volt each
Batteries cost	75*13000(Cost)= 9,75,000
Batteries backup	2 Days
Inverter	
Inverter Capacity	6000 Watts
Required no	10
Total capacity	10 * 6000= 60,000
Cost of one inverter	RS: 87,984
Cost of 10 invertors	RS: 8,79,840
Total cost	RS:1,08,49,840
	Or 10.85 million

Hydropower System	Solar Power System	
Power of Faculty= 45544 Watts	For Solar =59280 Watts	
Current of Faculty 101.87 Amp	Monthly cost of solar system	
Monthly bill is Rs:1,50,295	RS:35,670/=	
Difference is Rs: 1,14,624/=		
77 percent cost will be saved per month		

Faculty of Agriculture Social Science

A total electric load of 21716 Watts was consumed by Faculty of Agricultural Social Science comprises of 14416 Watts in lights, 6800 Watts in fans and 500 Watts in computers.

Solar Panels	
No of solar panels required	118N0
Capacity of single solar panel	240 Watts
Solar panel produce	28320 Watts
Cost of each panel	36000
Total cost of solar panel	RS: 42,48,000
Charge Controller	· · · · · ·
One charge controller of 2360 amps	is required
Cost	RS: 250,000
Batteries	
Required amp:s	7200 AMP/HRS
Batery Capacity	200 AMP/HRS
No of batteries for system	36 OF 12Volt each
Batteries cost	36*13000(Cost)=4,68,000
Batteries backup	2 Days
Inverter	
Inverter Capacity	6000 WATTS
Required no	5
Total capacity	5 * 6000 = 30,000
Cost of one inverter	RS: 87,984
Cost of 10 invertors	RS: 4,39,920
Total cost	RS: 52,87,920
	Or 5.287 million

Hydropower System	Solar Power System	
Power of Faculty= 21716 Watts	For Solar =28320 Watts	
Current of Faculty 48.57 Amp	Monthly cost of solar system	
Monthly bill is RS: 71,665/=	K5.17,565/-	
Difference is Rs: 54,281/=		
76 percent cost will be saved per month		

Faculty of Crop Production

A total electric load of 48876 Watts was consumed by Faculty of Agricultural Crop Production comprises of 21416 Watts in lights, 25000 Watts in fans and 3800 Watts in computers.

Design of Solar System

Solar Panels	
No of solar panels required	265 N0
Capacity of single solar panel	240 Watts
Solar panel produce	63600 Watts
Cost of each panel	36000
Total cost of solar panel	RS: 95,40,000
Charge Controller	
One charge controller of 5300 amps	is required
Cost	RS:4,00,000
Batteries	
Required amp:s	16000 AMP/HRS
Batery Capacity	200 AMP/HRS
No of batteries for system	80 OF 12Volt each
Batteries cost	80*13000(COST)= 10,40,000
Batteries backup	2 Days
Inverter	
Inverter Capacity	6000 Watts
Required no	11
Total capacity	11 * 6000 = 66,000
Cost of one inverter	RS: 87,984
Cost of 10 invertors	RS: 9,67,824
Total cost	RS:1,19,47,824
	Or 11.947 million

Cost benefit statement

Hydropower System	Solar Power System	
Power of Faculty= 48876 Watts	For Solar =63600 Watts	
Current of Faculty 112.32 A	Monthly cost of solar system	
Monthly bill is RS: 1,65,715/=	RS:39,280/=	
Difference is Rs: 1,26,435/=		
77 percent cost will be saved per month		

Faculty of Animal Husbandry and Veterinary Sciences

A total electric load of 79692 Watts was consumed by Faculty of Animal Husbandry and Veterinary Sciences comprises of 41334 Watts in lights, 34200 Watts in fans and 5000 Watts in computers.

Solar Panels	
No of solar panels required	432 N0
Capacity of single solar panel	240 Watts
Solar panel produce	103680 Watts

Cost of each panel	36000
Total cost of solar panel	RS: 1,55,52,000
Charge Controller	
One charge controller of 8640amp	os is required
Cost	RS:6,00,000
Batteries	
Required amp:s	26000 AMP/HRS
Batery Capacity	200 AMP/HRS
No of batteries for system	130 OF 12Volt each
Batteries cost	130*13000(Cost)=
	16,90,000
Batteries backup	2 Days
Inverter	
Inverter Capacity	6000 Watts
Required no	17
Total capacity	17 *6000= 1,02,000
Cost of one inverter	RS: 87,984
Cost of 10 invertors	RS: 14,95,728
Total cost	RS:1,93,37,728
	Or 19.34 million

Hydropower System	Solar Power System
Power of Faculty=80534 Watts	For Solar =103680 Watts
Current of Faculty 180.14A	Monthly cost of solar system
Monthly bill is RS: 2,65,760/=	RS:63,576/=
Difference is Rs: 2,02,184/=	
76 Percent cost will be saved per month	

Faculty of Crop Protection

A total electric load of 24230 Watts was consumed by Faculty of Crop Protection comprises of 11530 Watts in lights, 11200 Watts in fans and 1500 Watts in computers.

Solar Panels	
No of solar panels required	132 N0
Capacity of single solar panel	240 Watts
Solar panel produce	31680 Watts
Cost of each panel	36000
Total cost of solar panel	RS: 47,52,000
Charge Controller	
One charge controller of 2640amps is	required
Cost	RS:2,00,000
Batteries	•
Required amp:s	7800 AMP/HRS
Batery Capacity	200 AMP/HRS
No of batteries for system	39 OF 12Volt each
Batteries cost	39*13000(Cost)=
	5,07,000
Batteries backup	2 Days
Inverter	
Inverter Capacity	6000 Watts
Required no	3
Total capacity	3 * 6000 = 18000
Cost of one inverter	RS: 87,984
Cost of 10 invertors	RS: 2,63,952
Total cost	RS:57,22,952
	Or 5.723 million

Hydropower System	Solar Power System
Power of Faculty= 24,230 Watts	For Solar =31,680 Watts
Current of Faculty 54.19 A	Monthly cost of solar system RS:18,815/=
Monthly bill is RS: 79,959/=	
Difference is Rs 61,144/=	
76.4 Percent cost will be saved per month	

III. Institute of Food Sciences and Technology

A total electric load of 27714 Watts was consumed by Institute of Food Sciences and Technology comprises of 15114 Watts in lights, 9200 Watts in fans and 3400 Watts in computers.

Design of Solar System

Solar Panels	
No of solar panels required	115 N0
Capacity of single solar panel	240 Watts
Solar panel produce	27600 Watts
Cost of each panel	36000
Total cost of solar panel	RS: 41,40,000
Charge Controller	
One charge controller of 2300 amps i	is required
Cost	RS:1,80,000
Batteries	
Required amp:s	6800 AMP/HRS
Batery Capacity	200 AMP/HRS
No of batteries for system	34 OF 12Volt each
Batteries cost	34*13000(Cost)= 4,42,000
Batteries backup	2 Days
Inverter	
Inverter Capacity	6000 Watts
Required no	5
Total capacity	5* 6000 = 30,000
Cost of one inverter	RS: 87,984
Cost of 10 invertors	RS: 4,39,920
Total cost	RS:48,05,992
	Or 4.806 million

Cost benefit statement

Hydropower System	Solar Power System
Power of Faculty= 16752 Watts	For Solar =21840 Watts
Current of Faculty 37.47 A	Monthly cost of solar system RS:12,904/=
Monthly bill is RS: 55,286/=	
Difference is Rs: 42,382/=	
77 Percent cost will be saved per month	

Institute of Information Technology Centre (ITC)

A total electric load of 29134 Watts was consumed by Institute of Information Technology (ITC) comprises of 11634 Watts in lights, 7600 Watts in fans and 9900 Watts in computers.

Design of Solar System

Solar Panels	
No of solar panels required	134 N0
Capacity of single solar panel	240 Watts
Solar panel produce	3160 Watts
Cost of each panel	36000
Total cost of solar panel	RS: 48,24,000
Charge Controller	
One charge controller of 2680amps i	s required
Cost	RS:2,00,000
Batteries	·
Required Amp:s	8000 AMP/HRS
Batery Capacity	200 AMP/HRS
No of batteries for system	40 OF 12Volt each
Batteries cost	40*13000(COST)=
	5,20,000
Batteries backup	2 Days
Inverter	I
Inverter Capacity	6000 Watts
Required no	5
Total capacity	5* 6000 = 30,000
Cost of one inverter	RS: 87,984
Cost of 10 invertors	RS: 4,39,920
Total cost	RS:59,83,920
	Or 5.98 million

Cost benefit statement

Hydropower System	Solar Power System
Power of Faculty=29134Watts	For Solar =32160 Watts
Current of Faculty 65.17Amp	Monthly cost of solar system RS:19.673/=
Monthly bill is RS:96,142/=	
Difference is Rs: 76,469/=	
80 Percent cost will be saved per month	

Farm Power Machinery Workshop

_

A total electric load of 7674 Watts was consumed by Farm Power Machinery Workshop comprises of 2374 Watts in lights, 5200 Watts in fans and 100 Watts in computers.

Solar Panels	
No of solar panels required	42 N0
Capacity of single solar panel	240 Watts
Solar panel produce	10080 Watts
Cost of each panel	36000
Total cost of solar panel	RS: 15,12,000
Charge Controller	
One charge controller of 840 Amps	s is required
Cost	RS:1,50,000
Batteries	
Required Amp:s	2600 AMP/HRS
Batery Capacity	200 AMP/HRS
No of batteries for system	13 OF 12Volt each
Batteries cost	13*13000(Cost)= 1,69,000
Batteries backup	2 Days
Inverter	
Inverter Capacity	6000 WATTS

Required no	2
Total capacity	2* 6000 = 12,000
Cost of one inverter	RS: 87,984
Cost of 10 invertors	RS: 1,75,968
Total cost	RS:20,06,968
	Or 2.01 million

Hydropower System	Solar Power System
Power of Faculty= 7674 Watts	For Solar =10080 Watts
Current of Faculty 17.16 A	Monthly cost of solar system
Monthly bill is RS: 25,322/=	RS:6,600/=
Difference is Rs: 18,560/=	
74 percent cost will be saved per month	

Central Library

A total electric load of 12030W was consumed by Central Library comprises of 8630W in lights, 1900W in fans and 1500W in computers.

Design of Solar System

Solar Panels	
No of solar panels required	66 N0
Capacity of single solar panel	240 Watts
Solar panel produce	15840 Watts
Cost of each panel	36000
Total cost of solar panel	RS: 23,76,000
Charge Controller	
One charge controller of 1320 amps	is required
Cost	RS:1,50,000
Batteries	
Required Amp:s	4000 AMP/HRS
Batery Capacity	200 AMP/HRS
No of batteries for system	20 OF 12Volt each
Batteries cost	20*13000(Cost)= 2,60,000
Batteries backup	2 Days
Inverter	
Inverter Capacity	6000 Watts
Required no	3
Total capacity	3* 6000 = 18,000
Cost of one inverter	RS: 87,984
Cost of 10 invertors	RS: 2,63,952
Total cost	RS:30,49,952
	Or 3.05 million

Cost benefit statement

Hydropower System	Solar Power System	
Power of Faculty=12030 Watts	For Solar =15840 Watts	
Current of Faculty 26.90 Amp	Monthly cost of solar system	
Monthly bill is RS:39,699/=	RS:10,027/=	
Difference is Rs: 29,672/=		
74.7 Percent cost will be saved per month		

Administration Block

A total electric load of 27714 Watts was consumed by Administration Block comprises of 15114 Watts in lights, 9200 Watts in fans and 3400 Watts in computers.

Design of Solar System

Solar Panels		
No of solar panels required	115 N0	
Capacity of single solar panel	240 Watts	
Solar panel produce	27600 Watts	
Cost of each panel	36000	
Total cost of solar panel	RS: 41,40,000	
Charge Controller		
One charge controller of 2300 amps	is required	
Cost	RS:1,80,000	
Batteries		
Required Amp:s	6800 AMP/HRS	
Batery Capacity	200 AMP/HRS	
No of batteries for system	34 OF 12Volt each	
Batteries cost	34*13000(Cost)= 4,42,000	
Batteries backup	2 Days	
Inverter		
Inverter Capacity	6000 Watts	
Required no	5	
Total capacity	5* 6000 = 30,000	
Cost of one inverter	RS: 87,984	
Cost of 10 invertors	RS: 4,39,920	
Total cost	RS:48,05,992	
	Or 4.81 million	

Cost benefit statement

Hydropower System	Solar Power System	
Power of Faculty=27714 Watts	For Solar =27600 Watts	
Current of Faculty 61.99 Amp	Monthly cost of solar system	
Monthly bill is RS:91,454/=	RS:15,800/=	
Difference is Rs: 75,654/=		
82.7 Percent cost will be saved per month		

Comparison B/W HESCO & Solar Power System	HESCO RS:	Solar System		
Faculty of Agricultural Engineering	150295	35671		
Department of Social Science	71665	17384		
Faculty of Crop Production	165715	39280		
Department of Food Technology	55286	12904		
Department of Form Power Machinary	25322	6762		
DVM Faculty	265760	63576		
Central Library	39699	10027		
Faculty of Crop Protection	79959	18815		
Administration Block	91454	15800		
Information Technology	96142	19673		
Total Charges	1041297	239892		

IV. Conclusion

V. Results

- This study conclude that the solar power system is 76.96% is more economical than the HESCO.
 Total electric bill paid by Sindh Agriculture University Tandojam monthly is RS. 1041297 for above faculties and departments.
- 3. Here in the solar power system for the same capacity the monthly bill will be RS. 239892/= the solar power system having 25 years warranty.

- 4. The total bill of 25 years in HESCO will be RS.312389100/=
- 5. In the solar power system for 25 years it will be RS.71967600/=
- 6. The saving for 25 years will be RS.20421500/=

VI. Suggestions

We suggest to the high command/policy makers of Sindh Agriculture University Tandojam to install the solar power system in Sindh Agriculture University Tandojam and use the saving amount in projects beneficial for the University.

References

- [1]. Department of Energy Solar Site
- [2]. www.eren.doe.gov/RE/solar.html
- [3]. DeGunther, Rik. Solar Power Your Home for Dummies. Hoboken, N.J. Wiley, 2010.
- [4]. EU PV Technology Platform: "A Strategic Research Agenda for Photovoltaic Solar Energy Technology". European Communities, 2007.
- [5]. Florida Solar Energy Center www.fsec.ucf.edu
- [6]. Frankl, P., Menichetti, E. and Raugei, M.: "Final Report on Technical Data, Costs and Life Cycle Inventories of PV Applications". Deliverable n° 11.2 - RS 1a of the NEEDS (New Energy Externalities Developments for Sustainability) project, 2005.
- [7]. FREE TEXAS RENEWABLE ENERGY INFORMATION; fact sheet-3, Texas www.InifinitePower.org
- [8]. Keshner, M. and Arya, R.: "Study of Potential Cost Reductions Resulting from Super-Large-Scale Manufacturing of PV Modules". National Renewable Energy Laboratory, 2004.
- [9]. NREL'S National Center for Photovoltaics www.nrel.gov/ncpv
- [10]. Sandia Laboratory photovoltaics with load calculation worksheets www.sandia.gov/pv
- [11]. State Energy Conservation Office www.InfinitePower.org
- [12]. Sobha, Geeta. Green Technology: Earth-friendly Innovations. New York: Rosen Pub., 2008.