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 ABSTRACT : We are proposing a new network transmission model wherein we have a number of users who 

wish to send their throughput demand in the form of packets through one or more links with minimum cost or 

more efficiently than the other users. This situation introduces the role of non-cooperative games in the 

communication network. We introduce three aspects which distinguish this model from other transmission 

network models studied elsewhere. These aspects are regarding introduction of time (discrete) and penalty to 

the users, and cost of transmission to be an increasing function of time.  
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I. INTRODUCTION 

Routing in a communication network is a game with imperfect information where the complete 

knowledge of strategies of other users/players is impossible. In this game decisions are made simultaneously by 

all the users and cost functions are known to every player. There are few works using game theoretical 

concept in a communication network. For example, in [1],  A. Orda, R. Rom and N. Shimkin provide Nash 

equilibrium for the system of two node multiple link using non-cooperative game. They have proved uniqueness 

of Nash Equilibrium Point (NEP) under reasonable convexity conditions. In this paper each user can measure 

the load on the network links and change their behavior based on the state of network. 

 I. Sahin, M.A. Simaan [2] have derived an optimal flow and routing control policy for two node 

parallel link communication networks with multiple competing users. In this paper network consists of several 

parallel links and each user uses different preference constant for different links.  The review paper by F.N. 

Pavlidou and G. Koltsidas [3] presents different routing models that use game theoretical methodologies for 

conventional and wireless networks as well.  Time dependent behavior has an impact on the performance of 

telecommunication models and queuing theory is also used for communication perspective by Messey [4]. 

Bottleneck routing games and Nash equilibrium is discussed in [5] for splittable and unsplittable flow. In [6] 

authors considered that the cost function for the link is polynomial and they have established the uniqueness of 

Nash equilibrium. 

 This work presented here deals with routing of data packets in a communication network. The 

players/users come to the "game" with the knowledge of the number of packets they wish to send through one or 

more network link over the m chances/shots. As usual each link at a given chance/shot has a finite capacity to 

carry the packets. In all other models, the users are dissuaded from sending number of packets exceeding 

capacity of a link by making the cost infinity for such a situation and in such a situation there is a transmission 

failure in the sense no one's packets are sent through the link. In our model, the cost of transmission remains 

finite even if the sum of packets wished to be sent by the users through a given link in a given slot/shot exceeds 

the specified capacity of the link. However, we consider a number of scenarios to deal with such a situation. In 

this simple model, the game becomes competitive as the users would want to send their packets in earlier and 

few shots possible. The game would be very competitive and interesting if the total number of packets wished to 

be sent by all the players together over all the shots exceeds the total capacity of all link summed for all the 

shots. 
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  The paper comprises seven sections. In section 2, we present a mathematical modeling for 

communication network. In section 3, Routing Scheme and the cost function is discussed showing explicitly the 

relation of cost function with time and number of packets, being transmitted. In sections 4, Extended cost 

function is introduced for packets more than capacity of the link. In section 5, we present a number of scenarios 

to deal with the situation of violating the capacity of link. In section 6, we prove some theorems to show 

existence of Nash equilibrium point in this game and in section 7 we provide some concluding remarks. 

II. MATHEMATICAL MODELING 

In the present communication network model, we consider p  number of users sharing k parallel links 

connecting a common source node to a common destination node. We assume that the network/links are 

available to the users over a discrete range of time known as time slots. We assume that there are m time slots in 

a single cycle. Let  L = {1, 2, 3, … . k} be the set of parallel links, N = {1, 2, 3, … … p} be the set of users and 

S={1,2,3,…..m} be the time slots. We assume that users are rational and selfish for this competitive game. Each 

user n ∈ N has throughput demand D(n) which he/she wants to ship from source to destination. A user sends 

his/her throughput demand in the form of data packets through the communication links and is able to decide at 

any time how the data packets will be transmitted and what fraction of throughput demand should be sent at that 

time through each link.  

We assume that each link is available for all the users after a unique interval of time. Capacity λl  of 

each link is fixed. Let Pl
n t   denotes the number of packets transmitted through link l at time t by user n .   

Pl
n t  satisfies the following conditions : 

  P1 : 𝑃𝑙
𝑛 𝑡  ≥ 0    (Non – negative constraint) 

  P2 :  𝑃𝑙
𝑛 𝑡 𝑛  ≤  𝜆𝑙     (Capacity constraint for each link 𝑙) 

  P3 : 𝐷(𝑛) =    𝑃𝑙
𝑛 𝑡 𝑛𝑡   (Demand constraint for each user 𝑛) 

 Turning our attention to a link 𝑙 ∈ L, let Pl(t) be the total transmitted packets on that link at time t and 

sl  be the speed of data packets for link 𝑙, which remains fixed in time. We visualize this problem as a non-

cooperative game in which each user wants to minimize his/her cost. Let C(n), denote the cost borne by n
th

 

user.The following general assumptions on the cost function C(n) of each user n ∈ N will be imposed throughout 

the paper. 

 A1 :  𝐂(𝐧) =   𝐂(𝐏𝐥
𝐧,𝐥 𝐭)𝐭   

   It is a sum of cost of routed packets over each link 𝑙 ∈ L by user n ∈ N. 

 A2 :   Cost function is non- linear and non- negative function . 

 A3 : Cost function is strictly increasing with no. of packets i and time t.We shall consider the  

 cost of transmitting packets (i in number) at time t to be of the type  

      Cpi
= f t  . ∅(i, i−)      

 Additional assumptions concerning the time function f t  are 

 T1 :  Each user get m number of instances called discrete time slots 
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 T2 : Flow of packets is continuous which implies that there is no congestion in the system. 

 T3 : Users can transmit more than one packets on the link at the same time slot. They must  

 obey the capacity constraint (P2) and non-negative constraint (P1). 

 

III. ROUTING SCHEME AND COST FUNCTION 

 We describe routing scheme in a single link communication network for users. Users can route one or 

more packets on this link at time slot t.  (fig. 3.1) 

 

 fig. 3.1: Available space at  𝑡 = 𝑡1 

The expected cost C for the user n at tth  time slot depends on the number of packets i to be routed by 

user n and number of packets i−  by other users. 

 Ct
(n)

= f t . ∅(i, i−) =
 t ( ei−1)

𝜆𝑙+1− i+i− 
          when i + i− ≤  𝜆𝑙         Where t ∈ S. 

Therefore total cost for user n to send i packets through link 𝑙 is 

                                                            C(n) =   f t . ϕ i, i− it   

The time function f t  is the square root of time slot (or instance). 

 

IV. EXTENDED COST FUNCTION 

 The cost function is presented as link availability and time based formulation. The capacity constraint 

(P2) for each link 𝑙 is provided that the total number of packets by all users on the link 𝑙 should be less than or 

equal to link capacity. In Wardop’s first principle (1952) states that every user seeks minimum travel cost under 

their individual prospection. The following facts may arise:  

1. The game is considered as game with imperfect information and non-cooperative, therefore the complete 

knowledge of strategies of other players is impossible. In this game decisions are made simultaneously by 

all  

the users and hence without interaction it is very difficult to maintain the capacity constraint i.e.  i + i− ≤
 𝜆𝑙 . 

2. When  i + i− >  𝜆𝑙   i.e. number of packets shipped on the link exceeds link capacity then effect on the cost 

function is not defined. 

3. If number of packets exceeds the link capacity then there may be a possibility that some packets will be 

transmitted or none of them will be transmitted. 

4. Since decisions are made simultaneously by all the users, it is difficult to decide responsible user for 

violating capacity constraint as well as to decide who has to pay more? 

5. Will game be over or not for that responsible user? If game is over for the user then what about the packets 

of that user? 

 To consider all above points there is need to extend the cost function for user n to 

transmit i packets at the time slot t. Now the extended cost function is   
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Ct
(n)

= f t . ∅(i, i−) =

 
 
 

 
  t (ei − 1)

λl + 1 −  i + i− 
          when i + i− ≤ λl

 t (ei − 1)                              when i + i− > λl     
0                               when i = 0

− − − − − (1)  

 Also we consider that game will not be over until all the packets are transmitted or fixed number of 

time slot is over. And hence the efficiency of user is measured by the term performance which depends on total 

cost, number of packets and time slots. i.e. 

 Performance =
Total  Cost

 No .of  transmitted  packets   ∗( No .of  Time  Slots  )
=

C(n )

( it  ) ∗  m
=

  f t .ϕ i,i− it

  Pl
n  t t   ∗ m

 

Efficient user = mi n Performance user1, user2   

V. PENALTIES 

To avoid the violation of capacity constraint we introduce the term penalty for the users. Now we will 

discuss different types of penalties. 

5.1 Type A: Transmission failure for all user (when 𝑖 + 𝑖− > 𝜆𝑙) 

1. No packet will be transmitted at that time slot. 

2. Cost for user n can be expressed as   Ct
(n)

=  t. (ei − 1)  

Penalty constant x will give the number of packets which should be routed in the next time slot by the 

user with maximum packet in the transmission failure situation. i.e. 

x = max in , im − 1  

  

EXAMPLE:  Let the capacity of link l is 3 (i.e. λl = 3) and user u1 and u2 wants to transmit 4 packets in 4 time 

slots. Transmission may be fail at any time slot. In the Transmission failure situation penalty x = max in , im −

1 will be activated for the next time slot. The user is more efficient if he/she will transmit maximum packets 

(approximately 4 packets) in less number of time slots. The efficiency of user is measured by the term 

performance in the following games.  

Where Performance =
Total  Cost

 No .of  transmitted  packets   ∗( No .of  Time  Slots )
=  

  f t .ϕ i,i− it

  Pl
n  t t   ∗ m

 

Efficient user = min⁡(Performance user1, user2 ) 

GAME -1 

  User 1 User 2 Situation 

Time Slot 
U1(No. of 

packets) 
Cost(U1) 

U2 (No. of 

packets) 
Cost(U2)  

1 3 19.08554 2 6.389056 

No 

Transmission 

2 2 9.03549 2 9.03549 

No 

Transmission 

3 1 1.488076 1 1.488076 Transmitted 

4 1 3.436564 2 12.77811 Transmitted 

Total 2 33.04567 3 29.69073   
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performance  4.130708   2.474228   

Efficient user = User 2 

5.2 Type B: Transmission failure only for user with maximum packets (when 𝑖 + 𝑖− > 𝜆𝑙) 

 In type B, we consider that data packets will not be transmitted for the user with maximum number of 

packets, but other user’s data packets will be transmitted. 

1.   No packet will be transmitted for user with maximum packets at that time slot. 

  Pl
n t = max(Pl

n1 t , Pl
n2 t … … ) or  i = max⁡(i1, i2, i3 , … . . ) 

2. Cost for user n can be expressed as  

𝐶𝑡
(𝑛)

=  𝑡. (𝑒𝑖 − 1)  For any other user  

𝐶𝑡
(𝑛1)

=
 t (ei1−1)

λl +1− i1+i− 
         where i− no. of packets except i which is not being transmitted.

  

Therefore total cost for user n to send i packets through link l is C n =   f t . ϕ 𝑖, 𝑖− it  

Example : Consider the same example in which condition is applied according to type B 

Efficient user = mi n Performance user1, user2  = user 2 

5.3 Type C: Adjustment of packets by retransmission on the free link (when 𝐢 + 𝐢− > 𝛌𝐥) 

 We can consider a smart system which can retransmit data packets in another free link if number of 

packets exceeds the link capacity. This smart system maintains a record of status (st) of all links available in the 

network. 

 If a link 𝑙 has no free space then its status is set as st =1 otherwise st = 0. 

 When i + i− > λl  system search another link with status st = 0, and find i = max⁡(i1, i2 , i3, … . . ). It 

divides i into two parts i′ and i"such that i′ + i− = λl  and i" will be retransmitted in the link with st = 0. 

Game 1( Penalty Type –B) 

    

 

User 1     User 2     

Time Slot U1 Cost(U1) Situation U2 Cost(U2) Situation 

1 3 19.08553692 No Trans 2 3.194528049 Transmitted 

2 2 9.035489786 Transmitted 1 2.430017466 Transmitted 

3 2 11.06616978 Transmitted 1 2.976151429 Transmitted 

4 0 0   0 0   

Total 4 39.18719648   4 8.600696944   

performance   2.44919978     0.537543559   
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In this case cost for n
th

 user with  i data packets  

                                            𝐶𝑡
(𝑛)

=
 t(ei ′−1)

λl1 +1− i′+i− 
+ 2.

 t (ei"
−1)

λl2 +1− i"+i− 
  

VI. EXISTENCE OF NASH EQUILIBRIUM 

The following theorems establish the existence of Nash Equilibrium Point for the communication 

network. 

Theorem 1: In a communication network cost function 𝐶𝑡
(𝑛)

: 𝐼 × 𝐼 → 𝑅+ for each time slot, defined as (1) is 

convex.  

Proof :  To prove that cost function 𝐶𝑡
(𝑛)

 is convex we will use following theorem (by [8])  

“A function 𝒇(𝑿)  is convex if the Hessian matrix 𝐻 𝑿 =  
𝝏𝟐𝒇 𝑿 

𝝏𝒙𝒊𝝏𝒙𝒋
  is positive semidefinite. If 𝑯(𝑿) is positive 

definite, the function 𝒇(𝑿)  will be strictly convex.” 

 By equation (1) extended cost function can be expressed as  

𝐶𝑡
(𝑛)

= 𝑓 𝑡 . ∅(𝑖, 𝑖−) =

 
 
 

 
  𝑡 (𝑒𝑖 − 1)

𝜆𝑙 + 1 − (𝑖 + 𝑖−)
          𝑤ℎ𝑒𝑛 𝑖 + 𝑖− ≤  𝜆𝑙

 𝑡 (𝑒𝑖 − 1)                       𝑤ℎ𝑒𝑛 𝑖 + 𝑖− > 𝜆𝑙     
0                                𝑤ℎ𝑒𝑛 𝑖 = 0

  

For a fixed time slot, 𝑓 𝑡  is constant, therefore 𝐶𝑡
(𝑛)

 (for simplicity consider 𝐶𝑡
(𝑛)

= 𝐶) will be a function of two 

variables 𝑖 𝑎𝑛𝑑 𝑖−, and Hessian Matrix for C is 

𝐻 𝐶 =

 
 
 
 

𝜕2𝐶

𝜕𝑖2

𝜕2𝐶

𝜕𝑖𝜕𝑖−

𝜕2𝐶

𝜕𝑖𝜕𝑖−

𝜕2𝐶

𝜕𝑖−2  
 
 
 

 

Case I: When 𝑖 + 𝑖− ≤  𝜆𝑙  

𝐶 =
 𝑡(𝑒𝑖 − 1)

𝜆𝑙 + 1 − (𝑖 + 𝑖−)
 

Let  𝑡 = 𝐾′ 𝑎𝑛𝑑 𝜆𝑙 + 1 −  𝑖 + 𝑖− = 𝑀 

𝜕2𝐶

𝜕𝑖2 == 𝐾′  𝑒𝑖  
1

𝑀
+

2

𝑀2 +
2

𝑀3 −
2

𝑀3 ,      
𝜕2𝐶

𝜕𝑖−2 =
2𝐾′  𝑒 𝑖−1 

𝑀3 ,      
𝜕2𝐶

𝜕𝑖𝜕𝑖 − = 𝐾′  𝑒𝑖  
1

𝑀2 +
2

𝑀3 −
2

𝑀3  

Now Determinant of Hessian Matrix     𝐻(𝐶) =
𝐾′

2  𝑒 𝑖

𝑀4 [𝑒𝑖 − 2] > 0        (∵  𝑒1 = 2.71828)        

Case II: When 𝑖 + 𝑖− >  𝜆𝑙  

𝐶 =  𝑡 (𝑒𝑖 − 1) = 𝐾′(𝑒𝑖 − 1) 

                                                  
𝜕2𝐶

𝜕𝑖2 = 𝐾′𝑒𝑖   and  
𝜕2𝐶

𝜕𝑖−2 =
𝜕2𝐶

𝜕𝑖𝜕𝑖 − = 0 

  

 Therefore  𝐻(𝐶) = 0 which is non-negative. 

Case III: When 𝑖 = 0        𝐶 = 0 
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𝜕2𝐶

𝜕𝑖2 =
𝜕2𝐶

𝜕𝑖−2 =
𝜕2𝐶

𝜕𝑖𝜕𝑖 − = 0    

Therefore  𝐻(𝐶) = 0 which is non-negative. 

Since 𝐻(𝐶) is positive definite in all cases therefore the function 𝐶𝑡
(𝑛)

 will be strictly convex for each time slot. 

Theorem 2: Cost function 𝐶𝑡
(𝑛)

 is continuous in each time slot. 

Proof :  We will use 𝜀 − 𝛿 definition to prove that 𝐶𝑡
(𝑛)

: 𝐼 × 𝐼 → 𝑅+ is continuous in each time slot. 

 Let (𝑖𝑜 , 𝑖𝑜
−) is any point in the domain of 𝐶𝑡

(𝑛)
= 𝐶(𝑙𝑒𝑡) such that 

  𝑖 − 𝑖𝑜  < 𝛿 and  𝑖− − 𝑖𝑜
− < 𝛿′ where 𝛿 > 0, 𝛿′ > 0  

Now    𝐶(𝑖, 𝑖−) − 𝐶(𝑖𝑜 , 𝑖𝑜
−) =  

𝐾 ′(𝑒 𝑖−1)

𝜆𝑙+1−(𝑖+𝑖−)
−

𝐾 ′(𝑒 𝑖𝑜 −1)

𝜆𝑙+1−(𝑖𝑜 +𝑖𝑜
−)

  

≤  𝐾 ′(𝑒𝑖 − 1) − 𝐾 ′(𝑒𝑖𝑜 − 1) = 𝐾′ 𝑒𝑖 − 𝑒𝑖𝑜      

≤ 𝐾 ′𝑒𝜆𝑙  𝑖−𝑖𝑜  < 𝐾 ′𝑒𝜆𝑙 𝛿 < 𝜀  since 𝐾 ′ is positive integer. 

Where 𝜀 = 𝐾 ′𝑒𝜆𝑙 𝛿 > 0.  Hence C is continuous in each interval. 

 

VII. CONCLUSION 
 In this work, we attempted to present mathematical modeling of transmission in a communication 

network, using game theoretical concept with multiple chances available to users. The cost function involves the 

number of packets to be routed and time variables, in a non-linear fashion. Penalty to the users are also 

introduced for smoothing the game making the cost finite. Each user is given the flexibility to route their data at 

different time slots. The examples also demonstrate the cost function when packets send by the users through a 

link at a given shot exceeds the capacity of the link. Despite the results accomplished so far, there is space for 

more detailed investigation for multiuser; complex network with non-symmetrical links (i.e. links with different 

speed). Furthermore, different demands and different source and destination seem to play a critical role in this 

packet transmission that has not been investigated in detail yet.  
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