Measure space on Weak Structure

Mohammed M. Khalaf*, Ahmed Elmoasry*

Department of Mathematics, Faculty of Science, Al-Azahar University, Asuiat, Egypt Department of Mathematics, Aswan Faculty of Science, Aswan University, Aswan, Egypt

Abstract: Császár in [4] introduce a weak structure as generalization of general topology. The aim of this paper is to give basic concepts of the measure theory in weak structure. **Keywords:** weak structure, σ - algebra, σ - additive function, Measures

I. Notation and Preliminaries

In mathematical analysis. Measurement theory plays a vital role in the expression completely for some mathematical concepts. In our research, we introduced some of the concepts of measurement in a weak structure. And we study their properties and some applications it. So we shall denote by X nonempty set, by ω a weak structure [1] and by P(X) the set of all parts (i.e., subsets) of X, and by ϕ the empty set. For any subset λ of X we shall denote by λ^c its complements, i.e., $\lambda^c = \{x \in X | x \notin \lambda\}$. For any $\lambda, \mu \in P(X)$ we set $\lambda | \mu = \lambda \cap \mu^c$. Let (λ_n) be a sequence in P(X).

The following Demorgan identity holds $(\bigcup_{n=1}^{\infty} \lambda_n) = \bigcap_{n=1}^{\infty} \lambda_n^c$, we define $\lim_{n\to\infty} (\sqrt{\lambda_n}) = \bigcap_{n=1}^{\infty} (\bigcup_{m=n}^{\infty} \lambda_m), \lim_{n\to\infty} (\sqrt{\lambda_n}) = \bigcup_{n=1}^{\infty} (\bigcap_{m=n}^{\infty} \lambda_m)$. If $L = \lim_{n\to\infty} (\lambda_n) = \lim_{n\to\infty} (\lambda_n)$, then we set $L = \lim_{n\to\infty} (\lambda_n)$, and we say that (λ_n) converges to L. As easily checked, $\lim_{n\to\infty} (\sqrt{\lambda_n})$ (resp., $\lim_{n\to\infty} (\sqrt{\lambda_n})$ consists of those elements of X that belong to infinite elements of (λ_n) expect perhaps a finite number. Therefore, $\lim_{n\to\infty} (\sqrt{\lambda_n}) \subset \lim_{n\to\infty} (\sqrt{\lambda_n})$. And it easy also to check that, if (λ_n) is increasing $(\lambda_n \subset \lambda_{n+1}, n \in N)$, then $\lim_{n\to\infty} \lambda_n = \bigcup_{n=1}^{\infty} \lambda_n$ where, if (λ_n) is decreasing $(\lambda_n \supset \lambda_{n+1}, n \in N)$, then $\lim_{n\to\infty} \lambda_n = \bigcap_{m=n}^{\infty} \lambda_n$. In the first case we shall write $\lambda_n \uparrow L$, and in the second $\lambda_n \downarrow L$.

II. Algebra and σ - algebra on a weake structure ω

Let A be a nonempty subset of ω

Definition 1.1 A is said to be an algebra in ω if

a)
$$\phi \in A$$

b) $\lambda, \mu \in A \Rightarrow \lambda \cup \mu \in A$
c) $\lambda \in A \Rightarrow \lambda^{c} \in A$

Remark 1.1 It easy to see that, if A is an algebra and $\lambda, \mu \in A$, then $\lambda \cap \mu$ and $\lambda | \mu$ belong to A. Therfore, the symmetric difference $\lambda \Delta \mu = (\lambda | \mu) \cup (\mu | \lambda)$ also belong to A. Moreover, A is stable under finite union and intersection,

that is
$$\lambda_1, \dots, \lambda_n \in \mathsf{A} \Longrightarrow \begin{cases} \lambda_1 \cup \dots \cup \lambda_n \in \mathsf{A} \\ \lambda_1 \cap \dots \cap \lambda_n \in \mathsf{A} \end{cases}$$

Definition 1.2 An algebra A in ω is said to be a σ -algebra if, for any sequence (λ_n) of elements of A, we have $\bigcup_{n=1}^{\infty} \lambda_n \in A$. We note that, if A is σ -algebra and $(\lambda_n) \subset A$, then $\bigcap_{n=1}^{\infty} \lambda_n \in A$ owing to the De morgan identity.

Moreover, $\lim_{n\to\infty} (\Lambda_n) \in A$, $\lim_{n\to\infty} (\sqrt{\lambda_n}) \in A$.

The following examples explain the difference between algebras and $\,\sigma$ - algebras.

Example 1.1 Obviously, P(X) and $\mathcal{E} = \{\phi\}$ are σ -algebras in X. Morover, ω is the largest σ -algebras in X, and \mathcal{E} is the smallest.

Example 1.2 In [0,1), the class ρ consisting of ϕ , and of all finite unions

 $\beta = \bigcup_{i=1}^{n} [a_i, b_i]$ with $0 \le a_i \le b_i \le a_{i+1} \le 1$ is an algebra.

Example 1.3 In an infinite set X consider the class $\rho = \{\theta \in \omega | \theta \text{ is finite, or } \theta^c \text{ is finite } \}$. Then ρ is an algebra.

Example 1.4 In an uncountable set X consider the class $\rho = \{\theta \in \omega | \theta \text{ is countable, or } \theta^c \text{ is countable} \}$. Then ρ is a σ -algebra.

Definition 1.3 The intersection of all σ - algebras including $\tau \subseteq \omega$ is called the σ - algebra generated by τ , and will be denoted by $\sigma(\tau)$.

Example 1.5 Let E be a metric space. The σ -algebra generated by all open subsets of E is called the Borel σ -algebra of E, and denoted by B(E). 2. Measure

2.1 Additive and σ - additive functions Let $A \subset \omega$ be an algebra

Definition 2.1 Let $F: A \to 0, +\infty$] be such that $\mu(\phi) = 0$.

(1) We say that F is additive if, for any family $A_1, \ldots, A_n \in A$ of mutually disjoint sets, we have F(

$$\bigcup_{k=1}^{n} A_{k} = \sum_{k=1}^{n} \mathsf{F}(A_{k}).$$

(2) We say that F is σ -additive if, for any sequence $(A_n) \in A$ of mutually disjoint sets such that

$$\bigcup_{k=1}^{\infty} A_k \in \mathsf{A}, \text{ we have } \mathsf{F}(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} \mathsf{F}(A_k).$$

Remarke 2.1 Let $A \subset \omega$ be an algebra

(1) Any σ – additive function on A is also additive.

(2) If **F** is additive, $\lambda, \mu \in A$, and $\lambda \supset \mu$, then $F(\lambda) = F(\mu) + F(\lambda | \mu)$. Therefore, $F(\lambda) \ge F(\mu)$. (3) Let **F** is additive on **A**, and let $(A_n) \in \mathbf{A}$ be mutually disjoint sets such that $\bigcup_{k=1}^{\infty} A_k \in \mathbf{A}$. Then, **F** $(\bigcup_{k=1}^{\infty} A_k) \ge \sum_{k=1}^{n} \mathbf{F}(A_k)$ for all $n \in \mathbf{N}$.

Therefore, $\mathsf{F}(\bigcup_{k=1}^{\infty} A_k) \ge \sum_{k=1}^{\infty} \mathsf{F}(A_k)$

(4) Any σ – additive function F on A is also countably subadditive, that is, for any sequence $(A_n) \subset \mathsf{A}$ such that $\bigcup_{k=1}^{\infty} A_k \in \mathsf{A}$, $\mathsf{F}(\bigcup_{k=1}^{\infty} A_k) \leq \sum_{k=1}^{\infty} \mathsf{F}(A_k)$. (5) Inview of parts 3 and 4 an additive function is σ – additive if and only if it is countably subadditive.

Definition 2.2 A σ – additive function F on an algebra A $\subset \omega$ is said to be

(1) finite if $F(X) < \infty$,

(2) σ - finite if there exists a sequence sequence $(A_n) \subset A$ such that $\bigcup_{n=1}^{\infty} A_n = X$, and $F(A_n) < \infty$ for all $n \in N$.

Example 2.1 In X = N, consider the algebra $A = \{A \in \omega | A \text{ is finite, or } A^c \text{ finite}\}$. The function $F: A \to 0, \infty$] defined as $F(A) = \begin{cases} n(A) & \text{if } A \text{ finite} \\ \infty & \text{if } A^c \text{ finite} \end{cases}$ (where n(A)) stands for the number of elements of A is σ -additive. On the other hand.

The function $F: A \to 0, \infty$] defined as $F(A) = \begin{cases} \sum_{n \in A} \frac{1}{2^n} & \text{if } A \text{ finite} \\ \infty & \text{if } A^c \text{ finite} \end{cases}$ is additive

but not σ – additive.

Theorem 2.1 Let μ be additive on A. Then $(i) \Leftrightarrow (ii)$ where: (i) μ is σ -additive,

(ii) (A_n) and $A \subset A$, $A_n \uparrow A \Rightarrow \mu(A_n) \uparrow \mu(A)$.

Proof $(i) \Rightarrow (ii)$ Let $(A_n), A \subset A$, $A_n \uparrow A$. Then, $A = A_1 \cup \bigcup_{n=1}^{\infty} (A_{n+1} \setminus A_n)$, the above being disjoint union. Since μ is σ – additive, we deduce that $\mu(A) = \mu(A_1) + \sum_{n=1}^{\infty} (\mu(A_{n+1}) - \mu(A_n)) = \lim_{n \to \infty} \mu(A_n)$, and (ii) follows. $(ii) \Rightarrow (i)$ Let $(A_n) \subset A$ be a sequence of mutually disjoint sets such that $A = \bigcup_{k=1}^{\infty} A_k \in A$. Define $B_n = \bigcup_{k=1}^{\infty} A_k$. Then $B_n \uparrow A$. So, in view of $(ii), \ \mu(B_n) = \sum_{n=1}^{\infty} \mu(A_k) \uparrow \mu(A_n)$. This implies (i)

This implies (i)

Definition 2.2 let $\mathcal{E} = \{\phi\}$ are σ -algebras in X.

- (1) We say that the pair (X, \mathcal{E}) is a measurable space.
- (2) A σ -additive function $\mu: \varepsilon \to 0, +\infty$] is called a measure on (X, ε)
- (3) The triple (X, ε, μ) , where μ is a measure on a measurable space (X, ε) is called a measurable space (4) A measure μ is said to be complete if $A \in \varepsilon$, $B \subset A$, $\mu(A) = 0 \Longrightarrow$
- $B \in \mathcal{E}$ (and so $\mu(B) = 0$).

(5) A measure μ is said to be concentrated on a set $A \in \varepsilon$ if $\mu(A^c) = 0$. In this case we say that A is a support of μ

Example 2.2 Let X be a nonempty set and $x \in X$. Define for every $A \in P(X)$ $\delta_x(A) = \begin{cases} 1 & \text{if } x \in A \\ & & \text{. Then } \delta_x \text{ is a measure in } X. \\ 0 & \text{if } x \notin A \end{cases}$

References

- [1] A. Császár, Generalized open sets, Acta Math. Hungar 75 (1997), 65-87.
- [2] A. Császár, Generalized topology, generalized continuity, Acta Math. Hungar 96 (2002), 351-357.
- [3] A. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar 106 (2005), 53-66.
 [4] A. Császár, Weak structures, Acta Math. Hungar 131(1-2) (2011), 193-195.
- J. Umehara H. Maki and T Noiri, Every topological space is pret1/2, Mem. Fac. Sci.Kochi.Univ. Ser. A Math. 17 (1996), 33-42.