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Abstract: The aim of this research is to find a proof of the elusive side angle side (SAS) theorem of Euclid on 

the congruence of triangles using the cross section of a double cone. It is known that the SAS theorem has 

remained analytically unproved for over 2000 years. The method used for over 2000 years for proving this very 

important side angle side (SAS) theorem of Euclid has been the method of superposition whereby two triangles 

are tested for congruence by applying one to the other.  

 

I. Introduction 
At the end of his proof of this side angle side theorem by the method of superposition, P. Abbott in his 

„Teach Yourself Geometry‟ (1988), pointed out that modern mathematicians have raised objections to this as a 

method of proof.  He continued by stating, “However, no other satisfactory method of proving this theorem has 

been evolved.”  

This researcher decided to take up the challenge to find out why and, if possible devise a proof. P. 

Abbott had written books on geometry, Trigonometry, Algebra and Calculus and was for sometime the 

Honourable Secretary of the Teaching Committee of the Mathematical Association in UK.  

 

II. Brief History 
Side Angle Side (SAS)  

History has it that a great Greek geometer and wealthy merchant by the name of Thales of Miletus 

(Ca.640 to Ca.546BC) was asked to solve a surveying problem. He was asked to determine the distance between 

two points, A and B which were separated by a lake fig.(i). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to achieve this purpose, Thales took a third point C outside the lake from where he measured the 

distances CA and CB and, also, the angle ACB. Then he moved to a space outside the lake and constructed the 

triangle DEF such that FD = CA, FE = CB and angle DFE = angle ACB fig (ii). He then came to the conclusion 

that the triangles ABC, DEF were equal in all respects and therefore that AB = DE.  

His conclusion followed from the fact that superimposing ∆DFE on ∆ABC would give exact fit of the two 

triangles. This method of using the equality of a pair of sides and the included angles to show that two triangles 

were congruent became known as SAS (side angle side).  

 

Pythagoras Theorem  

A well known and significant theorem in mathematics is known as the Pythagoras Theorem which is 

attributed to a Greek who existed about the same period as Thales. The theorem of Pythagoras is said to be the 

most important geometrical discovery of the ancient Greek world. The theorem states that „the square on the 

hypotenuse of a right-angled triangle is equal to the sum of the squares on the other two sides‟.  

C B 

A 

F E 

D 

Fig (i) Fig (ii) 



A Proof of Euclid’s SAS (side angle side) Theorem of Congruence of Triangles   via the Cross Section 

www.iosrjournals.org                                                     27 | Page 

The method of proof of this theorem by Pythagoras is not generally known. But 200 years after Pythagoras, 

another great Greek geometer by the name of Euclid (Ca. 300 BC) gave an analytical proof of Pythagoras 

theorem by repeatedly using SAS theorem which he propounded as a theorem.  Euclid who propounded the SAS 

(side angle side) method earlier used by Thales as a theorem also repeatedly used it in his proof that the base 

angles of an isosceles triangle are equal. It is said that this was the first „difficult‟ theorem in Euclid. The 

difficulty follows from the fact that pupils generally found it difficult to follow his method of proof due to the 

form of the figure used by Euclid. Hence the figure is referred to as pons asinorum or the bridge of fools. Some 

authors call it the Bridge of Assess. See fig (iii). 

The proof using the figure entails juggling of congruent triangles. Euclid used the SAS theorem to 

prove many other theorems  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in geometry contained in his famous books known as Euclid‟s Elements. However of concern to us here is that 

this important SAS theorem was not proved analytically by Euclid. He proved it by the method of superposition, 

a method that modern mathematicians now question. Indeed it is believed by modern mathematicians that there 

are some hidden assumptions in some of the Greek proofs. Finding or devising an analytical proof of this first 

theorem of congruence, the SAS will accord it legitimacy and fill a gap in the annals of mathematics.  

This researcher decided to take up the challenge of finding the secret, if it is hidden, and/or devise a satisfactory 

proof of the theorem.  

 

The Search for a Proof 

Euclid was believed to be the founder of the Alexandrian Mathematical School (Cosmopolitan 

University of Alexandria). He systematized Greek geometry and is the most famous of the masters of geometry. 

This researcher believes that since Euclid propounded the SAS method of congruence of two triangles as a 

theorem and not as an axiom, therefore there must be an analytical proof.  

For over 2000 years the SAS theorem was proved by the method of superposition to establish the 

congruence of two triangles by superimposing one triangle on the other. The search for an analytical proof 

involved digging deep into past literature on the beginnings of geometry including the masterpiece, Euclid‟s 

Elements. Modern books were found to be virtually unhelpful as mere definitions were used in defining what 

constituted congruence of two triangles without giving any analytical proofs, a procedure so important for 

having deeper and clearer understanding of logical procedures and encouraging mastery of any subject.  

However, the search into the past yielded an important and probably little noticed fact, an axiom long laid down 

by the Greeks.  It is the axiom of movement of geometric figures.  

Axiom: Any geometric figure may be moved from one place to another without changing its size or shape.  

This fact that it was permissible to move a geometric figure from one place to another appeared to explain why 

the method of superposition had been used over the years to prove the SAS theorem. Armed with it, the 

researcher decided to carry out some experiments by juggling with a pair of C-Caution used when a vehicle 

breaks down for warning on coming motorists.  

 

The Experiment  

A pair of C-Caution (as it is known in Nigeria) was acquired. A pair of C-caution is a pair of identical 

triangles with reflective faces that could be made to stand, one in front and the other at the back of a broken 

down vehicle, as a warning to on coming motorists.  

Each of the two triangles was marked on both sides with the data of the theorem, fig (iii). 
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The two triangles now represent (physically) the triangles given on paper. The experiment started with the usual 

method of superimposing one triangle on the other. Clearly what is in doubt is whether.  

BC = EF. 

Therefore the theorem would be proved if it can be shown that:   BC = EF. 

From the researchers knowledge and experience it was felt that there must be a way to link the two sides BC and 

EF in order to formulate a model (perhaps in form of an equation) that could be manipulated to show that  

BC = EF.  

It was clear that there was a need to move away from just superimposing one triangle on the other and stopping 

there. Taking advantage of the axiom of movement of geometric figures quoted earlier, this researcher tried 

moving around the two triangles, always starting with superimposing one on the other. One day, after starting by 

superimposing triangle DEF on triangle ABC, the researcher flipped triangle DEF over triangle ABC and 

obtained what is in fig (iv). 

This was good because, < A = < D (given) and since they are vertically opposite angles, therefore BF, EC are 

straight lines. This meant that BC, EF have been linked by straight lines BF, EC.  But the pattern of the figure 

did not yield a method of proof to show that BC = EF.  

 

 

 

 

 

 

 

 

 

 

 

 

However, the figure had yielded a definite way of linking the contending sides BC, EF.  After some weeks of 

studying the pattern, it became clear to the researcher that appeal to higher mathematics may not be the way out. 

The juggling experiment continued until one faithful day while the researcher was sitting alone in his sitting 

room and looking with much concentration on the superimposed triangles, ∆DEF on ∆ABC he rotated ∆DEF by 

180
o
 over A and was struck by the pattern of the figure that emerged, fig(v). 

Here again because < A = < D and are vertically opposite angles, therefore BE, CF are straight lines. In 

addition, the pairs of corresponding sides have been aligned. Indeed the coincident point of A and D was now a 

point of bisection of BE and CF. It was immediately clear to the researcher that this was where all the efforts of 

a couple of months was leading. For, by joining BF, EC, the resulting quadrilateral becomes a parallelogram by 

a geometric theorem (if the diagonals of a quadrilateral bisect each other, the quadrilateral is a parallelogram) 

and hence BC = EF. The researcher however did not follow that line of proof. Looking at this rather mysterious 

figure, fig(v), closely showed that the contraption it represents is the cross section of a double cone. This is the 

source of the title of this research. 

Clearly what the researcher had succeeded in doing was that he had compounded the two triangles to yield the 

cross section of a double cone. It turned out that this was the “hidden” secret of the proof. 
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The Proof 

For the proof of the side angle side theorem (SAS) we need:  

(1) The Axiom of Movement  

(2) The Mid-Point theorem  

1. Axiom of Movement  

Any geometric figure may be moved from one place to another without changing its size or shape.  

2. Mid-Point Theorem 

The straight line joining the middle points of two sides of a triangle is parallel to the third side and equal to half 

of it.  

 

Theorem 

Two triangles are congruent if two sides and the included angle of one triangle are respectively equal to two 

sides and the included angle of the other.  

 

 

 

 

 

  

 

 

 

 

 

 

 

Given. ABC, DEF are triangles such that.  

 AB = DE 

 AC = DF 

       < BAC = < EDF 

To prove. ∆s ABC, DEF are congruent  

Construction: By the axiom permitting motion, apply ∆DEF to ∆ABC so that D falls on A and E falls on B, and 

EF along BC. Rotate ∆DEF about A by 180
o
 to form the cross section of the double cone in fig.(ii). Join EC and, 

from the coincident point of A and D of the cross section, draw a line HK to bisect EC at K, fig (iii). We write H 

= (A;D) so that H refers to A, or to D if we refer to ∆ABC, or ∆DEF. 

The theorem will be proved if we can show that BC = EF.  

Proof: < BHC = < EHF (given) 

But these are vertically opposite angles 

Lines BE, CF are straight lines  

In ∆BCE,  BH = EH (given) 

  CK = EK (construction)  

 HK bisects BE and EC. 

  In particular, HK = ½ BC (Mid-Point Theorem) 

Similarly in ∆EFC, HK bisects CF and CE (Construction)  

 HK = ½ EF (Mid-Point Theorem) 

 BC = EF (Things equal to the same thing are equal to each other)  

 ∆s ABC, DEF are congruent        Q.E.D 
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III. Discussion 
From informal discussions with people on why this theorem had remained unproved for over two 

thousand years the researcher gleaned that many mathematicians must have tried to find a proof but made no 

headway and had to abandon it. Even Euclid himself who classified it as a theorem did not give an analytical 

proof of it. Thales who first used it to solve a surveying problem did not prove it even though he sacrificed a 

bull to the Gods for proving that the angle inscribed in a semi-circle is 90
o
. Some opinion has it that possibly 

because the SAS was the first theorem of congruence of triangles, there was no theorem before it with which to 

prove it. History has it that the forceful personality, mystic, philosopher and mathematician by the name of 

Pythagoras of the famous Pythagoras Theorem had banned his followers from divulging mathematical secrets. 

Could the proof of SAS have been caught up in that ban?  All these did not discourage this researcher 

particularly since it was of utmost importance that students should be well acquainted with analytical methods 

of proof. From the beginning of this research work the researcher was very clear, profiting from the 

superposition method and the data of the theorem, that what was in doubt was whether the remaining pair of 

sides of the two triangles were equal. Hence the first step was to find how to link the two corresponding sides of 

the triangles. This was made possible by the axiom of movement stated earlier. 

It enabled the movement and juggling of the two triangles leading to the first figure, fig(iv) where the 

two sides were linked. The figure could however not work for the proof of the theorem because, as it turned out, 

the pairs of the given corresponding sides were not aligned. However, the second figure, fig(v) obtained by 

rotating ∆DEF about A by 180
o
 had the corresponding sides aligned.  

It must be noted that the „key‟ to our method of proof of the theorem is the axiom of movement while 

the „secret‟ of the proof is the contraption of the two triangles described here as the cross section of a double 

cone. These two facts, the „key‟ and the „secret‟ it unlocked may have eluded past and even modern 

mathematicians. It must be remarked that the requirement that the lines BE, CF or the linking lines BE and CF 

be straight lines is rigid. Hence the need to ensure that only equal angles were paired at the coincident point H of 

A and D. The rotation by 180
o
 ensured that corresponding pairs of equal sides were aligned.  

 

IV. Conclusion and Recommendation 
This research has shown that the elusive SAS (side angle side) theorem of congruence of triangles can 

be proved analytically. Indeed same goes for the other congruence theorems of triangles by applying, mutatis 

mutandis, the data for each theorem on the cross section of a double cone with the appropriate construction. This 

researcher has already succeeded in doing so. This research has also given the world of mathematics an entirely 

new and more uniform procedure for proving the congruence theorem of triangles using the cross section of a 

double cone. Now that the congruence theorems have been proved, it is strongly recommended that the method 

of superposition be relegated to the primary school level, while the secondary and higher levels of education 

should ensure and emphasize that the analytical method of proof is adopted. According to I. Stewart and D. Tall 

in Foundations of Mathematics (1977), “To show a student the finished edifice, without the scaffolding required 

for its construction, is to deprive him of the very facilities which are essential if he is to construct mathematical 

ideas of his own”. 

The analytical procedure ensures better understanding of the theorems and prepares the students for 

higher studies. New books at the secondary and tertiary levels should adopt the analytical method of proof.  

 

P.S  

A personal note for the records  

When this researcher for the first time concluded the proof of the SAS theorem, a cracking sound rang 

through the right side of his head like something forced through a barrier causing the researcher to jump up to 

his feet with a start. He immediately felt a sharp headache on the left side of his forehead which forced him to 

go for paracetamol tablets which he swallowed with water from his nearby water dispenser. As he was all alone 

in the flat he decided to go outside his house to be sure he was alright. While outside he continuously but 

involuntarily nodded his head indicating that indeed he had proved the theorem. Since that day an ache he 

usually experienced as if a kink was disturbing the flow of fluid on the right side of his head disappeared. Hence 

the description of the hidden figure as mysterious.  
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Theorem 

Two triangles are congruent if two angles and a side of one are respectively equal to two angles and aside of the 

other.  

 

    

 

 

                                                      

 

 

 

 

 

 

 

Given. ∆s ABC, DEF are such that  

 < ABC = < DEF  

 < BAC = < EDF 

    AB   =   DE 

 

To prove. ∆s ABC, DEF are congruent  

 

Construction. By axiom permitting motion, apply ∆DEF to ∆ABC so that D falls on A and E falls on B and EF 

along BC. Rotate ∆DEF about A by 180
o
. From the coincident point H of A and D of the cross section of the 

double cone so formed, draw HK equal and parallel to BC. Join EK, CK, see fig (ii). H = (A;D) by our 

convention. 

Proof; < BHC = < EHF (given), but these are vertically opposite <s. 

BE, CF are straight lines  

< HBC = < HEF (given). But these are alternate <s.  

 BC//EF, but BC//HK (construction)  

 HK//EF 

By construction HBCK is a parm (pair of opposite Sides equal and //) 

 HB = CK and HB//CK i.e. EB//CK. But HB = HE (given) 

HE = CK  

HCKE is a parm (pair of opposite sides equal and //) 

 HC//EK i.e. FC//EK.  But HK//EF (proved)  

 HKEF is a parm  

 HK = EF, but HK = BC (construction) 

 BC = EF 

In ∆s ABC, DEF  

 BC = EF (proved) 

 AB = DE (given) 

 < ABC = < DEF (given)  

 ∆s ABC, DEF are congruent SAS  

 

Q.E.D 
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Theorem 
Two right-angled triangles are congruent if the hypotenuse and a side of one triangle are respectively equal to 

the hypotenuse and a side of the other.   

 

 

 

 

 

     

 

 

 

 

 

 

 

Given. ∆s ABC, DEF are right-angled  

at A and D  

Hypotenuse BC = Hypotenuse EF  

  AB = DE  

To prove. ∆s ABC, DEF are congruent  

Construction. By axiom permitting motion, apply ∆DEF to ∆ABC so that D falls on A and E falls on B, and DF 

along AC. Rotate ∆DEF about A by 180
o
. Join EC as shown in fig (ii), label the coincident point A,D of the 

cross section of the double cone so formed as H = (A;D) so that H refers to A, or to D if we refer to ∆ABC, or 

∆DEF. Join EC.  

Proof. In ∆s BHC, EHF,  

< BHC = < EHF = 1rt. < (given) 

But these are vertically opposite angles  

 BE, CF are straight lines  

 < EHC = 1rt. <  

In ∆s  HBC, HEC  

HB = HE (given) 

HC is common  

< BHC = < EHC (rt.<s) 

 ∆s HBC, HEC are congruent (SAS) 

In particular, < HCB = < HCE and BC = EC  

But BC = EF (given) 

 EC = EF  

 ∆EFC is isosceles  

 <HCE = < HFE (base <s of isos ∆) 

But < HCE = < HCB (proved)  

 < HCB = < HFE, i.e. < ACB = < DFE (H = A; D)  

In ∆s ABC, DEF  

 BC = EF (given) 

 < BAC = < EDF (given) 

 < ACB = < DFE (proved)  

∆s ABC, DEF are congruent (AAS) 

 

 

 

 

 

Q.E.D 

 

 

 

 

 

 

A C 

B 

D 

E 

F 
F E 

C B 
Fig. (i) 

H 

Fig (ii) 



A Proof of Euclid’s SAS (side angle side) Theorem of Congruence of Triangles   via the Cross Section 

www.iosrjournals.org                                                     33 | Page 

Theorem 
 

If in two triangles the three sides of the one are respectively equal to the three sides of the other, the triangles are 

congruent. 

 

  

 

 

 

 

 

 

 

 

Given. ABC, DEF are ∆s in which  

AB = DE, BC = EF, AC = DF 

To prove. The ∆s ABC, DEF are congruent  

Construction. At H extend BH, CH to E
1
, F

1
 such that  

HE
1
 = DE, HF

1
 = DF. Join E

1
F

1
. Also join E

1
C. From H draw HK to bisect E

1
C at K, fig (ii).  

Proof. In ∆BE
1
C, HK bisects BE

1
 and E

1
C (construction) 

 HK//BC and HK = ½ BC (Mid-Point Theorem). 

Similarly in ∆E
1
F

1
C, HK bisects E

1
C and CF

1
 

  HK//E
1
F

1
 and HK = ½ E

1
F

1
 

Since HK//BC and HK//E
1
F

1
 BC//E

1
F

1
 

 < E
1
BC = < BE

1
F

1
 (alternative <s) i.e. < HBC = < HE

1
F

1
 

Also HK = ½ BC and HK = ½ E
1
F

1
 (proved)  

 BC = E
1
F

1
.  But BC = EF (given)  

 E
1
F

1
 = EF, i.e. E

1
 coincides with E and F

1
 coincides with F  

 < B = < E 

In ∆s  ABC, DEF  

 AB = DE (given) 

 BC = EF (given) 

 < ABC = < DEF (proved)  

 ∆s ABC, DEF are congruent, SAS.  

 

                            Q.E.D 
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