
IOSR Journal of Mathematics (IOSR-JM) 

e-ISSN: 2278-5728, p-ISSN:2319-765X. Volume 10, Issue 2 Ver. VI (Mar-Apr. 2014), PP 08-14 
www.iosrjournals.org 

www.iosrjournals.org 8 | Page 

 

System of Variational-like Inequalities 
 

Khushbu
1
, Zubair khan

2 

1(Department of Mathematics, Integral University, Lucknow) 
2(Department of Mathematics, Integral University, Lucknow) 

 

Abstract: In this paper we consider variational-like inequality problem over product of sets, which is 

equivalent to the system of variational-like inequalities. New concept of 𝜂-relative monotonicity is introduced 

for solving variational-like inequality problem over product of sets. As an application of our results, we prove 
the existence of a coincidence point of two families of nonlinear operators. 

Keywords: coincidence point, monotonicity, operator, system of variational-like inequalities, solution. 

 

I. Introduction 
Variational inequalities proved to be a very useful tool for investigation and solutions of various 

equilibrium-type problems arising in Operations Research, Economics, Mathematical Physics and other fields, 

see for example, [1,2, 3,4,5,6,7,8, 9].It is well known that most of such problems arising in game theory, 

transportation and network economics have a decomposable structure, i.e. , they can be formulated asvariational 

inequalities over Cartesian product sets; see e.g. Nagurney [8] and Ferris and Pang [4].  In 1980, Aubin [2] has 

pointed out that the Nash equilibrium problem [10] for differentiable functions can be formulated in the form of 
a variational inequality problem defined over the product of sets (for short, VIPPS). Further Pang [9] showed 

that not only Nash equilibrium problem but also various equilibrium-type problems, like, traffic equilibrium, 

spatial equilibrium, and general equilibrium programming problems from Operations Research, Economics, 

Game theory, Mathematical Physics, and other areas, can also be uniformly modeled as a VIPPS. Later, it is 

found that VIPPS is equivalent to the problem of system of variational inequalities (for short, SVI),see for 

example, [11] and references therein. In 1999, Ansari and Yao [1] used a fixed point theorem for a family of 

multivalued maps to prove the existence of a solution of SVI. Since then several authors, see for instance, [1, 11, 

12], studied the existence theory of various classes of systems of variational-like inequalities by exploiting fixed 

point theorems and maximal element theorems for a family of multivalued maps. In the recent past, system of 

variational-like inequalities emerged as tools to prove the existence of a solution of Nash equilibrium problem 

[10] for differentiable and non-differentiable functions, respectively. See for example, [1, 12] and references 
therein. 

Inspired by the work of Luc [13], we introduce the concept of 𝜂-relatively quasimonotonicity and 𝜂-

densely relatively pseudomonotonicity which are much weaker than the relatively pseudomonotonicity 

considered by Konnov [11]. We also define the 𝜂-relatively B-pseudomonotonicity and 𝜂-relatively 

demimonotonicity which extend in a natural way the well knownpseudomonotonicity in the sense of Brezis [14] 

(see also [15]). We establish some existence results for a solution of variational-like inequality problem over 

product of sets under these monotonicities. As an application of our results, we derive the existence of a 

coincidence point of two families of nonlinear operators. 

 

II. Formulations And Preliminaries 
Let  𝐼 be a finite index set, that is, 𝐼 =  1,2, … , 𝑛 . For each  𝑖 ∈ 𝐼 , let  𝑋𝑖  be a Hausdroff topological 

vector space with its dual 𝑋𝑖
∗,  𝐾𝑖  a nonempty convex subset of   𝑋𝑖  ,  𝐾 =  𝐾𝑖𝑖∈𝐼  ,  𝑋 =  𝑋𝑖𝑖∈𝐼  , and  𝑋∗ =

 𝑋𝑖
∗

𝑖∈𝐼 . For each  𝑖 ∈ 𝐼 , when  𝑋𝑖  is a normed space, its norm is denoted by   .  𝑖  and the product norm on  

𝑋will be denoted by  .  . We denote by   . , .    the pairing between  𝑋𝑖
∗ and   𝑋𝑖  . For each  𝑥 ∈ 𝑋  , we write   

𝑥 =  𝑥𝑖 𝑖∈𝐼 , where 𝑥𝑖 ∈ 𝑋𝑖 , that is, for each  𝑥 ∈ 𝑋,  𝑥𝑖 ∈ 𝑋𝑖  denotes the  𝑖th component of  𝑥. For each  𝑖 ∈ 𝐼,  

let 𝑓𝑖 ∶ 𝐾 → 𝑋𝑖
∗  be a nonlinear operator and  𝜂𝑖 ∶ 𝐾𝑖 × 𝐾𝑖 → 𝑋𝑖  be a bifunction.We consider the following 

problem of system of variational-like inequalities (SVLI) which is the model of various equilibrium-type 

problems from operations research, economics, game theory, mathematical physics and other areas, see for 

example [1, 4, 8, 9] and references therein:  

(SVLI)        Find  𝑥 ∈ 𝐾  such that for each 𝑖 ∈ 𝐼,  𝑓𝑖 𝑥  , 𝜂𝑖 𝑦𝑖 , 𝑥 𝑖  ≥ 0    for all   𝑦𝑖 ∈ 𝐾𝑖  

It is easy to that (SVLI) is equivalent to the following variational-like inequality problem overproduct 

of sets (VLIPPS): 

(VLIPPS)   Find 𝑥 ∈ 𝐾  such that    𝑓𝑖 𝑥  , 𝜂𝑖 𝑦𝑖 ,𝑥 𝑖  ≥ 0𝑖∈𝐼  for all  𝑦𝑖 ∈ 𝐾𝑖  ,   𝑖 ∈ 𝐼(1) 

If  𝜂𝑖 𝑦𝑖 ,𝑥 𝑖 = 𝑦𝑖 − 𝑥 𝑖 , then (SVLI) and (VLIPPS) reduce to the following problems of (SVI) and 
(VIPPS) respectively, introduced and studied by Ansari and Zubair [16]: 
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(SVI)        Find  𝑥 ∈ 𝐾  such that for each 𝑖 ∈ 𝐼,  𝑓𝑖 𝑥  , 𝑦𝑖 − 𝑥 𝑖 ≥ 0    for all   𝑦𝑖 ∈ 𝐾𝑖  

(VIPPS)    Find 𝑥 ∈ 𝐾  such that    𝑓𝑖 𝑥  , 𝑦𝑖 − 𝑥 𝑖 ≥ 0𝑖∈𝐼  for all  𝑦𝑖 ∈ 𝐾𝑖  ,   𝑖 ∈ 𝐼 

Of course, if we define the mapping   𝑓 ∶ 𝐾 → 𝑋∗  and   𝜂 ∶ 𝐾 × 𝐾 → 𝑋  respectively by: 

𝑓 𝑥 =  𝑓𝑖 𝑥  
𝑖∈𝐼

and𝜂 𝑦, 𝑥 =  𝜂𝑖 𝑦𝑖 ,𝑥𝑖  𝑖∈𝐼
               (2) 

then (VLIPPS) can be equivalently rewritten as the usual variational-like inequality problem of finding  𝑥 ∈ 𝐾  

such that: 
 𝑓 𝑥  , 𝜂 𝑦, 𝑥   ≥ 0for all 𝑦 ∈ 𝐾(3) 

Konnov [11] introduced the concept of relatively pseudomonotonicity and strongly relatively 

pseudomonotonicity to prove some existence results for a solution of (VIPPS) in the setting of Banach spaces. 

Konnov [17] also studied combined relaxation method for solving (VIPPS). He essentially exploited the 

decomposable structure of (3) and simplified their implementation. He also noted that the method cannot be 

extended directly due to its two-level structure and a binding condition in its line search procedure. 

For every nonempty set 𝐴, we denote by 2𝐴  (respectively,𝑭(𝐴)) the family of all subsets (respectively, 

finite subsets) of 𝐴. If 𝐴 is a nonempty subset of a vector space, then co𝐴 denotes the convex hull of 𝐴. 

 We shall use the following particular form of Fan-KKM lemma (see [18]) 

Theorem 2.1 Let  𝐾 be a compact and convex subset of a Hausdroff topological vector space𝑋 and 𝐾0 ⊆ 𝐾be 

nonempty. Assume that 𝐺: 𝐾0 → 2𝐾  \ ∅  be a multivalued satisfying the following conditions: 

(i) For each 𝑥 ∈ 𝐾0, 𝐺 𝑥  is closed; 

(ii) For every finite set  𝑥1 , … , 𝑥𝑚   of 𝐾0 one has co 𝑥1 , … , 𝑥𝑚  ⊆  𝐺 𝑥𝑘 𝑚
𝑘=1  

Then  𝐺 𝑥 ≠ ∅𝑥∈𝐾0 . 

Now we mention the following generalization of Browder fixed point theorem. 

Theorem 2.2 Let  𝐾 be a nonempty and convex subset of a topological vector space (not necessarily Hausdroff)  

𝑋and𝑇 ∶ 𝐾 → 2𝐾  a multivalued map. Assume that the following conditions hold: 

(i) For all 𝑥 ∈ 𝐾, 𝑇 𝑥  is convex 

(ii) For each  𝐴 ∈ 𝑭 𝐾  and for all 𝑦 ∈ 𝑐𝑜𝐴, 𝑇−1 𝑦 ∩ 𝑐𝑜𝐴 is open in 𝑐𝑜𝐴. 

(iii) For each 𝐴 ∈ 𝑭 𝐾  and all 𝑥, 𝑦 ∈ 𝑐𝑜𝐴 and every net 𝑥𝛼 𝛼∈Γ in  𝐾 converging to 𝑥 such that 

𝑡𝑦 +  1 − 𝑡 𝑥 ∉ 𝑇 𝑥𝛼  for all 𝛼 ∈ Γ  and for all 𝑡 ∈  0,1 , we have 𝑦 ∉ 𝑇 𝑥 . 

(iv) There exists a nonempty, closed and compact subset𝐷 of  𝐾 and anelement  𝑦 ∈ 𝐷  such that 

𝑦 ∈ 𝑇 𝑥  for all 𝑥 ∈ 𝐾\𝐷. 

(v) For all 𝑥 ∈ 𝐷, 𝑇 𝑥  is nonempty. 

Then there exists 𝑥 ∈ 𝐾 such that 𝑥 ∈ 𝑇 𝑥  . 
 

III. Existence Results 
Definition 3.1 Let  𝜂𝑖 ∶ 𝐾𝑖 × 𝐾𝑖 → 𝑋𝑖   be a bifunction. The map  𝑓 ∶ 𝐾 → 𝑋∗  defined by (2) is said to be: 

(i) 𝜂-relative pseudomonotone at𝑦 ∈ 𝐾 [11] if for all  𝑥 ∈ 𝐾  we have: 

  𝑓𝑖 𝑥 , 𝜂𝑖 𝑦𝑖 ,𝑥𝑖  ≥ 0  ⇒
𝑖∈𝐼

  𝑓𝑖 𝑦 , 𝜂𝑖 𝑦𝑖 , 𝑥𝑖  ≥ 0
𝑖∈𝐼

 

and𝜂-relative strictly pseudomonotoneat𝑦 ∈ 𝐾 if the second inequality is strict for all 𝑥 ≠ 𝑦; 

(ii) 𝜂-relative quasimonotoneat 𝑦 ∈ 𝐾  if for all  𝑥 ∈ 𝐾  we have: 

  𝑓𝑖 𝑥 , 𝜂𝑖 𝑦𝑖 ,𝑥𝑖  > 0  ⇒
𝑖∈𝐼

  𝑓𝑖 𝑦 , 𝜂𝑖 𝑦𝑖 , 𝑥𝑖  ≥ 0
𝑖∈𝐼

 

If  𝑓is 𝜂-relative pseudomonotone (respectively, 𝜂-relative strictly pseudomonotone and 𝜂-relative 

quasimonotone) at each  𝑦 ∈ 𝐾, then we say that it is  𝜂-relative pseudomonotone (respectively, 𝜂-relative 

strictly pseudomonotone and 𝜂-relative quasimonotone) on 𝐾. 

Definition 3.2 The map𝑓 ∶ 𝐾 → 𝑋∗  defined by (2) is said to be 𝜂-hemicontinuous if for all 𝑥, 𝑦 ∈ 𝐾and 

𝜆 ∈  0,1 , the mapping 𝜆 ⟼  𝑓 𝑥 + 𝜆 𝑦 − 𝑥  , 𝜂 𝑦, 𝑥   is continuous. 

Lemma 3.1 Let𝑓 , defined by (2), be 𝜂-hemicontinuous and𝜂-relative quasimonotone on 𝐾. Then for every  

𝑥, 𝑦 ∈ 𝐾with  𝑓𝑖 𝑥 , 𝜂𝑖 𝑦𝑖 ,𝑥𝑖  ≥ 0  𝑖∈𝐼 , we have either: 
  𝑓𝑖 𝑦 , 𝜂𝑖 𝑦𝑖 ,𝑥𝑖  ≥ 0𝑖∈𝐼 or  𝑓𝑖 𝑥 , 𝜂𝑖 𝑧𝑖 , 𝑥𝑖  ≤ 0  𝑖∈𝐼 for all  𝑧𝑖 ∈ 𝐾𝑖,  𝑖 ∈ 𝐼  . 

ProofIt is sufficient to show that if for all 𝑧𝑖 ∈ 𝐾𝑖,𝑖 ∈ 𝐼: 

  𝑓𝑖 𝑥 , 𝜂𝑖 𝑧𝑖 , 𝑥𝑖  > 0  
𝑖∈𝐼

 

then we have: 

  𝑓𝑖 𝑦 , 𝜂𝑖 𝑦𝑖 ,𝑥𝑖  ≥ 0
𝑖∈𝐼

 

Let us set  𝑦𝑡 = 𝑡𝑧 +  1 − 𝑡 𝑦  for  0 < 𝑡 ≤ 1 . Then obviously,  𝑦𝑡 ∈ 𝐾  and: 
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  𝑓𝑖 𝑥 , 𝜂𝑖 𝑦𝑖
𝑡 , 𝑥𝑖  > 0  

𝑖∈𝐼

 

By  𝜂-relative quasimonotonicity of  𝑓, we get: 

  𝑓𝑖 𝑦
𝑡 , 𝜂𝑖 𝑦𝑖

𝑡 ,𝑥𝑖  ≥ 0
𝑖∈𝐼

 

Now let 𝑡 → 0. Since  𝑦𝑡 → 𝑦 along a line segment, and by 𝜂-hemicontinuity of 𝑓, we have: 

  𝑓𝑖 𝑦 , 𝜂𝑖 𝑦𝑖 ,𝑥𝑖  ≥ 0
𝑖∈𝐼

 

This completes the proof. 

Definition 3.3 [13] A subset  𝐾0 of  𝐾 is said to be segment-dense in  𝐾  if for all  𝑥 ∈ 𝐾 , there can be found  

𝑥0 ∈ 𝐾0 such that  𝑥is a cluster point of the set  𝑥, 𝑥0 ∩ 𝐾0 , where   𝑥, 𝑥0  denotes the line segment joining  𝑥 

and  𝑥0 including end points . 

Definition3.4 [13] For each  𝑖 ∈ 𝐼  let  𝐾𝑖   be a nonempty convex subset of   𝑋𝑖 . For each   𝑖 ∈ 𝐼, we set: 

𝐾𝑖
⊥ ∶=  𝜉𝑖 ∈ 𝑋𝑖

∗ ∶   𝜉𝑖 , 𝜂𝑖 𝑦𝑖 ,𝑥𝑖  = 0 for all  𝑥𝑖 , 𝑦𝑖 ∈ 𝐾𝑖  

and call it the 𝜂-orthogonal complement of  𝐾𝑖 . Then: 

𝐾⊥ ∶=  𝐾𝑖
⊥ =   𝜉𝑖 ∈ 𝑋𝑖

∗ ∶   𝜉𝑖 , 𝜂𝑖 𝑦𝑖 ,𝑥𝑖  = 0 𝑖∈𝐼𝑖∈𝐼 for all  𝑥𝑖 , 𝑦𝑖 ∈ 𝐾𝑖  

=  𝜉 ∶=  𝜉𝑖 𝑖∈𝐼 ∈ 𝑋∗:𝑓𝑜𝑟𝑒𝑎𝑐𝑖 ∈ 𝐼,  𝜉𝑖 , 𝜂𝑖 𝑦𝑖 ,𝑥𝑖  = 0  for all  𝑥𝑖 , 𝑦𝑖 ∈ 𝐾𝑖 

Remark 3.1 For a given 𝜉𝑖 ∈ 𝑋𝑖
∗ the following two statements are equivalent: 

(a) For each  𝑖 ∈ 𝐼 ,  𝜉𝑖 , 𝜂𝑖 𝑦𝑖 ,𝑥𝑖  = 0  for all  𝑥𝑖 , 𝑦𝑖 ∈ 𝐾𝑖 ; 

(b)   𝜉𝑖 , 𝜂𝑖 𝑦𝑖 , 𝑥𝑖  = 0𝑖∈𝐼 for all  𝑥𝑖 , 𝑦𝑖 ∈ 𝐾𝑖  , 𝑖 ∈ 𝐼. 

Indeed, (a) implies (b) is obvious. For (b) implies (a), let 𝑦𝑗 = 𝑥𝑗 for  𝑗 ≠ 𝑖, in (b) then we obtain (a). 

In view of above remark, we have: 

𝐾⊥ =  𝜉 ∶=  𝜉𝑖 𝑖∈𝐼 ∈ 𝑋∗ :   𝜉𝑖 , 𝜂𝑖 𝑦𝑖 , 𝑥𝑖  = 0𝑖∈𝐼  for all  𝑥𝑖 , 𝑦𝑖 ∈ 𝐾𝑖  , 𝑖 ∈ 𝐼. 

and we call it the 𝜂-orthogonal complement of  𝐾. 

Definition 3.5Let  𝑓 be a map from 𝐾to 𝑋∗, defined by (2). We say that  𝑥0 ∈ 𝐾 is a positive point of  𝑓 on 𝐾 if 

for all  𝑥 ∈ 𝐾 one has either  𝑓 𝑥 ∈ 𝐾⊥, that is, for each  𝑖 ∈ 𝐼,  𝑓𝑖 𝑥 ∈ 𝐾𝑖
⊥  or there exists  𝑦 ∈ 𝐾  such that: 

  𝑓𝑖 𝑥 , 𝜂𝑖 𝑦𝑖 , 𝑥𝑖
0  > 0

𝑖∈𝐼

 

The set of all positive points of  𝑓 on 𝐾 is denoted by 𝐾𝑓. 

We denote by  𝑓 𝐾  the image of  𝐾under  𝑓, that is,  𝑓 𝐾 =  𝑓 𝑥 ∶ 𝑥 ∈ 𝐾 . 

 

Proposition 3.1 Let 𝑓, defined by (2), be  𝜂-hemicontinuous and  𝜂-relative quasimonotone on 𝐾 such that  

𝑓 𝐾 ∩ 𝐾⊥ = ∅ , that is, for each  𝑖 ∈ 𝐼,  𝑓𝑖 𝐾 ∩ 𝐾𝑖
⊥ = ∅. Then  𝑓 is 𝜂-relative pseudomonotone at every 

positive point. 

Proof Let  𝑦 ∈ 𝐾𝑓  and  𝑥 ∈ 𝐾 be any point such that  𝑓𝑖 𝑥 , 𝜂𝑖 𝑦𝑖 ,𝑥𝑖  ≥ 0  𝑖∈𝐼 . Then by Lemma 3.1, we have 

either:  
  𝑓𝑖 𝑦 , 𝜂𝑖 𝑦𝑖 ,𝑥𝑖  ≥ 0𝑖∈𝐼 or    𝑓𝑖 𝑥 , 𝜂𝑖 𝑧𝑖 , 𝑥𝑖  ≤ 0  𝑖∈𝐼 for all  𝑧𝑖 ∈ 𝐾𝑖 ,  𝑖 ∈ 𝐼(4)                    
To complete the proof, it is sufficient to show that the second inequality in (4) is impossible. Indeed, since  

𝑦 ∈ 𝐾𝑓  and for each  𝑖 ∈ 𝐼,  𝑓𝑖 𝑥 ∉ 𝐾𝑖
⊥ , then there exists  𝑧 ∈ 𝐾  such that: 

  𝑓𝑖 𝑥 , 𝜂𝑖 𝑧𝑖 , 𝑦𝑖  > 0  
𝑖∈𝐼

 

then: 

  𝑓𝑖 𝑥 , 𝜂𝑖 𝑧𝑖 , 𝑥𝑖  =   𝑓𝑖 𝑥 , 𝜂𝑖 𝑧𝑖 , 𝑦𝑖  

𝑖∈𝐼

+   𝑓𝑖 𝑥 , 𝜂𝑖 𝑦𝑖 , 𝑥𝑖  > 0  
𝑖∈𝐼𝑖∈𝐼

 

which shows that the second inequality in (4) is impossible, and the proof is completed. 

Proposition 3.2 Let  𝐾 be closed and convex subset of   𝑋 and  𝐾0 a segment-dense subset of  𝐾. If  𝑓, defined 

by (2) is  𝜂-relativequasimonotone at every point of  𝐾0 and  𝜂-hemicontinuous on  𝐾, then it is  𝜂-

relativequasimonotone on 𝐾. 

Proof   Let  𝑥, 𝑦 ∈ 𝐾  with:    
  𝑓𝑖 𝑥 , 𝜂𝑖 𝑦𝑖 , 𝑥𝑖  > 0  𝑖∈𝐼  (5) 

Since  𝐾0 is a segment-dense subset of  𝐾, we can find  𝑦0 ∈ 𝐾0 and  𝑦𝑚 ∈  𝑦, 𝑦0 ∩ 𝐾0  for all  𝑚 ∈ ℕ  such 

that  lim 𝑦𝑚 = 𝑦. Then from (5), we obtain: 
  𝑓𝑖 𝑥 , 𝜂𝑖 𝑦𝑖

𝑚 , 𝑥𝑖  > 0  𝑖∈𝐼 for all  𝑚 ∈ ℕ . 

Since  𝑓is  𝜂-relativequasimonotone at  𝑦𝑚  , we get: 

  𝑓𝑖 𝑦
𝑚  , 𝜂𝑖 𝑦𝑖

𝑚 ,𝑥𝑖  ≥ 0  
𝑖∈𝐼
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Since  lim 𝑦𝑚 = 𝑦  and by 𝜂-hemicontinuity of   𝑓, we have 

  𝑓𝑖 𝑦 , 𝜂𝑖 𝑦𝑖 ,𝑥𝑖  ≥ 0
𝑖∈𝐼

 

Hence  𝑓is  𝜂-relativequasimonotone on 𝐾. 

 Now we are ready to define a new concept of  𝜂-densely relative pseudomonotonicity, which 

generalize the notion of   densely pseudomonotonicity considered by Luc [13]. 

Definition 3.6 The map  𝑓 ∶ 𝐾 → 𝑋∗  defined by (2)  is said to be 𝜂-densely relativepseudomonotone 

(respectively, 𝜂-densely relative strictly pseudomonotone) on 𝐾 if there exists a segment-dense subset  𝐾0 ⊆ 𝐾 

such that  𝑓 is  𝜂-relativepseudomonotone (respectively, 𝜂-relative strictly pseudomonotone) on 𝐾0. 

Next, we define the  𝜂-relative B-pseudomonotonicity and 𝜂-relativedemimonotonicity which extend 

the definition of an 𝜂-pseudomonotone map, introduced by Brezis [14]. 

Definition 3.7 The map  𝑓 ∶ 𝐾 → 𝑋∗  defined by (2)  is said to be  𝜂-relative B-pseudomonotone (respectively, 

𝜂-relativedemimonotone) if for each  𝑥 ∈ 𝐾 and every net   𝑥𝛼 𝛼∈Γ in  𝐾 converging to 𝑥(respectively, weakly 

to 𝑥) with: 

lim𝑖𝑛𝑓𝛼    𝑓𝑖 𝑥
𝛼  , 𝜂𝑖 𝑥𝑖 , 𝑥𝑖

𝛼  

𝑖∈𝐼

 ≥ 0 

we have: 

  𝑓𝑖 𝑥 , 𝜂𝑖 𝑦𝑖 , 𝑥𝑖  ≥
𝑖∈𝐼

lim𝑠𝑢𝑝𝛼    𝑓𝑖 𝑥
𝛼  , 𝜂𝑖 𝑦𝑖 ,𝑥𝑖

𝛼   

𝑖∈𝐼

  

for all 𝑦 ∈ 𝐾.  

The following Lemma can be treated as a generalization of Minty lemma (see for example, [19] 

Chapter 3, Lemma 1.5) to (VLIPPS). 

Lemma 3.2 Let  𝐾 be a nonempty convex subset of  𝑋 and  𝐾0 be the same as in the definition of 𝜂-densely 

relativepseudomonotone map. If𝑓, defined by (2), is  𝜂-hemicontinuous and  𝜂-densely relativepseudomonotone, 

then the following problem is equivalent to (VLIPPS): 

(MVLIPPS)0 
find 𝑥 ∈ 𝐾 such that 

  𝑓𝑖 𝑦 , 𝜂𝑖 𝑦𝑖 , 𝑥 𝑖  ≥ 0𝑖∈𝐼

  

for all  𝑦𝑖 ∈ 𝐾𝑖
0 , 𝑖 ∈ 𝐼. The solution sets of (VLIPPS) and (MVLIPPS)0are denoted by  𝐾𝑠and  𝐾𝑠𝑚

0  , respectively. 

Proof By the 𝜂-densely relativepseudomonotonicityof  𝑓, we have  𝐾𝑠 ⊆ 𝐾𝑠𝑚
0 . 

Conversely, let 𝑥 ∈ 𝐾 be a solution of (MVLIPPS)0. Then:  

  𝑓𝑖 𝑦 , 𝜂𝑖 𝑦𝑖 ,𝑥 𝑖  ≥ 0𝑖∈𝐼 for all  𝑦𝑖 ∈ 𝐾𝑖
0 , 𝑖 ∈ 𝐼  (6)                                                          

Since  𝐾0 is segment-dense, for all  𝑧 ∈ 𝐾, we can find  𝑧0 ∈ 𝐾0 and 𝑧𝑚 ∈  𝑧, 𝑧0 ∩ 𝐾0  for all  𝑚 ∈ ℕ  such 

that  lim 𝑧𝑚 = 𝑧. Then from (6), we get: 
  𝑓𝑖 𝑧

𝑚  , 𝜂𝑖 𝑧𝑖
𝑚 , 𝑥 𝑖  ≥ 0  𝑖∈𝐼 for all 𝑚 ∈ ℕ. 

Since  lim 𝑧𝑚 = 𝑧  and  𝑓 is 𝜂-hemicontinuous, we obtain: 
  𝑓𝑖 𝑧 , 𝜂𝑖 𝑧𝑖 , 𝑥 𝑖  ≥ 0𝑖∈𝐼 for all  𝑧𝑖 ∈ 𝐾𝑖 , 𝑖 ∈ 𝐼. 

Again by  𝜂-hemicontinuity of   𝑓(see the proof of lemma 2 in [11]), we have: 
  𝑓𝑖 𝑥  , 𝜂𝑖 𝑧𝑖 , 𝑥 𝑖  ≥ 0𝑖∈𝐼 for all  𝑧𝑖 ∈ 𝐾𝑖 , 𝑖 ∈ 𝐼. 

Hence 𝑥 ∈ 𝐾𝑠  and thus 𝐾𝑠 = 𝐾𝑠𝑚
0  . 

 

Theorem 3.1 For each 𝑖 ∈ 𝐼, let  𝐾𝑖  be a nonempty , compact and convex subset of 𝑋𝑖 , and  𝑓, defined by (2), be 

𝜂-hemicontinuous and𝜂-densely relativepseudomonotone on 𝐾. Then (VLIPPS) has a solution and hence 

(SVLI) has a solution. 

Proof Let 𝐾0 be the same as in the definition of a  𝜂-densely relativepseudomonotone map. For each 𝑦 ∈ 𝐾0, 

define two multivalued maps 𝑆, 𝑇 ∶ 𝐾0 → 2𝐾  by: 

𝑆 𝑦 =  𝑥 ∈ 𝐾 ∶    𝑓𝑖 𝑥 , 𝜂𝑖 𝑦𝑖 , 𝑥𝑖  ≥ 0  
𝑖∈𝐼

  

and: 

𝑇 𝑦 =  𝑥 ∈ 𝐾 ∶    𝑓𝑖 𝑦 , 𝜂𝑖 𝑦𝑖 ,𝑥𝑖  ≥ 0  
𝑖∈𝐼

  

then for each  𝑦 ∈ 𝐾0, 𝑇 𝑦  is closed, and also by 𝜂-relativepseudomonotonicity of  𝑓 on 𝐾0, we have  𝑆 𝑦 ⊆
𝑇 𝑦 . By using the standard argument, it is easy to see that for every finite set   𝑦1 , … . , 𝑦𝑚  of  𝐾0, one has  

co 𝑦1 , … . , 𝑦𝑚  ⊆  𝑆 𝑦𝑘 𝑚
𝑘=1 (see for example, the proof of Theorem1 in [11]). Since for all ∈ 𝐾0 , 𝑆 𝑦 ⊆

𝑇 𝑦  , we also have co 𝑦1 ,… . , 𝑦𝑚  ⊆  𝑇 𝑦𝑘 𝑚
𝑘=1 . By applying Theorem 2.1, we have   𝑇 𝑦 ≠ ∅𝑦∈𝐾0  , that 

is, there exists  𝑥 ∈ 𝐾 such that: 
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  𝑓𝑖 𝑦 , 𝜂𝑖 𝑦𝑖 ,𝑥𝑖  ≥ 0
𝑖∈𝐼

 

for all  𝑦𝑖 ∈ 𝐾𝑖
0 , 𝑖 ∈ 𝐼. By lemma 3.1, 𝑥 ∈ 𝐾is a solution of (VLIPPS). 

Corollary 3.1  For each𝑖 ∈ 𝐼 , let 𝐾𝑖be a nonempty, compact and convex subset of𝑋𝑖 , and𝑓, defined by (2), be 𝜂-

hemicontinuous and 𝜂-relativequasimonotone on𝐾such that𝐾𝑓is segment-dense in𝐾 .Then (VLIPPS) has a 

solution and hence (SVLI) has a solution. 

ProofLet  𝑥 ∈ 𝐾 such that  𝑓 𝑥 ∈ 𝐾⊥ , then   𝑓𝑖 𝑥 , 𝜂𝑖 𝑦𝑖 ,𝑥𝑖  𝑖∈𝐼 = 0 for all 𝑦𝑖 ∈ 𝐾𝑖 , 𝑖 ∈ 𝐼 . Hence𝑥 ∈ 𝐾  is a 

solution of (VLIPPS). Therefore, we may assume that  𝑓 𝐾 ∩ 𝐾⊥ = ∅. Then by proposition 3.1,  𝑓 is 𝜂-

relatively pseudomonotone at every point of 𝐾𝑓 . Since  𝐾𝑓  is segment-dense in  𝐾, 𝑓 is  𝜂-densely 

relativepseudomonotone on 𝐾. Thus by Theorem 3.1, (VLIPPS) has a solution. 

Corollary 3.2For each∈ 𝐼 , let𝐾𝑖be a nonempty , compact and convex subset of𝑋𝑖 , and𝑓, defined by (2) be𝜂-

hemicontinuous and𝜂-densely relative strictly pseudomonotone on𝐾. Then (VLIPPS) has a solution 𝑥 ∈ 𝐾and it 

is unique if𝑥 ∈ 𝐾0. Further,𝑥 ∈ 𝐾is a solution of (SVLI), and it is unique if𝑥 ∈ 𝐾0 , where 𝐾0is the same as in 

the definition of 𝜂-densely relativepseudomonotone map. 

ProofIn view of Theorem 3.1, it is sufficient to show that (VLIPPS) has at most one solution. Assume to the 

contrary that 𝑥′ , 𝑥″ ∈ 𝐾0  are two solutions of (VLIPPS) such that 𝑥′ ≠ 𝑥″ . Then: 

  𝑓𝑖 𝑥
′ , 𝜂𝑖 𝑥𝑖

″ , 𝑥′  

𝑖∈𝐼

≥ 0 

By 𝜂-densely relative strictly pseudomonotonicity of  𝑓on𝐾0. We have: 
  𝑓𝑖 𝑥

″  , 𝜂𝑖 𝑥𝑖
″ , 𝑥′   > 0𝑖∈𝐼 i.e.  𝑓𝑖 𝑥

″  , 𝜂𝑖 𝑥𝑖
′ , 𝑥″   𝑖∈𝐼 < 0 

Thus  𝑥″ is not a solution of (VLIPPS), which is a contradiction of our assumption. This completes the proof. 

Theorem 3.2 For each𝑖 ∈ 𝐼 , let 𝐾𝑖   be a nonempty and convex subset of a real topological vector space (not 

necessarily, Hausdroff)  𝑋𝑖 . Let 𝑓, defined by (2), be 𝜂-relative B-pseudomonotone such that for each  𝐴 ∈ 𝑭 𝐾  

,  𝑥 ↦   𝑓𝑖 𝑥 , 𝜂𝑖 𝑦𝑖 , 𝑥𝑖  𝑖∈𝐼  is upper semicontinuous on 𝑐𝑜𝐴. Assume that there exists a nonempty, closed and 

compact subset  𝐷 of  𝐾  and an element 𝑦 ∈ 𝐷 such that for all 𝑥 ∈ 𝐾\𝐷,   𝑓𝑖 𝑥 , 𝜂𝑖 𝑦 𝑖 , 𝑥𝑖  < 0𝑖∈𝐼 . Then 

(VLIPPS) has a solution and hence (SVLI) has a solution. 

Proof For each  𝑥 ∈ 𝐾 , define a multivalued map  𝑇 ∶ 𝐾 → 2𝐾   by: 

𝑇 𝑥 =  𝑦 ∈ 𝐾:   𝑓𝑖 𝑥 , 𝜂𝑖 𝑦𝑖 ,𝑥𝑖  < 0
𝑖∈𝐼

  

then for all  𝑥 ∈ 𝐾, 𝑇 𝑥 is convex. Let ∈ 𝑭 𝐾  , then for all 𝑦 ∈ 𝑐𝑜𝐴, 

 𝑇−1 𝑦  𝑐 ∩ 𝑐𝑜𝐴 =  𝑥 ∈ 𝑐𝑜𝐴:   𝑓𝑖 𝑥 , 𝜂𝑖 𝑦𝑖 , 𝑥𝑖  

𝑖∈𝐼

≥ 0  

is closed in  𝑐𝑜𝐴  by upper semicontinuity of the map  𝑥 ↦   𝑓𝑖 𝑥 , 𝜂𝑖 𝑦𝑖 ,𝑥𝑖  𝑖∈𝐼   on  𝑐𝑜𝐴. Hence  𝑇−1 𝑦  ∩
𝑐𝑜𝐴  is open in  𝑐𝑜𝐴. 

Suppose that  𝑥, 𝑦 ∈ 𝑐𝑜𝐴 and    𝑥𝛼  𝛼∈Γ   is a net in  𝐾converging to  𝑥such that: 
  𝑓𝑖 𝑥

𝛼 , 𝜂𝑖 𝑡𝑦𝑖 +  1 − 𝑡 𝑥𝑖 , 𝑥𝑖
𝛼   ≥ 0𝑖∈𝐼 for all  𝛼 ∈ Γ  and 𝑡 ∈  0,1 . 

For 𝑡 = 0, we have: 
  𝑓𝑖 𝑥

𝛼 , 𝜂𝑖 𝑥𝑖 , 𝑥𝑖
𝛼   ≥ 0𝑖∈𝐼 for all  𝛼 ∈ Γ , 

and therefore: 

𝑙𝑖𝑚𝑖𝑛𝑓𝛼    𝑓𝑖 𝑥
𝛼  , 𝜂𝑖 𝑥𝑖 , 𝑥𝑖

𝛼  

𝑖∈𝐼

 ≥ 0 

By the  𝜂-relative B-pseudomonotonicity of  𝑓, we have: 
  𝑓𝑖 𝑥 , 𝜂𝑖 𝑦𝑖 , 𝑥𝑖  𝑖∈𝐼 ≥ 𝑙𝑖𝑚𝑠𝑢𝑝𝛼    𝑓𝑖 𝑥

𝛼  , 𝜂𝑖 𝑦𝑖 ,𝑥𝑖
𝛼   𝑖∈𝐼    (7) 

For   𝑡 = 1, we have: 
  𝑓𝑖 𝑥

𝛼 , 𝜂𝑖 𝑦𝑖 , 𝑥𝑖
𝛼  ≥ 0𝑖∈𝐼 for all 𝛼 ∈ Γ 

and therefore: 

lim𝑖𝑛𝑓𝛼∈Γ   𝑓𝑖 𝑥
𝛼 , 𝜂𝑖 𝑦𝑖 , 𝑥𝑖

𝛼  𝑖∈𝐼  ≥ 0 (8) 

From (7) and (8), we obtain: 

  𝑓𝑖 𝑥 , 𝜂𝑖 𝑦𝑖 , 𝑥𝑖  ≥ 0  
𝑖∈𝐼

 

and thus 𝑦 ∉ 𝑇 𝑥 . 

Assume that for all  𝑥 ∈ 𝐷,  𝑇 𝑥  is nonempty. Then all the conditions of Theorem 2.2 are satisfied. Hence there 

exists  𝑥 ∈ 𝐾 such that  𝑥 ∈ 𝑇 𝑥   , that is, 
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0 =   𝑓𝑖 𝑥  , 𝜂𝑖 𝑥 𝑖 ,𝑥 𝑖  

𝑖∈𝐼

< 0 

a contradiction. Thus there exists 𝑥 ∈ 𝐾 such that 𝑇 𝑥  = ∅, that is: 

  𝑓𝑖 𝑥  , 𝜂𝑖 𝑦𝑖 , 𝑥 𝑖  ≥ 0𝑖∈𝐼 for all   𝑦𝑖 ∈ 𝐾𝑖  , 𝑖 ∈ 𝐼.. 
Hence  𝑥  is a solution of  (VLIPPS). 

Corollary 3.3 For each  𝑖 ∈ 𝐼, let 𝐾𝑖   be a nonempty, closed and convex subset of a reflexive Banach 

space𝑋𝑖Let𝑓, defined by (2), be 𝜂-relativedemimonotone such that for each  𝐴 ∈ 𝑭 𝐾  ,  

𝑥 ⟼   𝑓𝑖 𝑥 , 𝜂𝑖 𝑦𝑖 ,𝑥𝑖  𝑖∈𝐼  is upper semicontinuous on 𝑐𝑜𝐴. Assume that there exists  𝑦 ∈ 𝐾  such that 

lim 𝑥 →∞,𝑥∈𝐾   𝑓𝑖 𝑥 , 𝜂𝑖 𝑦 𝑖 ,𝑥𝑖  < 0   𝑖∈𝐼   (9) 

Then (VLIPPS) has a solution and hence (SVLI) has a solution. 

Proof Let   𝛼 = lim 𝑥 →∞,𝑥∈𝐾   𝑓𝑖 𝑥 , 𝜂𝑖 𝑦 𝑖 ,𝑥𝑖  < 0  𝑖∈𝐼 .Then by (9), 𝛼 < 0. Let 𝑟 > 0be such that  𝑦  ≤

𝑟and  𝑓𝑖 𝑥 , 𝜂𝑖 𝑦 𝑖 , 𝑥𝑖  <
𝛼

2𝑖∈𝐼 for all  𝑥 ∈ 𝐾with 𝑥 > 𝑟. For each 𝑖 ∈ 𝐼, let𝐵𝑖
𝑟 =  𝑥𝑖 ∈ 𝐾𝑖 ∶   𝑥𝑖 𝑖 ≤ 𝑟 , and 

we denote by 𝐵𝑟 =  𝐵𝑖
𝑟

𝑖∈𝐼   . Then 𝐵𝑟   is a nonempty and weakly compact subset of 𝐾. Note that for any  

𝑥 ∈ 𝐾\𝐵𝑟 ,  𝑓𝑖 𝑥 , 𝜂𝑖 𝑦 𝑖 , 𝑥𝑖  <
𝛼

2𝑖∈𝐼 < 0, and the conclusion follows from Theorem 3.2 

IV.  Coincidence Theorem 

 
As an application of corollary 3.3, we establish some existence results for a coincidence point of two 

families of nonlinear operators. 

Theorem 4.1 For each  𝑖 ∈ 𝐼, let 𝑋𝑖  be a real reflexive Banach space. Let  𝑓, 𝑔 ∶ 𝑋 → 𝑋𝑖
∗be defined as  𝑓 𝑥 =

 𝑓𝑖 𝑥  
𝑖∈𝐼

  and   𝑔 𝑥 =  𝑔𝑖 𝑥  
𝑖∈𝐼

, respectively, for all 𝑥 ∈ 𝑋, , where for each 𝑖 ∈ 𝐼,  𝑔𝑖 ∶ 𝑋 → 𝑋𝑖
∗, is a 

nonlinear operator. Assume that 𝑓 − 𝑔  is 𝜂-relativedemimonotone and for each 𝐴 ∈ 𝑭 𝑋 , , 𝑥 ⟼
   𝑓𝑖 𝑥 , 𝜂𝑖 𝑦𝑖 , 𝑥𝑖  𝑖∈𝐼  is upper semicontinuous on 𝑐𝑜𝐴. Further, assume that there exists  𝑦 ∈ 𝑋  such that: 

lim
 𝑥 →∞,𝑥∈𝑋

   𝑓𝑖 − 𝑔𝑖  𝑥 , 𝜂𝑖 𝑦 𝑖 , 𝑥𝑖  < 0  
𝑖∈𝐼

 

Then there exists 𝑥 ∈ 𝑋 such that  𝑓𝑖 𝑥  = 𝑔𝑖 𝑥   for each 𝑖 ∈ 𝐼. 

Proof From the Corollary 3.3, there exists 𝑥 ∈ 𝑋such that for each  𝑖 ∈ 𝐼,  
 𝑓𝑖 𝑥  , 𝜂𝑖 𝑦𝑖 ,𝑥 𝑖  ≥  𝑔𝑖 𝑥  , 𝜂𝑖 𝑦𝑖 , 𝑥 𝑖   

for all𝑦𝑖 ∈ 𝑋𝑖 . Therefore we have, 𝑓𝑖 𝑥  = 𝑔𝑖 𝑥   for each 𝑖 ∈ 𝐼. 

Finally, we give another application of Corollary 3.3 in the setting of Hilbert spaces. 

Theorem4.2 For each  𝑖 ∈ 𝐼, let  𝑋𝑖 ,  . , .     be a real Hilbert space and 𝐾𝑖   a nonempty, closed and convex  

subset of 𝑋𝑖 . . Let  𝑓, defined by (2), be 𝜂-relative demimonotone such that for each  𝐴 ∈ 𝑭 𝐾 ,𝑥 ⟼
  𝑓𝑖 𝑥 , 𝜂𝑖 𝑦𝑖 , 𝑥𝑖  𝑖∈𝐼  is lower semicontinuous on 𝑐𝑜𝐴. Assume that there exists 𝑦 ∈ 𝐾   such that: 

lim
 𝑥 →∞,𝑥∈𝐾

  𝑥𝑖 − 𝑓𝑖 𝑥 , 𝜂𝑖 𝑦 𝑖 ,𝑥𝑖  < 0  
𝑖∈𝐼

 

Then there exists 𝑥 ∈ 𝐾 such that  𝑓𝑖 𝑥  = 𝑥 𝑖  for each 𝑖 ∈ 𝐼.. 
Proof For each 𝑖 ∈ 𝐼, define a nonlinear operator  𝑆𝑖 ∶ 𝐾 → 𝑋𝑖  by 𝑆𝑖 𝑥 = 𝑥𝑖 − 𝑓𝑖 𝑥    for all 𝑥 ∈ 𝐾. Then 

obviously, for each  𝑖 ∈ 𝐼, 𝑆𝑖satisfies all the conditions of Corollary 3.3. Hence there exists 𝑥 ∈ 𝐾  such that for 

each 𝑖 ∈ 𝐼,  𝑆𝑖 𝑥  , 𝜂𝑖 𝑦𝑖 ,𝑥 𝑖  ≥ 0for all 𝑦𝑖 ∈ 𝐾𝑖 .  . For each 𝑖 ∈ 𝐼, , let 𝑦𝑖 = 𝑓𝑖 𝑥   , we have  𝑥 𝑖 − 𝑓𝑖 𝑥   ≤ 0. 

Therefore for each  𝑖 ∈ 𝐼,  𝑓𝑖 𝑥  = 𝑥 𝑖. 

V. Conclusion 
 

By using a particular form of Fan-KKM Lemma and generalization of Browder Fixed Point Theorem, we have 
proved some existence results for a solution of (VLIPPS) in the setting of Hausdroff topological vector spaces. 
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