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Abstract: In this article, it will be shown that the set of Real numbers is uncountable in four different ways. The 

first one uses the least upper bound property of the set of real numbers ℝ (sometimes called the completeness 

property of ℝ), the second one uses the nested intervals property of ℝ, the third one uses Cantor’s diagonal 

argument and the fourth one by proving that a non- empty perfect subset ofℝ is uncountable. 

Keywords:Uncountable set, monotone sequences, bounded above, bounded below, perfect set ,neighbourhood 

of a point, limit point of a set. 

 

I. Introduction 

In this article the Uncountabilityof ℝ, the set of real numbers is shown in four different ways and each 

time one can observe that the completeness property of ℝ is very much needed to prove that ℝ is uncountable. 

In the first proof the completeness property of ℝ sometimes called the least upper bound property of ℝ plays a 

crucial role in order to show that ℝ is uncountable. Similarly the second proof uses the nested intervals property 

of ℝwhich is just another version of the completeness property of ℝ and the third one uses the so- called 

Cantor’s diagonal argument.Here it is pointed out that in this proof the fact that for each 𝑥 ∈ [0,1] there is a 

sequence of integers (𝑎𝑛) with 0 ≤ 𝑎𝑛 ≤ 9 for all 𝑛 such that 𝑥 = 0. 𝑎1𝑎2 … . 𝑎𝑛 … .. has been used, the proof of 

which again uses the least upper bound property of ℝ [see 3]. 

 

Finally the fourth proof uses that a non- empty perfect subset of  ℝ is uncountable whose proof again 

uses another version of the completeness property of ℝ  (in the sense of Cantor), viz., A sequence of real 

numbers converges if and only if it is Cauchy. 

 

The article is self contained and any prerequisites needed for thefour proofs have been given in the section 

below.  

 

II. Some Basic Definitions and Results 

The following is recalled  

Definition 1: A set 𝒜 is called a finite set if 𝒜 = 𝜙 or if it is in one to one correspondence with the 

set{1,2,3, … … , 𝑛} for some ∈ ℕ ; otherwise we say that 𝒜 is infinite. 

Definition 2: An infinite set 𝒜 is said to be countable or countably infinite if 𝒜 is in one to one correspondence 

with the set of Natural numbers ℕ.  That is, the elements of a countable set 𝒜 can be enumerated or counted 

according to their correspondence with the natural numbers:𝒜 = {𝑥1 , 𝑥2, 𝑥3 , … . } where  the 𝑥𝑖
′𝑠 are distinct. 

Definition 3: An infinite set that is not countable is called uncountable. 

Definition 4: A subset 𝒜 of ℝ  is said to be bounded above if there is some 𝑥 ∈ ℝ such that  𝑎 ≤ 𝑥. 

for all 𝑎 ∈ 𝒜. Any such number x is called an upper bound for 𝒜. 
 

Theorem: (The Least Upper Bound Property of ℝ (Sometimes called the Completeness Property of ℝ)). 

Any nonempty set of real numbers with an upper bound has a least upper bound.  

That is, if 𝐴 ⊆ ℝ is nonempty and bounded above, then there is a number 𝑠 ∈ ℝ satisfying: (i) s is an upper 

bound for A; and (ii) if x is any upper bound for A, then 𝑠 ≤ 𝑥. In this case we write 𝑠 = 𝑙. 𝑢. 𝑏.  𝐴 = sup 𝐴 (for 

supremum). Similarly, we also have greatest lower bounds (g.l.b.) of a set  𝐴 ⊆ ℝ,  denoted by infA(for 

infimum). 

Definition 5: A set 𝐴 ⊆ ℝ which is both bounded above and bounded below is called bounded. 

  

Theorem: (Nested Intervals Property).  If 𝐼𝑛 =  𝑎𝑛 , 𝑏𝑛  , 𝑛 ∈ ℕ is a nested sequence of closed bounded 

intervals, i.e 𝐼1 ⊇ 𝐼2 ⊇ ⋯ … . . ⊇ 𝐼𝑛 …… ., then there exists a number 𝜉 ∈ ℝ such that 𝜉 ∈ 𝐼𝑛  for all 𝑛 ∈ ℕ. 
 

Definition 6: A sequence  𝑥𝑛 of real numbers is said to converge to 𝑥 ∈ ℝ if, for every 𝜀 > 0, there is a 

positive integer N such that 𝑥𝑛 − 𝑥 < 𝜀 whenever 𝑛 ≥ 𝑁. In this case, we call x the limit of the sequence 
 𝑥𝑛 and write 𝑥 = lim𝑛→∞ 𝑥𝑛 . 
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Theorem: (Monotone Convergence Theorem).A monotone sequence of real numbers is convergent if and 

only if it is bounded. Further, If  𝑥𝑛 is a bounded increasing sequence, then lim𝑛→∞ 𝑥𝑛 = sup 𝑥𝑛 : 𝑛 ∈ ℕ  and if 

 𝑦𝑛  is a bounded decreasing sequence, thenlim𝑛→∞ 𝑦𝑛 = inf 𝑦𝑛 : 𝑛 ∈ ℕ . 
 

Definition 7: A sequence  𝑥𝑛 of real numbers is said to be Cauchy if, for every 𝜀 > 0, there is a positive integer 

N such that  𝑥𝑛 − 𝑥𝑚  < 𝜀 whenever 𝑛, 𝑚 ≥ 𝑁. 
 

Theorem: (Completeness Property of ℝ in the sense of Cantor).A sequence of real numbers converges if and 

only if it is Cauchy. 

 

Definition 8: A neighbourhood of a point 𝑥 is a set  𝑁𝑟 𝑥  consisting of all 𝑦 such that  𝑥 − 𝑦 < 𝑟. 

Definition 9: A point 𝑥 is a limit point of the set 𝐸 ⊆ ℝ if every neighbourhood of 𝑥 contains a point 𝑦 ≠ 𝑥 

such that 𝑦 ∈ 𝐸. 
Definition 10: Let 𝐸 ⊆ ℝ. Then 𝐸 is called a perfect set if 𝐸 is closed and if every point of 𝐸 is a limit point of 

𝐸. 
 

III. The set ℝ of real numbers is uncountable. 
Now the four proofs of the main result are given. In the first proof below the completeness property of 

ℝ (sometimes called the least upper bound property of ℝ)  plays a crucial role in the form of Monotone 

Convergence Theorem in order to show that ℝ is uncountable. 

 

Proof 1: It is enough to prove that the set  0,1 is uncountable because then ℝ being a superset of   0,1 will 

definitelybe uncountable as a superset of an uncountable set is uncountable. If possible, let us assume that   0,1  

is countable. Since  0,1 is infinite (as 
1

𝑛
∈  0,1 ∀𝑛 ∈ ℕ), there exists a bijection (one to one 

correspondence) 𝑓: ℕ ⟶  0,1 .  Let 𝑧𝑛 = 𝑓 𝑛 . We prove that there exists 𝑥 ∈  0,1 such that 𝑥 ≠ 𝑧𝑛  for any 

𝑛 ∈ ℕ and we are done then. 

Now two sequences  𝑥𝑛 and  𝑦𝑛 are defined whoses elements are defined recursively.  

Let 𝑥1be the 𝑧𝑟  where 𝑟 is the first integer such that 0 < 𝑧𝑟 < 1.  Let 𝑦1be 𝑧𝑠where 𝑠 is the first integer such that 

𝑥1 < 𝑧𝑠 < 1. 
Assume that  𝑥𝑖 𝑖=1

𝑛  and  𝑦𝑖 𝑖=1
𝑛  have been chosen with the property that 

0 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ …… . 𝑥𝑛 < 𝑦𝑛 < 𝑦𝑛−1 < ⋯… < 𝑦2 < 𝑦1 < 𝑦0 = 1 

Now choose 𝑥𝑛+1to be the 𝑧𝑟  where  𝑟 is the first integer such that 𝑥𝑛 < 𝑧𝑟 < 𝑦𝑛 . Let 𝑦𝑛+1be 𝑧𝑠 where 𝑠 is the 

first integer such that𝑥𝑛+1 < 𝑧𝑠 < 𝑦𝑛 . Note that if no such 𝑟 or𝑠 exists at some stage then actually we are done 

as then an element 𝑥 can easily be chosen in  𝑥𝑛 , 𝑦𝑛   such that  𝑥 ≠ 𝑧𝑛∀𝑛 ∈ ℕ.  

 

Thus we have sequences  𝑥𝑛 𝑛∈ℕand  𝑦𝑛 𝑛∈ℕ  with  𝑥1 < 𝑥2 < ⋯ < 𝑦2 < 𝑦1. So  𝑥𝑛 𝑛∈ℕ and  𝑦𝑛 𝑛∈ℕ are 

monotone and bounded above and below respectively. Therefore by the monotone convergence theorem both 

are convergent.  

Let 𝑥 = lim𝑛→∞ 𝑥𝑛 = 𝑠𝑢𝑝 𝑥𝑛  and 𝑦 = lim𝑛→∞ 𝑦𝑛 = 𝑖𝑛𝑓 𝑦𝑛 . Then as 𝑥𝑛 < 𝑦𝑛 for each 𝑛 ∈ ℕ, we have 𝑥 ≤ 𝑦, 

as  𝑥, 𝑦 ≠ 𝜙. 

Letℎ ∈ [𝑥, 𝑦]. Then ℎ ≠ 𝑥𝑛 , 𝑦𝑛  ∀𝑛 ∈ ℕ, since 𝑥𝑛 < ℎ < 𝑦𝑛 for all 𝑛 ∈ ℕ. We now claim that ℎ ≠ 𝑧𝑛  for all 

𝑛 ∈ ℕ. Suppose that ℎ = 𝑧𝑛 for some 𝑛 ∈ ℕ. Then there are only finitely many points in the sequence 

 𝑧𝑛 𝑛∈ℕbefore ℎ occurs, and therefore only finitely of the sequence  𝑥𝑛 𝑛∈ℕ precedes h. 

Let 𝑥𝑑  be the last element of the sequence   𝑥𝑛 𝑛∈ℕ preceding ℎ. Then by definition 𝑥𝑑+1, 𝑦𝑑+1are interior points 

of [𝑥𝑑 , 𝑦𝑑 ] and also ℎ ∈ [𝑥𝑑+1, 𝑦𝑑+1] by the definition of ℎ. 
Therefore 𝑥𝑑+1 must precede ℎ in the sequence, for the sequence is monotonically increasing, a contradiction 

since 𝑥𝑑  was the last element of the sequence  𝑥𝑛 𝑛∈ℕ preceding ℎ. Therefore our assumption that ℎ = 𝑧𝑛  for 

some 𝑛 ∈ ℕ is wrong. Hence ℎ ≠ 𝑧𝑛  for any 𝑛 ∈ ℕ, and thus [0,1] is not countable and hence uncountable. 

In the second proof, the Nested Interval Property is used which was given by Georg Cantor in 1874 in 

the first of his papers on infinite sets. He later published a proof that used decimal representation of real 

numbers and that proof is given after this proof. 

 

Proof2 : Again it will be proved that 𝐼 = [0,1] is an uncountable set. 

Let, if possible 𝐼 be countable. Then we can enumerate the set as 𝐼 = {𝑥1 , 𝑥2 , …… … . . , 𝑥𝑛 , … … . } where all 𝑥𝑖 ′𝑠 

are distinct.  

First a closed subinterval 𝐼1 of 𝐼 is selected such that 𝑥1 ∉ 𝐼1 .Note that 𝐼1can be selected easily by dividing I into 

three equal parts. Then, similarly, a closed subinterval 𝐼2 of 𝐼1 is selected such that 𝑥2 ∉ 𝐼2 and so on. 

In this way non empty closed intervals are obtained  
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𝐼1 ⊇ 𝐼2 ⊇ 𝐼3 ⊇ ⋯… . 𝐼𝑛 … .. 
such that 𝐼𝑛 ⊆ 𝐼 and 𝑥𝑛 ∉ 𝐼𝑛  for all 𝑛 ∈ ℕ. 

The nested intervals property implies that there exists a point 𝜉 ∈ 𝐼 such that 𝜉 ∈ 𝐼𝑛  for all 𝑛 ∈ ℕ.Therfore, 

𝜉 ≠ 𝑥𝑛  for all 𝑛 ∈ ℕ. So the enumeration of I is not a complete listing of the elements of 𝐼, as claimed.Hence, 𝐼 

is an uncountable set. 

 

Now we give Cantor’s another proof of the uncountability of  ℝ which was mentioned above.This is an elegant 

“diagonal” argument based on decimal representation of real numbers. 

 

Proof 3:It will be proved that [0,1] is not countable.  Again the proof is by contradiction. The fact 

that every real number 𝑥 ∈ [0,1] has a decimal representation 𝑥 = 0. 𝑏1𝑏2𝑏3 …… …… .. where  

𝑏𝑖 = 0, 1,2,3 … . .9 will be used. It is pointed out that this fact is actually a consequence of the least 

upper bound property of ℝ [see 3]. 

Suppose that there is an enumeration 𝑥1 , 𝑥2, 𝑥3 , … …… .. of all numbers in [0,1] which can be displaced as: 

𝑥1 = 0. 𝑏11𝑏12𝑏13 …… . . 𝑏1𝑛 …, 
   𝑥2 = 0. 𝑏21𝑏22𝑏23 … … . . 𝑏2𝑛…., 

𝑥3 = 0. 𝑏31𝑏32𝑏33 … … . . 𝑏3𝑛…., 

 …….                     …….. 

                                                                      …….                     …….. 

𝑥𝑛 = 0. 𝑏𝑛1𝑏𝑛2𝑏𝑛3 … … . . 𝑏𝑛𝑛 . .. 
                                                                      ……                      ……. 

 

Now a real number 𝑦 = 0. 𝑦1𝑦2 … …… 𝑦𝑛 …  is defined by setting  

𝑦𝑛 =  
1, 𝑖𝑓 𝑏𝑛𝑛 ≥ 5
7, 𝑖𝑓 𝑏𝑛𝑛 ≤ 4 

  

Note that here 1 and 7 have been chosen more or less arbitrarily just to avoid the troublesome digits 0 and 9 so 

that the decimal representation of 𝑦 is then unique because it does not end in all 0′𝑠 or all  9′𝑠, since 𝑦𝑛 ≠
0, 9 for all 𝑛 ∈ ℕ.  
Further, since 𝑦 and  𝑥𝑛  differs in the 𝑛𝑡ℎdecimal place, 𝑦 ≠ 𝑥𝑛  for any 𝑛 ∈ ℕ. Therefore, 𝑦 is not included in 

the enumeration of  [0,1], contradicting the hypothesis. 

 

Proof 4: It is enough to prove that if 𝑃 is any non empty perfect set in ℝ , then 𝑃 is uncountable, because then 

[0,1] will also be uncountable as  0,1  is a perfect set. 

So, let 𝑃 be a nonempty perfect set in ℝ. Since 𝑃 has limit points, 𝑃 must be infinite (since a finite set has no 

limit point). 

Let, if possible,𝑃 be countable. Denote the points of 𝑃 by 𝑥1 , 𝑥2, 𝑥3 , … .. .Let 𝑦1 ∈ 𝑃 and Let 𝑁1: =  (𝑁𝑟  (𝑦1  ) )be 

some closed neighbourhood centered at 𝑦1 such that 𝑥1 ∉ 𝑁1. Given 𝑁𝑛−1choose a closed 

neighbourhood𝑁𝑛−1 ⊇ 𝑁𝑛 ≔ 𝑁𝛿 𝑛  𝑦𝑛 ,  such that 𝛿 𝑛 ≤
𝛿 𝑛−1 

2
   (note that 𝛿 1 = 𝑟), 𝑦𝑛 ∈ 𝑋 and 𝑥𝑛 ∉

𝑁𝑛 . The condition 𝑥𝑛 ∉ 𝑁𝑛  can be satisfied because 𝑃 is perfect, so every neighbourhood centered at a point of 

𝑃 contains infinitely many points of 𝑃.Since  𝛿 𝑛 ≤
𝑟

2𝑛−1 , < 𝑦𝑛 > is Cauchy and hence convergent in 𝑃, since 

a perfect set is necessarilyclosed. 

So, Let 𝑦 = lim𝑛→∞ 𝑦𝑛  ∈ 𝑃.  For 𝑛 ∈ ℕ , we have  𝑦𝑚 ∶ 𝑚 > 𝑛 ⊆ 𝑁𝑛 .  So 𝑦 ∈ 𝑁𝑛  for each 𝑛 ∈ ℕ. But by 

construction, 𝑥𝑛 ∉ 𝑁𝑛  for each ∈ ℕ . Therefore 𝑦 ≠ 𝑥𝑛  for all 𝑛 ∈ ℕ, and so we are done.   

 

IV. Conclusion 

In establishing the Uncountability of ℝ, the set of real numbers, even in four different ways, each time 

one would have observed that the completeness property of ℝ is very much needed to prove that ℝ is 

uncountable which is the most subtle point of any proof required for proving that ℝ is uncountable. 
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