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I. Introduction 
The notion of generalized recurrent manifolds was introduced by U. C. De and N. Guha [18]. A 

Riemannian manifold (Mn, g) (n  2) is called generalized recurrent if its curvature tensor R satisfies the 
condition 

 ∇x R  Y, Z U = ω X R Y, Z U + μ X  g Z, U Y − g Y, U Z , 
where ⍵ and 𝜇 are 1-forms with 𝜇≠0 and these are defined by 

                                            ω X = g X, A ,         μ X = g(X, B) 

where A and B are the vector fields associated with 1-forms ⍵ and 𝜇 respectively.  

 

In 1985, Oubina [7] introduced the notion of Trans-Sasakian manifolds which contains both the class 

of Sasakian & cosympletic structures closed related to the locally conformal Kahler manifolds. Trans-Sasakian 

manifolds of type (0, 0), (α, 0), (0, β) are the cosympleties, α-Sasakian & β-Kenmotsu manifold, respectively. In 

particular if α=1, β=0 & α=0, β=1 then a Trans-Sasakian manifold reduces to a Sasakian and Kenmotsu 
manifold respectively. Thus Trans-Sasakian structures provide a large class of generalized quasi-Sasakian 

structures. In 2004 [11] studied on generalized recurrent Sasakian manifolds. In 2010 [17], studied on 

generalized ϕ-recurrent trans-Sasakian manifolds. In 2002, Kim, Prasad & Tripathi [9] studied generalized Ricci 

recurrent Trans-Sasakian manifolds. On the other hand, Many authors recently have studied Lorentzian α - 

Sasakian manifolds [2] and Lorentzian β- Kenmotsu manifolds [4], [5]. In 2011, S.S.Pujar and V.J. Khairnar 

[14] have initiated the study of Lorentzian Trans-Sasakian manifolds and studied the basic results with some of 

its properties. Earlier to this, S. S. Pujar [16] has initiated the study of δ -Lorentzian α- Sasakian manifolds [10] 

and δ Lorentzian β-Kenmotsu manifolds [14]. Also, S. S. Pujar and V.J.Khairnar [15] have continued the work 

on Lorentzian manifolds and in fact studied the properties of weak symmetries of Lorentzian manifolds.  

The object of the present paper is to study generalized recurrent and Ricci recurrent Lorentzian Trans-

Sasakian manifolds. Section 2 deals with preliminaries of Lorentzian Trans-Sasakian manifolds. However in 
section 3 we introduced the notion of generalized recurrent lorentzian trans-Sasakian manifold and obtain the 

relations between, the associated 1-forms ⍵ and 𝜇 also obtained the separate theorem for the relationship 

between the 1-form ⍵ and 𝜇. At the end of section 3, we generalize some of the results of [11] and some of 

those of [3]. Section 4 is devoted to a generalized Ricci recurrent Lorentzian Trans-Sasakian manifolds.                                                                                                                                    

 

II. Lorentzian Trans-Sasakian Manifolds 
Let M be lorentzian manifold of dimension 2n+1 [Prakasha, D. G. Bugewadi C. S. & Basavavajappa N. 

S. 2008] with a lorentzian structure (ϕ, , η, g) where ϕ is a (1, 1) tensor field,  is a vector field, η is a 1-form 
and Lorentzian metric g which satisfy  

                                       () -1, 0, (X)0                    (2.1) 

                                       2XX+(X), g(X, )(X)                   (2.2) 

                                      g(X, Y) g(X, Y)+ (X) (Y)                   (2.3) 
                                                   and       g( φX, Y) = g (X, φY) 

for all X, Y,  C∞ vector fields on M. 

 
In Tanno.S.[12], classified the connected almost contact metric manifolds whose automorphism groups 

possesses the maximum dimension. For such a manifold the sectional curvature of the plane section containing ξ 
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is constant, say c. He showed that they can be divided into three classes. (1) Homogeneous normal contact 

Riemannian manifolds with c > 0. It is known that the manifolds of class (1) are characterized by admitting a 

Sasakian structure. Other two classes can be seen in Tanno [12].In Grey and Harvella [1], the classification of 
almost Hremitian manifolds,  there appears a classW4 of Hermitian manifolds which are closely related to the 

conformal Kaehler manifolds .The class C6⨁C5[8] coincides with the class of the trans-Sasakian structure of 

type (α, β). In fact, the local nature of the two sub classes, namely C6and C5of trans-Sasakian structures are 

characterized completely. An almost contact metric structure on M is called a trans-Sasakian (please see details 

in [6] and [1]) if (MxR, J,G) belongs to the class W4, where J is the almost complex structure on MxR defined 

by                                              

J  Z, f
d

dt
 =  ∅Z − fξ, η(Z)

d

dt
 , 

 

for all vector fields X on M and smooth function f on MxR and G is the product metric on MxR. This may be 

expressed by the condition 
 

                     (∇Xϕ)(Y) = α {g(X, Y) ξ − η(Y) X} + β {g(ϕ(X), Y )ξ − η(Y )ϕ(X)},                                       (2.3) 

 

for any vector fields X and Y on M , ∇ denotes the Levi-Civita connection with respect to g , α and β 

are smooth functions on M. The existence of condition (2.3) is ensured by the above discussion. 

In a Lorentzian Trans-Sasakian manifold M
2n+1

(ϕ, , η, g) the following relation hold [13] 

                                                    ∇Xξ= -αX-β{X+η(X)  }                                             (2.5) 

                                                          (∇X η) (Y) = αg(X, Y)+ β[g (X, Y)+ η(X) η(Y)]                                            (2.6) 

R (X, Y)  = ( α2+β2) { η(Y) X- η(X) Y} 

            +2αβ {η(Y)X-η(X)Y} 

                                                                          +(Y α) X-(X α) (Y)+(Yβ) 2X-(Xβ) 2Y                     (2.7) 
 

η(R (X, Y) Z) = (α2 + β2) [η(X)g (Y, Z) -η(Y)g (X, Z)] 

                      +2α β [η(X)g (Y, Z) -η(Y)g (X, Z)] 

             -(Y α)g(X, Z) +(X α)g (Y, Z) 

                                                              -(Yβ)g(2X, Z) +(Xβ)g(2Y, Z)                                         (2.8) 
 

S(X, ) = {2n (α2+β2)- β} η(X)+(2n-1) (X β) – (X)α 

                                                        +(2α β η(X)+X α)𝛹                                                 (2.9) 
 

                                     R(, Y) = {α2 +β2 - β} 2Y+(2αβ - α) Y                                             (2.10) 
 

                                     S (, ) = -2η{α2+β2 - β}                                                                          (2.11) 

                                      2αβ - α =0                                                                                      (2.12) 
For any vector field X, Y, Z on M. Where S is Ricci curvature tensor of type (1, 1) and Q is Ricci operator given 

by  

S X, ξ = g QX, Y              and              ψ = g(ϕei , ei) 

 

III. Generalized Recurrent Lorentzian Trans-Sasakian Manifolds 
Definition3.1. A Lorentzian Trans-Sasakian manifold (M, g) of dimension 2n+1 is called generalized recurrent 

if its curvature tensor R satisfies the condition 

                                                 ∇x R  Y, Z U = ω X R Y, Z U + μ X  g Z, U Y − g Y, U Z ,                          (3.1) 

Where ⍵ and 𝜇 are 1-forms with 𝜇≠0 and these are defined by 

                                                       ω X = g X, A ,         μ X = g(X, B) 

Where A and B are the vector fields associated with 1-forms ⍵ and 𝜇 respectively. 

𝜉-Sectional Curvature. 

The 𝜉-Sectional Curvature K(𝜉, W) of a Lorentzian trans-Sasakian manifold for a unit vector field W orthogonal 

to 𝜉 is given by 

                                                    K(𝜉, W)=g{R(𝜉, W)𝜉, W} 

From the relation (2.10) and (2.12) we have 

                                               R(, W) = {α2 +β2 - β}( W+(W)), 

                                               K(𝜉, W)=g{R(𝜉, W)𝜉, W} 

                                                            ={α
2
 +β

2
 - β}[g(W, W)+(W)g(, W)] 

                                                            ={α2 +β2 - β} 
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Note that if the Lorentzian trans-Sasakian manifold M is of non vanishing 𝜉-Sectional Curvature, then  

α2 +β2 - β≠0, and the Lorentzian trans-Sasakian manifold M is of vanishing 𝜉-Sectional Curvature if and only if  

α2 +β2 - β=0. 

Remark. For a Lorentzian β – Kenmotsu manifold , ξ- sectional curvature K(ξ,X) = 2 -𝜉 .  
For a Lorentzian α – Sasakian manifold, ξ- sectional curvature K (ξ, X) =α2      

For a Lorentzian Kenmotsu manifold, ξ- sectional curvature K (ξ, X) =1        

 For a Lorentzian Sasakian manifold, ξ- sectional curvature K (ξ, X) =1   

Suppose a generalized recurrent weakly symmetric Lorentzian trans-Sasakian manifold is locally symmetric 

then ∇R=0 so that from (3.1) we have 

                                             ω X R Y, Z U + μ X  g Z, U Y − g Y, U Z = 0                                                 (3.2) 

Now (3.2) can be written as 

                                             ω X R Y, Z, U, V + μ X  g Z, U g Y, V − g Y, U g Z, V  = 0                          (3.3) 

                                           where   R Y, Z, U, V = g(R Y, Z U, V) 

Now contracting Y and V in (3.3), we get  

                                           ω X S Z, U + 2nμ X g Z, U = 0                                                                         (3.4) 

Next put Z=U=𝜉 in (3.4) we find 

                                           α2 + β2 − ξβ ω X − 2nμ X = 0 
For any vector field X so that 

                                         α2 + β2 − ξβ ω − 2nμ = 0                                                                                      (3.5) 
Theorem3.1. If a generalized recurrent weakly symmetric Lorentzian trans-Sasakian manifold M (n>1) of non 

vanishing 𝜉-sectional curvature is locally symmetric, then the1-form ⍵ and 𝜇 are related by (3.5). 

Corollary3.1. If a generalized recurrent weakly symmetric Lorentzian trans-Sasakian manifold M (n>1) with 

non zero constant is locally symmetric, then the relation ⍵-2n𝜇=0 holds. 

Theorem3.2. If a generalized recurrent weakly symmetric Lorentzian trans-Sasakian manifold M (n>1) of zero 

𝜉-sectional curvature is locally symmetric, if and only if both 1-form ⍵ and 𝜇 vanish. 

Proof. For a locally symmetric space (3.2) holds. If the 𝜉 sectional curvature vanishes, then from (3.5), 𝜇=0. 

Again from (3.2), it follows that ⍵=0. Second part is obvious from (3.1). 

Corollary3.2. If a generalized recurrent weakly symmetric Lorentzian Sasakian manifold M (n>1) of zero 𝜉-

sectional curvature is locally symmetric, if and only if both 1-form ⍵ and 𝜇 vanish. 

Now taking Y=Z=U=𝜉 in (3.1) we get 

                                     ∇x R  ξ, ξ ξ = ω X R ξ, ξ ξ + μ X  g ξ, ξ ξ − g ξ, ξ ξ ,                                               (3.6) 

By using (2.2), (2.10) in (3.6) we get   

                                                ∇x R  ξ, ξ ξ = 0                                                                                                  (3.7) 

Now consider left hand side of (3.7), 

                                   ∇X R  ξ, ξ ξ = ∇X R ξ, ξ ξ − R ∇Xξ, ξ ξ − R ξ, ∇Xξ ξ − R(ξ, ξ)∇Xξ      
Using the skew symmetric of the curvature tensor R the middle two terms in the above equation will vanish, 

Also using the fact that R(𝜉, 𝜉)𝜉=0 hence 

                                     ∇X R  ξ, ξ ξ = −R(ξ, ξ)∇Xξ              
                                                         =  R ξ, ∇Xξ ξ     
Now by using (2.5), we get 

                                    ∇X R  ξ, ξ ξ =  R ξ, ∇Xξ ξ     

                                                         = R(ξ, −αϕX − β X + η X ξ )ξ 

                                                         = −αR ξ, ϕX ξ − βR ξ, X ξ − βη X R(ξ, ξ)ξ 

                                                         = −α{ α2 + β2 − ξβ ϕX +  2αβ − ξα ϕ2X} 
                                                             −β{ α2 + β2 − ξβ ϕ2X +  2αβ − ξα ϕX} 
                                                         =  α2 + β2 − ξβ  −αϕX − βϕ2X  
                                                             + 2αβ − ξα [−αϕ2X − βϕX] 
Now using (2.12), we get 

                                           ∇X R  ξ, ξ ξ =  α2 + β2 − ξβ  −αϕX − βϕ2X                                                       (3.8) 
From (3.7) and (3.8), we find 

                                           α2 + β2 − ξβ  −αϕX − βϕ2X =0                                                                          (3.9) 
That is 

                                         α2 + β2 − ξβ ∇Xξ = 0                                                                                            (3.10) 
From which we state the following theorem. 

Theorem3.3. In a generalized recurrent Lorentzian Trans-Sasakian manifold M of non vanishing 𝜉-sectional 

curvature, the structure vector field 𝜉 is of constant length unity.  

Proof. Since M is of non vanishing 𝜉-sectional curvature from (3.10) we have 

                                                                 ∇Xξ = 0                                                                                            (3.11) 
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This proves that 𝜉 is a constant vector and further  

                  (𝜉)=-1,                implies    g(𝜉, 𝜉)=-1 ,            that is   |𝜉|=-1 

From which it follows that th e structure vector field 𝜉 is of unit length and this proves the theorem.   

Corollary3.3. In a generalized recurrent Lorentzian α-Sasakian manifold M with α non zero, the structure vector 

field 𝜉 is of constant length unity. 

Proof. From theorem 3.3 and (3.9), as β=0, it follows that 

−α3ϕX = 0 
Since α is non zero, ϕX=0 so that from (2.5) equation (3.11) follows. With similar argument as in the Theorem 

3.3, the proof follows. 

Corollary3.4. In a generalized recurrent Lorentzian Sasakian manifold M, the structure vector field 𝜉 is of 

constant length unity. 

Proof. For a Lorentzian Sasakian manifold α=1, β=0 with similar arguments as in theorem 3.3 the proof follows.  
Corollary3.5. In a generalized recurrent Lorentzian β-Kenmotsu manifold M with β non zero, the structure 

vector field 𝜉 is of constant length unity. 

Proof. From theorem 3.3 and (3.9), as α=0, it follows that  

                                                                    β3ϕ2X = 0 

Since β is non zero, ϕ2X = 0 so that from (2.5) equation (3.11) follows. With similar arguments as in the 
Theorem 3.3 the proof follows. 

Corollary3.6. In a generalized recurrent Lorentzian Kenmotsu manifold M, the structure vector field 𝜉 is of 

constant length unity. 

Proof. For a Lorentzian Sasakian manifold α=0, β=1 with similar arguments as in theorem 3.3 the proof follows.  

Theorem3.4. In a generalized recurrent Lorentzian trans-Sasakian manifold (M, g) of non vanishing 𝜉 –

sectional curvature, the following relation holds 

ω X  α2 + β2 − ξβ − μ X =  2αXα + 2βXβ − X(ξβ)   

                                                   −
α

n
  2n − 1  ϕX β −  ϕ2X α + (ϕX)ψ  

                                                  −
β

n
  2n α2 + β2 − ξβ η X +  2n − 1 Xβ −  ϕX α + 2αβη X + Xα)ψ  

                                                         −2βη X (α2 + β2 − ξβ) 

for any vector field X∊𝜒(M).         

Proof.  From (3.1), we have 

                                     ∇x R  Y, Z U = ω X R Y, Z U + μ X  g Z, U Y − g Y, U Z ,   
The above equation can be written as  

                                  ∇X R  Y, Z, U, V = ω X R Y, Z, U, V + μ(X) g Z, U g(Y, V) − g Y, U g(Z, V)               
(3.12) 

Where                         ω X = g X, A ,                μ X = g X, B . 
     Let  ei : i = 1,2,3… 2n + 1, e2n+1 = ξ   be the orthonormal basis of the tangent space  TPM at any point P of 

the manifold. Then setting Y = V = ei in (3.12) and taking the summation over i , 1≤ i ≤ 2n+1, we get 

                                ∇X S  Z, U = ω X S Z, U + 2nμ(X)                                                                              (3.13) 

Putting Z=U=𝜉 in (3.13), we get 

                                    ∇X S  ξ, ξ = ω X S ξ, ξ + 2nμ(X)                                                                                 (3.14)  

Using (2.11) in (3.14) we get 

                             ∇X S  ξ, ξ = −2nω X  α2 + β2 − ξβ + 2nμ(X)                                                              (3.15) 
The left hand side of (3.15) can be expanded as 

                             ∇X S  ξ, ξ = ∇X S ξ, ξ  − S ∇Xξ, ξ − S(ξ, ∇Xξ)                                                               (3.16) 

Using symmetric property of Ricci tensor S (3.16) can be written as 

                            ∇X S  ξ, ξ = ∇X S ξ, ξ  − 2S ∇Xξ, ξ                                                                                  (3.17) 

Using (2.11) and (2.5) in (3.17) we have 

 ∇X S  ξ, ξ = ∇X  −2n(α2 + β2 − ξβ) − 2S(−αϕX − β X + η X ξ , ξ) 

                                                        = −2nX α2 + β2 − ξβ + 2αS ϕX, ξ + 2βS X, ξ − 2βη X S(ξ, ξ)        (3.18)                                   
                                                                 

Using (2.9) and (2.11) in (3.18) we get 

                               ∇X S  ξ, ξ = −2nX α2 + β2 − ξβ + 2α (2n − 1)ϕX)β − (ϕ2X)α + (ϕX)ψ                                    
                                                   +2β  2n α2 + β2 − ξβ η X +  2n − 1 Xβ −  ϕX α + (2αβη X + Xα)ψ  
                                                   +4nβη(X)(α2 + β2 − ξβ)                                                                              (3.19) 
Substituting (3.19), in (3.15), we get 

                    2n[ 2αXα + 2βXβ − X(ξβ ] − 2α (2n − 1)ϕX)β − (ϕ2X)α + (ϕX)ψ                                    
                            −2β  2n α2 + β2 − ξβ η X +  2n − 1 Xβ −  ϕX α + (2αβη X + Xα)ψ  
                         −4nβη(X)(α2 + β2 − ξβ) = 2nω X  α2 + β2 − ξβ − 2nμ(X)                                           (3.20) 
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Provided the manifold M is of non vanishing 𝜉-sectional curvature. Hence the proof of the theorem 3.4 follows 

from (3.20). 

Corollary3.7. In a generalized recurrent Lorentzian trans-Sasakian manifold (M, g) of vanishing 𝜉-sectional 

curvature, associated vector field 𝜇 is given by 

               μ X =
α

n
  2n − 1  ϕX β −  ϕ2X α + (ϕX)ψ  

                             + 
β

n
  2n α2 + β2 − ξβ η X +  2n − 1 Xβ −  ϕX α + 2αβη X + Xα)ψ   

Proof. If the 𝜉 –sectional curvature is zero, then from (3.20) proof follows. 

Corollary3.8. There is no generalized cosymplectic manifold unless the associated 1-form 𝜇 vanishes. 

Proof. Follows from Theorem 3.4. 

 

IV. On Generalized Ricci Recurrent Lorentzian Trans-Sasakian Manifold 
In this section, we study some of the properties of generalized Ricci recurrent Lorentzian trans-

Sasakian manifold. Further some special cases of our results are studied, just to show the geometrical 

significance of our results. 

Definition. A Riemannian manifold (M, g) is called generalized Ricci recrrent [5], if Ricci tensor S satisfies the 

following condition 

                                   ∇X S (Y, Z) = ω X S Y, Z + 2nμ X g(Y, Z)                                                                  (4.1)  

where ⍵ and 𝜇 are associated 1-forms and these are defined by  

                                ω X = g X, A ,         μ X = g(X, B) 

Theorem4.1. If M is a generalized Ricci recurrent Lorentzian trans-Sasakian manifold of non vanishing 𝜉-
sectional curvature, then the following relation holds 

ω X  α2 + β2 − ξβ + μ X =  2αXα + 2βXβ − X(ξβ)   

                                                   −
α

n
  2n − 1  ϕX β −  ϕ2X α + (ϕX)ψ  

                                                  −
β

n
  2n α2 + β2 − ξβ η X +  2n − 1 Xβ −  ϕX α + 2αβη X + Xα)ψ  

                                                         −2βη X (α2 + β2 − ξβ)                                                                                  (4.2) 

for any vector field X∊𝜒(M).         

Proof. Now taking Y=Z=𝜉 in (4.1), we have 

                                  ∇X S  ξ, ξ = ω X S ξ, ξ + 2nμ X g(ξ, ξ)                                                                       (4.3)  

Using (2.11) in (4.3) we get 

                                ∇X S  ξ, ξ = −2nω X  α2 + β2 − ξβ − 2nμ(X)                                                             (4.4) 
The left hand side of (4.4) can be expanded as 

                               ∇X S  ξ, ξ = ∇X S ξ, ξ  − S ∇Xξ, ξ − S(ξ, ∇Xξ)                                                               (4.5) 

Using symmetric property of Ricci tensor S (4.4) can be written as 

                               ∇X S  ξ, ξ = ∇X S ξ, ξ  − 2S ∇Xξ, ξ                                                                                 (4.6) 

Using (2.11) and (2.5) in (4.6) we have 

 ∇X S  ξ, ξ = ∇X  −2n(α2 + β2 − ξβ) − 2S(−αϕX − β X + η X ξ , ξ) 

                                                        = −2nX α2 + β2 − ξβ + 2αS ϕX, ξ + 2βS X, ξ − 2βη X S(ξ, ξ)          (4.7)                                                                                                                                          
                                                                                        

Using (2.9) and (2.11) in (4.7) we get 

                            ∇X S  ξ, ξ = −2nX α2 + β2 − ξβ + 2α (2n − 1)ϕX)β − (ϕ2X)α + (ϕX)ψ                                    
                                                +2β  2n α2 + β2 − ξβ η X +  2n − 1 Xβ −  ϕX α + (2αβη X + Xα)ψ  
                                                +4nβη(X)(α2 + β2 − ξβ)                                                                                   (4.8) 
Substituting (4.8), in (4.4), we get 

               −2n  2αXα + 2βXβ − X(ξβ  + 2α (2n − 1)ϕX)β − (ϕ2X)α + (ϕX)ψ                                    
                     +2β  2n α2 + β2 − ξβ η X +  2n − 1 Xβ −  ϕX α + (2αβη X + Xα)ψ  
                     +4nβη(X)(α2 + β2 − ξβ) = −2nω X  α2 + β2 − ξβ − 2nμ(X)                                               (4.9) 

Provided the manifold M is of non vanishing 𝜉-sectional curvature. Hence the proof of the theorem 4.1 follows 

from (4.9). 

Corollary4.1. A generalized Ricci recurrent Lorentzian β –Kenmotsu manifold with β non zero constant the 

relation β2ω + μ = 0 holds. 
Proof. Follows from Theorem 4.1. 

Corollary4.2. A generalized Ricci recurrent Lorentzian α –Sasakian manifold with α non zero constant the 

relation α2ω + μ = 0 holds. 

Proof. Follows from Theorem 4.1. 
Corollary4.3. A generalized Ricci recurrent Lorentzian Kenmotsu manifold, the associated 1-forms are in the 

opposite direction.  

Proof. From the statement of the corollary and Theorem 4.1 it follows that ⍵ = − 𝜇 which proves the corollary. 
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Corollary4.4. A generalized Ricci recurrent Lorentzian Sasakian manifold, the associated 1-forms are in the 

opposite direction.  

Proof. From the statement of the corollary 4.2 and Theorem 4.1 it follows that ⍵ = − 𝜇 which proves the 
corollary. 
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