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Abstract: Pi value equal to 3.14159265358… is derived from the Exhaustion method of Archimedes (240 BC) 

of Syracuse, Greece.  It is the only one geometrical method available even now.  The second method to compute 

3.14159265358… is the infinite series.  These are available in larger numbers.  The infinite series which are of 

different nature are so complex, they can be understood and used to obtain trillion of decimals to 

3.14159265358… with the use of super computers only.  One unfortunate thing about this value is, it is still an 

approximate value.  In the present study, the exact  value is obtained.  It is 
14 2

4


 = 3.14644660942… A 

different approach is followed here by the blessings of the God.  The areas of constituent rectangles of the 

superscribed square, are estimated both arithmetically, and in terms of  of the inscribed circle.  And  value 
thus derived from this study of correct relationship among superscribed square, inscribed circle and constituent 

rectangles of the square, is exact. 
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I. Introduction 

Square is an algebraic geometrical entity.  It has four sides and two diagonals which are straight lines.  

A circle can be inscribed in the square.  The side of the square and the diameter of the inscribed circle are same.  

This similarity between diameter and side, has made possible to find out the exact length of the circumference 

and the exact extent of the area of the circle, when this interrelationship between circle and its superscribed 

square, are understood in their right perspective.  The difficulty is, the inscribed circle is a curvature, though, its 

diameter/ radius is a straight line as in the case of side, diagonal of the square.  When we say a different 
approach is adopted, it means, these are entirely new to the literature of mathematics. The universal acceptance 

to the new principles observed in the following method is a tough job and takes time.  However, as the 

following reasoning ways are cent percent in accordance with the known principles, understanding of the idea is 

easy. 

To study the different dimensions, such as, circumference and area of circle,  constant is inevitable.  
Similarly, to understand perimeter and area of the square, 4a and a2 are adopted and hence, no constant similar 

to circle is necessary in square.  In the present study, the area of the square is divided into five rectangles.  The 

areas of rectangles are calculated in two ways: they are: 1. Arithmetical way and 2. In terms of  of the 

inscribed circle.  Finally, the arithmetical values are equated to formulas having , and the value of  is derived 
ultimately, which is exact.   

 

II. Procedure 

Draw a square and its two diagonals.  Inscribe a circle in the square.   

1. Square = ABCD, AB = Side = a 

2. Diagonals = AC = BD = 2a  

3. ‘O’ Centre, EF = diameter = side = a 

4. The circumference of the circle intersects two diagonals of four points: E, H, F and G.  Draw a parallel 

line IJ to the sides DC, passing through G and F. 

5. OG = OF = radius = a/2 

6. Triangle GOF. GF = hypotenuse = OG 2  = 
a

2
2
  = 

2a

2
 = GF 

                                                
* This author studied B.Sc., (Zoology as Major) and M.Sc., (Zoology) during the years 1963-68 in the Sri 

Venkateswara University College, Tirupati, Chittoor district, Andhra Pradesh, India.  And hence this author 

as a mark of his gratitude to the Alma Mater, this method is named after University’s Honour. 
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7. IJ = side = a 

8. DI = IG = FJ = JC = 
Side hypotenuse

2


 = 

IJ GF

2


  

= 
2a 1

a
2 2

 
  

 
 = 

2 2
a

4

 
  
 

 = JC 

9. JC = 
2 2

a
4

 
  
 

, CB = side = a 

JB = CB – CJ = 
2 2

a a
4

 
  
 

 = 
2 2

a
4

 
  
 

 

10. Bisect JB twice of CB side of Fig-2 

JB  JL + LB  JK + KL + LM + MB 

= 
2 2

a
4

 
  
 

  
2 2

a
8

 
  
 

  
2 2

a
16

 
  
 

 

 
 

11. Similarly, bisect IA twice, of AD side of Fig-2 

IA  IP + PA  IQ + QP + PN + NA 

12. Join QK, PL, and NM. 
13. Finally, the ABCD square is divided into five rectangles. 

DIJC, IQKJ, QPLK, PNML and NABM  

Out of the five rectangles, the uppermost rectangle DIJC is of different dimension from the other four bottomed 

rectangles.  

14. Area of DIJC rectangle 

= DI x IJ = 
2 2

a a
4

 
  

 
 = 

22 2
a

4

 
  
 

 

15. The lower four rectangles are of same area.  For example one rectangle  

= IQKJ = IQ x QK = 
2 2

a a
16

 
  

 
=

22 2
a

16

 
  
 

 

16. Area of 4 rectangles 
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= IQKJ + QPLK + PNML + NABM = 
22 2

4 a
16

 
  
 

 = 
22 2

a
4

 
  
 

 

17. Area of the square ABCD 
= DIJC + 4 bottomed rectangles = a2 

= 
2 2 22 2 2 2

a 4 a a
4 16

    
       

   
 

 

Part-II 

18. Let us repeat that  

Area of the ABCD square = a2 

Area of the inscribed circle = 

2 2d a

4 4

 
 ; where diameter = side = a 

19. When side = diameter = a = 1 

Area of the ABCD square = a2 = 1 x 1 = 1 

Area of the inscribed circle = 

2 2d a 1 1

4 4 4 4

    
    

20. Corner area in the square (of Figs 1, 2, and 3) 

= Square area – circle area 

= 
4

1
4 4

 
   

21. It is true that any bottomed 4 rectangles, is equal to  

the corner area of the square of Figs 1, 2 and 3.  Thus,  

bottomed rectangle = corner area 

      
22 2

a
16

 
  
 

      = 
2 2

1 1
16

 
   

 
  = 

2 2

16


 

 

Part-III 

22. Let us prove it i.e. S. No. 21 

23. The inscribed circle is equal to the sum of the areas of upper most rectangle DIJC = 
22 2

a
4

 
  
 

 of 

S.No. 14 and next lower 3 rectangles IQJK, QPLK and PNML, and each is equal to 
22 2

a
16

 
  
 

 of S.No. 15 

2 22 2 2 2
a 3 a

4 16

    
      

   
 = 

2
214 2 a

a
16 4

  
  

 
 

24. Area of the inscribed circle = 

2a

4 4

 
    where a = 1 

Area of the corner region = 
4

4

  
 
 

 (S.No. 20) 

Area of the inscribed circle + corner area = square area 

  
4


 + 

4

4

 
  = 1 

25. The sum of the areas of 4 bottomed rectangles 

= Square area – Uppermost rectangle DIJC 
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= 
2 22 2

a a
4

 
  
 

  = 
22 2

a
4

 
  
 

 and 

         S. No. 14  this is equal to S.No. 16 
26. As the area of the corner region is equal to any one of the 4 bottomed rectangles, 

then it is = 
24

a
4

 
 
 

  (S.No. 20 & 21) 

27. Then the sum of the areas of 4 bottomed rectangles 

= 
24

4 a
4

 
 
 

 =   24 a  

28. Finally, 

Area of the uppermost rectangle DIJC 

= Square area – 4 bottomed rectangles 

=    2 2 2a 4 a 3 a     

29. CJ length =  3 a  

Side = AB = IJ = a 

30. Area of the upper most rectangle DIJC 

= CJ x IJ =  3 a a   =   23 a  

31. Thus, the areas of five rectangles which are interpreted in terms of  above, are 

 Uppermost rectangle DIJC =   23 a  

 4 bottomed rectangles =   24 a  

 Area of the ABCD square  

 Uppermost rectangle + 4 bottomed rectangles  

=    2 2 23 a 4 a a     

 Area of the inscribed circle  

   = Uppermost rectangle DIJC + 3 bottomed rectangles 

   =   2 2 24
3 a 3 a a

4 4

    
     

   
 

This is the end of the process of proof. 

32. As the corner area is equal to  

1. Arithmetically = 
22 2

a
16

 
  
 

 = 
2 2

16

 
  
 

 S.No. 21 where a = 1  

and 2. in terms of  = 
4

4

 
  S.No. 20 

then 
4 2 2

4 16

 
  

 
14 2

4


 

 
 

III. Conclusion 

It is well known, that a2 is the formula to find out area of a square or a rectangle.  In this paper besides 

a2, formulae, in terms of , of the inscribed circle in a square, are obtained, and equated to the classical 
arithmetical values of a2.  One has to admire the Nature, that, a circle’s area can also be represented exactly 

equal, by the areas of rectangles, thus, the arithmetical values of these rectangles, are equated to that of a circle, 

which thus give rise to new  value 
14 2

4


=3.14644660942… This author stands and bow down and 
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dedicates this work to the Nature.  The Nature is the visible speck of the infinite Cosmos.  The Creator exists 

in the invisible Energy form of this infinite Cosmos.  We call this Creator as GOD and this author offers 

himself, surrenders himself totally and prays to THE LORD of the Cosmos of His/ Hers/ It’s infinite 
goodness, as an infinitesimally, a small living moving body, as a mark of humble gratitude to THE LORD. 
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