Strongly *α* * **Continuous Functions in Topolgical Spaces**

S. Pious Missier¹ & P. Anbarasi Rodrigo²

Associate Professor, PG and Research Department of Mathematics VOC College, Thoothukudi Full Time Research Scholar, PG and Research Department of Mathematics VOC College, Thoothukudi

Abstract: The Purpose Of This Paper Is To Introduce Strongly And Perfectly α *Continuous Maps And Basic Properties And Theorems Are Investigated. Also, We Introduced α * Open And Closed Maps And Their Properties Are Discussed.

Mathematics Subject Classifications: 54ao5

Keywords and phrases: strongly α * continuous functions, perfectly α * continuous functions, α *open maps and α *closed maps.

I. Introduction

In 1960, Levine . N [3] introduced strong continuity in topological spaces. Beceren.Y [1] in 2000, introduced and studied on strongly α continuous functions. Also, in 1982 Malghan [5] introduced the generalized closed mappings Recently, S.Pious Missier and P. Anbarasi Rodrigo[8] have introduced the concept of α * -open sets and studied their properties. In this paper we introduce and investigate a new class of functions called strongly α * continuous functions. Also we studied about α * open and α * closed maps and their relations with various maps

II. Preliminaries

Throughout this paper (X, τ) , (Y, σ) and (Z, η) or X, Y, Z represent non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A) and int(A) denote the closure and the interior of A respectively. The power set of X is denoted by P(X).

Definition 2.1: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a **strongly continuous** [3]if f⁻¹(O) is both open and closed in (X, τ) for each subset O in (Y, σ) .

Definition 2.2: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a α – continuous [4] if f⁻¹(O) is a α open set [6] of (X, τ) for every open set O of (Y, σ) .

Definition 2.3: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a α * continuous [9] if f⁻¹(O) is a α *open set of (X, τ) for every open set O of (Y, σ) .

Definition 2.4: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a **g** – **continuous** [10] if f⁻¹(O) is a **g** -open set [2] of (X, τ) for every open set O of (Y, σ) .

Definition 2.5: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a **perfectly continuous** [7] if f⁻¹(O) is both open and closed in (X, τ) for every open set O in (Y, σ) .

Definition 2.6: A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a **g-closed** [5] if f(O) is g-closed in (Y, σ) for every closed set O in (X, τ) .

Definition 2.7: A Topological space X is said to be $\alpha * T_{1/2}$ space [9] if every $\alpha *$ open set of X is open in X. **Theorem 2.8**[8]:

(i) Every open set is α *- open and every closed set is α *-closed set

(ii) Every α -open set is α *-open and every α -closed set is α *-closed.

(iii) Every g-open set is α *-open and every g-closed set is α *-closed.

III. Strongly α * Continuous Function

We introduce the following definition.

Definition 3.1: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a strongly α * continuous if the inverse image of every α *open set in (Y, σ) is open in (X, τ) .

Theorem 3.2: If a map f: $X \to Y$ from a topological spaces X into a topological spaces Y is strongly α^* continuous then it is continuous.

Proof: Let O be a open set in Y. Since every open set is α *open, O is α *open in Y. Since f is strongly α *continuous, f⁻¹(O) is open in X. Therefore f is continuous.

Remark 3.3: The following example supports that the converse of the above theorem is not true in general.

Example 3.4: Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, X\}, \sigma = \{\phi, \{ab\}, Y\}$. Let g: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by g (a) = g(b) = a, g(c) = b. Clearly, g is not strongly α *continuous since $\{a\}$ is α * open set in Y but $g^{-1}(\{a\}) = \{a, b\}$ is not a open set of X. However, g is continuous.

Theorem 3.5: A map f: X \rightarrow Y from a topological spaces X into a topological spaces Y is strongly α^* continuous if and only if the inverse image of every α^* closed set in Y is closed in X.

Proof: Assume that f is strongly α * continuous. Let O be any α * closed set in Y. Then O^c is α *open in Y. Since f is strongly α * continuous, f⁻¹(O^c) is open in X. But f⁻¹(O^c) = X/f¹(O) and so f⁻¹(O) is closed in X.

Conversely, assume that the inverse image of every α * closed set in Y is closed in X. Then O^c is α *closed in Y. By assumption, f⁻¹(O^c) is closed in X, but f⁻¹(O^c)= X/ f⁻¹(O) and so f⁻¹(O) is open in X. Therefore, f is strongly α * continuous.

Theorem 3.6: If a map f: $X \rightarrow Y$ is strongly continuous then it is strongly α *continuous.

Proof: Assume that f is strongly continuous. Let O be any α *open set in Y. Since f is strongly continuous, f⁻¹(O)is open in X. Therefore, f is strongly α *continuous.

Remark 3.7: The converse of the above theorem need not be true.

Example 3.8: Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{ab\}, \{ac\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{ab\}, Y\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(a) = a = f(b), f(c) = c. clearly, f is strongly α *continuous. But $f^{-1}(\{a\}) = \{a, b\}$ is open in X, but not closed in X. Therefore f is not strongly continuous.

Theorem 3.9: If a map f: $X \to Y$ is strongly α * continuous then it is α *continuous.

Proof: Let O be an open set in Y. By [8] O is α^* open in Y. Since f is strongly α^* continuous \Rightarrow f⁻¹(O) is open in X. By [8] f⁻¹(O) is α^* open in X. Therefore, f is α^* continuous.

Remark 3.10: The converse of the above theorem need not be true.

Example 3.11: Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{ab\}, X\}$ and $\sigma = \{\phi, \{a\}, \{ab\}, Y\}, \alpha * O(Y, \sigma) = P(X)$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(a) = f(d) = a, f(b) = b, f(c) = c. Clearly, f is α *continuous. But f ${}^{1}(\{a\}) = \{a,d\}$ is not open in X. Therefore f is not strongly α *continuous.

Theorem 3.12: If a map f: X \rightarrow Y is strongly α * continuous and a map g: Y \rightarrow Z is α *continuous then g \circ f: X \rightarrow Z is continuous.

Proof: Let O be any open set in Z. Since g is α * continuous, g⁻¹(O) is α * open in Y. Since f is strongly α * continuous f⁻¹(g⁻¹(O)) is open in X. But (g of)⁻¹ (O) = f⁻¹(g⁻¹(O)). Therefore, g of is continuous.

Theorem 3.13: If a map f: X \rightarrow Y is strongly α * continuous and a map g: Y \rightarrow Z is α *irresolute, then g \circ f: X \rightarrow Z is strongly α * continuous.

Proof: Let O be any α *open set in Z. Since g is α * irresolute, g ⁻¹(O) is α * open in Y. Also, f is strongly α * continuous f ⁻¹(g ⁻¹(O)) is open in X. But (g of) ⁻¹ (O) = f ⁻¹(g ⁻¹(O)) is open in X. Hence, g o f: X \rightarrow Z is strongly α * continuous.

Theorem 3.14: If a map f: X \rightarrow Y is α * continuous and a map g: Y \rightarrow Z is strongly α *continuous, then g \circ f: X \rightarrow Z is α * irresolute.

Proof: Let O be any α *open set in Z. Since g is strongly α * continuous, g⁻¹(O) is open in Y. Also, f is α *continuous, f¹(g⁻¹(O)) is α *open in X. But (g of)⁻¹ (O) = f⁻¹(g⁻¹(O)). Hence, g o f: X \rightarrow Z is α * irresolute.

Theorem 3.15: Let X be any topological spaces and Y be a $\alpha * T_{1/2}$ space and f: X \rightarrow Y be a map. Then the following are equivalent

- 1) f is strongly α * continuous
- 2) f is continuous

Proof: (1) \Rightarrow (2) Let O be any open set in Y. By thm [] O is α * open in Y. Then f⁻¹(O) is open in X. Hence, f is continuous.

(2) \Rightarrow (1) Let O be any α * open in (Y, σ). Since, (Y, σ) is a α *T_{1/2} space, O is open in (Y, σ). Since, f is continuous. Then f⁻¹(O) is open in (X, τ). Hence, f is strongly α * continuous.

Theorem 3.16: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a map. Both (X, τ) and (Y, σ) are $\alpha * T_{1/2}$ space. Then the following are equivalent.

- 1) f is α * irresolute
- 2) f is strongly α * continuous
- 3) f is continuous
- 4) f is α * continuous

Proof: The proof is obvious.

Theorem 3.17: The composition of two strongly α * continuous maps is strongly α * continuous.

Proof: Let O be a α * open set in (Z, η) . Since, g is strongly α * continuous, we get g ⁻¹(O) is open in (Y, σ) . By thm [8] g ⁻¹(O) is α *open in (Y, σ) . As f is also strongly α * continuous, f ⁻¹(g⁻¹(O)) = (g \circ f)^{-1} (O) is open in (X, τ) . Hence, (g \circ f) is strongly α * continuous.

Theorem 3.18: If f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ be any two maps .Then their composition $g \circ f$: $(X, \tau) \rightarrow (Z, \eta)$ is strongly α * continuous if g is strongly α * continuous and f is continuous.

Proof: Let O be a α * open in (Z, η). Since, g is strongly α * continuous, g⁻¹(O) is open in (Y, σ). Since f is continuous, f⁻¹(g⁻¹(O)) = (g \circ f)⁻¹ (O) is open in (X, τ). Hence, (g \circ f) is strongly α * continuous.

IV. Perfectly α * Continuous Function

Definition 4.1: A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be perfectly α * continuous if the inverse image of every α *open set in (Y, σ) is both open and closed in (X, τ) .

Theorem 4.2: If a map f: $(X, \tau) \rightarrow (Y, \sigma)$ from a topological space (X, τ) into a topological space (Y, σ) is perfectly α * continuous then it is strongly α * continuous.

Proof: Assume that f is perfectly α * continuous. Let O be any α *open set in (Y, σ). Since, f is perfectly α * continuous, f⁻¹(O) is open in (X, τ). Therefore, f is strongly α * continuous.

Remark 4.3: The converse of the above theorem need not be true.

Example 4.4: Let $X = Y = \{a, b, c,d\}, \tau = \{\phi, \{a\}, \{b\}, \{ab\}, \{bc\}, \{abc\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{c\}, \{ab\}, \{ac\}, \{bc\}, \{abc\}, Y\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(b) = a = f(c), f(a) = c, f(d) = d. clearly, f is strongly α *continuous. But f⁻¹($\{a\}$) = $\{b,c\}$ is open in X, but not closed in X. Therefore f is not perfectly α * continuous.

Theorem 4.5: If a map f: $(X, \tau) \rightarrow (Y, \sigma)$ from a topological space (X, τ) into a topological space (Y, σ) is perfectly α * continuous then it is perfectly continuous .

Proof: Let O be an open set in Y. By thm [8] O is an α *open set in (Y, σ). Since f is perfectly α * continuous, $f^{-1}(O)$ is both open and closed in (X, τ). Therefore, f is perfectly continuous.

Remark 4.6 : The converse of the above theorem need not be true.

Example 4.7: Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{bc\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(a) = a, f(b) = b, f(c) = c. clearly, f is perfectly continuous. But the inverse image of α *open set in (Y, σ) [f⁻¹({ac}) = {ac}] is not open and closed in X. Therefore f is not perfectly α * continuous.

Theorem 4.8: A map f: $(X, \tau) \rightarrow (Y, \sigma)$ from a topological space (X, τ) into a topological space (Y, σ) is perfectly α * continuous if and only if f⁻¹(O) is both open and closed in (X, τ) for every α *closed set O in (Y, σ) .

Proof: Let O be any α *closed set in (Y, σ) . Then O^c is α *open in (Y, σ) . Since, f is perfectly α * continuous, $f^{-1}(O^c)$ is both open and closed in (X, τ) . But $f^{-1}(O^c) = X/f^{-1}(O)$ and so $f^{-1}(O)$ is both open and closed in (X, τ) .

Conversely, assume that the inverse image of every α *closed set in (Y, σ) is both open and closed in (X, τ). Let O be any α *open in (Y, σ). Then O^c is α *closed in (Y, σ). By assumption f⁻¹(O^c) is both open and closed in (X, τ). But f⁻¹(O^c) = X/ f⁻¹(O) and so f⁻¹(O) is both open and closed in (X, τ). Therefore, f is perfectly α * continuous.

Theorem 4.9: Let (X, τ) be a discrete topological space and (Y, σ) be any topological space. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a map, then the following statements are true.

1) f is strongly α * continuous

2) f is perfectly α * continuous

Proof: (1) \Rightarrow (2) Let O be any α * open set in (Y, σ). By hypothesis, f⁻¹(O) is open in (X, τ). Since (X, τ) is a discrete space, f⁻¹(O) is closed in (X, τ). f⁻¹(O) is both open and closed in (X, τ). Hence, f is perfectly α * continuous.

(2) \Rightarrow (1) Let O be any α * open set in (Y, σ). Then, f⁻¹(O) is both open and closed in (X, τ). Hence, f is strongly α * continuous.

Theorem 4.10: If f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ are perfectly α * continuous, then their composition $g \circ f$: $(X, \tau) \rightarrow (Z, \eta)$ is also perfectly α * continuous.

Proof: Let O be a α * open set in (Z, η) . Since, g is perfectly α * continuous. We get that g⁻¹(O) is open and closed in (Y, σ) . By thm [8] g⁻¹(O) is α * open in (Y, σ) . Since f is perfectly α * continuous, f⁻¹(g⁻¹(O)) = (g \circ f)⁻¹ (O) is both open and closed in (X, τ) . Hence, g \circ f is perfectly α * continuous.

Theorem 4.11: If f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ be any two maps . Then their composition is strongly α * continuous if g is perfectly α * continuous and f is continuous.

Proof: Let O be any α * open set in (Z, η). Then, g⁻¹(O) is open and closed in (Y, σ). Since, f is continuous. f⁻¹(g⁻¹(O)) = (g \circ f)⁻¹ (O) is open in (X, τ). Hence, g \circ f is strongly α * continuous.

Theorem 4.12: If a map f: $(X, \tau) \rightarrow (Y, \sigma)$ is perfectly α * continuous and a map g: $(Y, \sigma) \rightarrow (Z, \eta)$ is strongly α * continuous then the composition $g \circ f$: $(X, \tau) \rightarrow (Z, \eta)$ is perfectly α * continuous.

Proof: Let O be any α * open set in (Z, η). Then, g⁻¹(O) is open in (Y, σ).By thm [8]g⁻¹(O) is α *open in (Y, σ).By hypothesis, f⁻¹(g⁻¹(O)) = (g \circ f)⁻¹ (O) is both open and closed in (X, τ). Therefore, g \circ f is perfectly α * continuous.

V. α * Open maps and α * Closed maps

Definition 5.1: A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a α * open if image of each open set in X is α * open in Y. **Definition 5.2:** A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a α * closed if image of each closed set in X is α * closed in Y

Theorem 5.3: Every closed map is α *closed map.

Proof: The proof follows from the definitions and fact that every closed set is α *closed.

Remark 5.4: The converse of the above theorem need not be true.

Example 5.5: Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{ab\}, \{ac\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{ab\}, Y\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(a) = a, f(b) = b, f(c) = c. clearly, f is α *closed but not closed as the image of closed set $\{b\}$ in X is $\{b\}$ which is not closed set in Y.

Theorem 5.6: Every g-closed map is α *closed.

Proof: Let O be a closed set in X. Since f is g-closed map, f(O) is g-closed in Y. By [8] f(O) is α *closed in Y. Therefore, f is α *closed map.

Remark 5.7: The converse of the above theorem need not be true.

Example 5.8: Let $X = Y = \{a, b, c\}, \tau = \{\varphi, \{a\}, \{ab\}, \{ac\}, X\}$ and $\sigma = \{\varphi, \{a\}, \{b\}, \{ab\}, Y\}$, $GC(Y, \sigma) = \{\varphi, \{c\}, \{ac\}, \{bc\}, Y\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(a) = a, f(b) = b, f(c) = c. clearly, f is α *closed but not g - closed as the image of closed set $\{b\}$ in X is $\{b\}$ which is not g - closed set in Y.

Theorem 5.9: Every α - closed map is α *closed.

Proof: The proof follows from the definition and by Thm [8].

Remark 5.10: The converse of the above theorem need not be true.

Example 5.11: Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{c\}, \{ab\}, \{ac\}, \{bc\}, \{abc\}, X\}$ and $\sigma = \{\phi, \{a\}, \{ab\}, \{abc\}, Y\}, \alpha *C(Y, \sigma) = \{\phi, \{b\}, \{c\}, \{d\}, \{ad\}, \{bc\}, \{bd\}, \{cd\}, \{acd\}, \{bcd\}, \{abd\}, Y\}, \alpha C(Y, \sigma) = \{\phi, \{b\}, \{c\}, \{d\}, \{bc\}, \{bd\}, \{cd\}, \{bc\}, \{bc\}, \{cd\}, \{bc\}, \{bc\}, \{cd\}, \{bc\}, \{cd\}, \{bc\}, \{cd\}, \{bc\}, \{cd\}, \{bc\}, \{cd\}, \{cd\}, \{bc\}, \{cd\}, \{cd\}, \{bc\}, \{cd\}, \{bc\}, \{cd\}, \{bc\}, \{cd\}, \{bc\}, \{cd\}, \{cd\}, \{bc\}, \{cd\}, \{cd\}, \{bc\}, \{bc\}, \{cd\}, \{bc\}, \{bc\}, \{bc\}, \{cd\}, \{bc\}, \{bc$

Remark 5.12: The composition of two α^* closed maps need not be α^* closed in general as shown in the following example.

Example 5.13: Consider X = Y = Z = {a, b, c, d }, $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{ab\}, \{ac\}, \{bc\}, \{abc\}, X\}$ and $\sigma = \{\phi, \{a\}, \{ab\}, \{abc\}, Y\}, \eta = \{\phi, \{a\}, \{b\}, \{ab\}, \{abc\}, Z\}, \alpha *C(Y \sigma) =$

 $\{ \phi, \{b\}, \{c\}, \{ad\}, \{bc\}, \{bd\}, \{cd\}, \{acd\}, \{bcd\}, acd\}, \{bcd\}, acd\}, \{bd\}, Y\}, \quad \alpha * C \quad (Z, \eta) = \{\phi, \{c\}, \{ad\}, \{ad\}, \{bd\}, \{cd\}, \{acd\}, \{bcd\}\}. Let f: (X, \tau) \rightarrow (Y, \sigma) be defined by f(a) = a, f(b) = b, f(c) = c, f(d) = d. Clearly, f is \alpha * closed. Consider the map g: Y \rightarrow Z defined g(a) = a, g(b) = b, g(c) = d, g(d) = c, clearly g is \alpha * closed. But g \circ f : X \rightarrow Z is not a \alpha * closed, g \circ f (\{ad\}) = g (f\{ad\}) = g (ad) = ac which is not a \alpha * closed in Z.$

Theorem 5.14: A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is α * closed if and only if α * cl (f(A)) \subseteq f(cl(A)) for each set A in X.

Proof: Suppose that f is a α * closed map. Since for each set A in X, cl(A) is closed set in X, then f(cl(A)) is a α * closed set in Y. Since, f(A) \subseteq f(cl(A)), then α * cl (f(A)) \subseteq f(cl(A))

Conversely, suppose A is a closed set in X. Since $\alpha * cl(f(A))$ is the smallest $\alpha * closed$ set containing f(A), then $f(A) \subseteq \alpha * cl(f(A)) \subseteq f(cl(A)) = f(A)$. Thus, $f(A) = \alpha * cl(f(A))$. Hence, f(A) is a $\alpha * closed$ set in Y. Therefore, f is a $\alpha * closed$ map.

Theorem 5.15: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is closed map and g: $(Y, \sigma) \rightarrow (Z, \eta)$ is α * closed, then the composition g of : $X \rightarrow Z$ is α * closed map.

Proof: Let O be any closed set in X. Since f is closed map. f(O) is closed set in Y. Since, g is α * closed map, g(f(O)) is α * closed in Z which implies $g \circ f({O}) = g(f{O})$ is α * closed and hence, $g \circ f$ is α * closed.

Remark 5.16: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is α *closed map and g: $(Y, \sigma) \rightarrow (Z, \eta)$ is closed, then the composition $g \circ f : X \rightarrow Z$ is not α * closed map as shown in the following example.

Example 5.17: Consider $X = Y = Z = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{ab\}, \{x\}, X\}$ and $\sigma = \{\phi, \{a\}, \{ab\}, \{ab\}, \{ab\}, \{ab\}, \{ab\}, \{z\}, \alpha *C(Y, \sigma) = \{\phi, \{a\}, \{b\}, \{c\}, \{d\}, \{ac\}, \{ad\}, \{bc\}, \{bd\}, \{cd\}, \{acd\}, \{bcd\}, \{abd\}, Y\}$, $\alpha *C(Z, \eta) = \{\phi, \{b\}, \{c\}, \{d\}, \{bc\}, \{ad\}, \{bd\}, \{acd\}, \{abd\}, \{bcd\}, \{bcd\}\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(a) = d, f(b) = c, f(c) = b, f(d) = a. Clearly, f is α *closed. Consider the map g: $Y \rightarrow Z$ defined g(a) = a, g(b) = b, g(c) = c, g(d) = d, clearly g is closed. But $g \circ f : X \rightarrow Z$ is not a α *closed, $g \circ f(\{d\}) = g(f\{d\}) = g(a) = a$ which is not a α *closed in Z.

Theorem 5.18: Let (X, τ) , (Z, η) be topological spaces and (Y, σ) be topological spaces where every α *closed subset is closed. Then the composition $g \circ f: (X, \tau) \to (Z, \eta)$ of the α *closed, f: $(X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ is α *closed.

Proof: Let O be a closed set in X. Since, f is α *closed, f(O) is α *closed in Y. By hypothesis, f(O) is closed. Since g is α *closed, g(f{O}) is α *closed in Z and g(f{O}) = g of (O). Therefore, g of α *closed.

Theorem 5.19: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is g - closed map and g: $(Y, \sigma) \rightarrow (Z, \eta)$ is α *closed and (Y, σ) is T _{1/2} spaces. Then the composition g of : $(X, \tau) \rightarrow (Z, \eta)$ is α *closed map.

Proof: Let O be a closed set in (X, τ) . Since f is g - closed, f(O) is g - closed in (Y, σ) and g is α *closed which implies g(f(O)) is α *closed in Z and $g(f(O)) = g \circ f(O)$. Therefore, $g \circ f$ is α *closed.

Theorem 5.20: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ be two mappings such that their composition $g \circ f: (X, \tau) \rightarrow (Z, \eta)$ be α *closed mapping. Then the following statements are true.

1. If f is continuous and surjective, then g is α *closed.

2. If g is α^* - irresolute and injective, then f is α^* closed.

3. If f is g – continuous, surjective and (X, τ) is a T _{1/2} spaces, then g is α *closed.

4. If g is strongly α * continuous and injective, then f is α *closed.

Proof: 1. Let O be a closed set in (Y, σ) . Since , f is continuous, $f^{1}(O)$ is closed in (X, τ) . Since, g of is α *closed which implies g of $(f^{1}(O))$ is α *closed in (Z, η) . That is g(O) is α *closed in (Z, η) , since f is surjective. Therefore, g is α *closed.

2. Let O be a closed set in (X, τ) . Since $g \circ f$ is α *closed, $g \circ f(O)$ is α *closed in (Z, η) , Since g is α * - irresolute, $g^{-1}(g \circ f(O))$ is α *closed in (Y, σ) . That is f(O) is α *closed in (Y, σ) . Since f is injective. Therefore, f is α *closed.

3. Let O be a closed set of (Y, σ) . Since, f is g- continuous, f⁻¹(O) is g – closed in (X, τ) and (X, τ) is a T _{1/2} spaces, f⁻¹(O) is closed in (X, τ) . Since , g of is α *closed which implies , g of (f⁻¹(O)) is α *closed in (Z, η). That is g(O) is α *closed in (Z, η), since f is surjective. Therefore, g is α *closed.

4. Let O be a closed set of (X, τ) .Since, $g \circ f$ is α *closed which implies , $g \circ f$ (O) is α *closed in (Z, η) . Since, g is strongly α * continuous, $g^{-1}(g \circ f$ (O)) is closed in (Y, σ) . That is f(O) is closed in (Y, σ) . Since g is injective, f is α *closed.

Theorem 5.21: A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is α * open if and only if $f(int(A)) \subseteq \alpha$ * int (f(A)) for each set A in X.

Proof: Suppose that f is a α * open map. Since int (A) \subseteq A, then f(int (A)) \subseteq f(A). By hypothesis, f(int (A)) is a α * open and α * int (f(A)) is the largest α * open set contained in f(A). Hence f(int(A)) $\subseteq \alpha$ * int (f(A)).

Conversely, suppose A is an open set in X. Then $f(int(A)) \subseteq \alpha * int (f(A))$. Since int (A) = A, then $f(A) \subseteq \alpha * int (f(A))$. Therefore, f(A) is a $\alpha *$ open set in (Y, σ) and f is $\alpha *$ open map.

Theorem 5.22: Let (X, τ) , (Y, σ) and (Z, η) be three topologies spaces f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ be two maps. Then

1. If $(g \circ f)$ is α^* open and f is continuous, then g is α^* open.

2. If $(g \circ f)$ is open and g is α *continuous, then f is α * open map.

Proof:

1. Let A be an open set in Y. Then, $f^{-1}(A)$ is an open set in X. Since $(g \circ f)$ is α * open map, then $(g \circ f)$ $(f^{-1}(A)) = g(f((f^{-1}(A)) = g(A))$ is α * open set in Z. Therefore, g is a α * open map.

2. Let A be an open set in X. Then, g(f(A)) is an open set in Z. Therefore, $g^{-1}(g(f(A))) = f(A)$ is a $\alpha *$ open set in Y. Hence, f is a $\alpha *$ open map.

Theorem 5.23: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a bijective map. Then the following are equivalent:

(1) f is a α * open map.

(2) f is a α * closed map.

(3) f^{-1} is a α * continuous map.

Proof:

(1) \Rightarrow (2) Suppose O is a closed set in X. Then X\O is an open set in X and by (1) f(X\O) is a α * open in Y. Since, f is bijective, then f(X\O) = Y\ f(O). Hence, f(O) is a α * closed in Y. Therefore, f is a α * closed map.

(2) \Rightarrow (3) Let f is a α * closed map and O be closed set in X. Since, f is bijective then $(f^{-1})^{-1}(O) = f(O)$ which is a α * closed set in Y. Therefore, f is a α * continuous map.

(3) \Rightarrow (1) Let O be an open set in X. Since, f⁻¹ is a α * continuous map then (f⁻¹)⁻¹(O) = f(O) is a α * open set in Y. Hence, f is α * open map.

Theorem 5.24: A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is α * open if and only if for any subset O of (Y, σ) and any closed set of (X, τ) containing f⁻¹(O), there exists a α * closed set A of (Y, σ) containing O such that f⁻¹(A) \subset F **Proof:** Suppose f is α * open. Let O \subset Y and F be a closed set of (X, τ) such that f⁻¹(O) \subset F. Now X-F is an open set in (X, τ) . Since f is α * open map, f (X - F) is α * open set in (Y, σ) . Then, A = Y - f (X - F) is a α * closed set in (Y, σ) . Note that f⁻¹(O) \subset F implies O \subset A and f⁻¹(A) = X - f⁻¹ $(X - F) \subset X - (X - F)$ = F. That is , f⁻¹(A) \subset F.

Conversely, let B be an open set of (X, τ) . Then, $f^{-1}((f(B))^c) \subset B^c$ and B^c is a closed set in (X, τ) . By hypothesis, there exists a α * closed set A of (Y, σ) such that $(f(B))^c \subset A$ and $f^{-1}(A) \subset B^c$ and so $B \subset (f^{-1}(A))^c$. Hence, $A^c \subset f(B) \subset f((f^{-1}(A)))^c$ which implies $f(B) = A^c$. Since, A^c is a α * open. f(B) is α * open in (Y, σ) and therefore f is α * open map.

References

- [1]. Y. Beceren. On strongly α Continuous functions, Far East J. Math. Sci (FJMS) Part I,(2000), 51-58.
- [2]. N. Levine, "Generalized closed sets in topology," Rendiconti del Circolo Matematico di Palermo, vol. 19, no. 1, pp. 89-96, 1970.
- [3]. Levine N.Strong continuity in topological spaces, Amer. Math. Monthly 67(1960)269
- [4]. A.S.Mashhour, I.A.Hasanein and S.N.E.L Deeb, α -Continuous and α -open mappings, Acta Math.Hung., Vol.41,(1983), 213-218.
- [5]. Malghan S.R , Generalized closed maps, J.Karnatk Univ. Sci., 27(1982) 82-88
- [6]. Njastad, O., On Some Classes of Nearly Open Sets, Pacific J. Math. 15(1965) No. (3), 961-970
- [7]. Noiri, T. Strong form of continuity in topological spaces, Rend. cire. math. Plaermo(1986)107-113
- [8]. Pious Missier S and P.Anbarasi Rodrigo, Some Notions of nearly open sets in Topological Spaces, International Journal of Mathematical Archive
- [9]. Pious Missier .S and P.Anbarasi Rodrigo, On α *-Continuous , Outreach (Accepted)
- [10]. P. Sundaram, K. Balachandran, and H. Maki, "On Generalised ContinuousMaps in topological spaces," Memoirs of the Facultyof Science Kochi University Series A, vol. 12, pp. 5–13, 1991.