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Abstract: For functions )(zf of the form: 
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which are starlike and convex of order  in the open unit disk U , the authors derive a new subclass of 

normalized analytic functions in the open unit U . The results presented in this paper generalize many existing 

results in the literature.  
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I. Introduction 

Let J  be the class of normalized analytic functions of the from 
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in the open unit disk U =  1: zz . 

We denote by S  the subclass of J , consisting of functions which are also univalent in U. 

Here, we recall the famous classes of starlike and convex functions: 
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Let be a fixed point in U and 
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In [11] , Kanas and Ronning introduced the following classes 

  fJfS :  is univalent in U  
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and these classes have been studied extensively by Acu and Owa [1]. We recall that a region of the complex 

plane is said to have star geometry with respect to a fixed point in it if every other points of it is visible from the 

fixed point. In other words, a ray or line segment issuing from the fixed point inside the region to any other 

point of it lies entirely in the region. Also, if a region has star geometry with respect to every point in it, it is 

called convex. That is, the line segment joining any two points of this region lies entirely inside it. Therefore, 

the class 
*

S  is defined by geometric property that the image of any circular arc centered at  is starlike with 

respect to  f  and the corresponding class 
cS

 is defined by the property that the image of any circular arc 
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centered at  is convex. Thus, we observe that the definitions are similar to the ones introduced by Goodman in 

[8] and [9] for uniformly starlike and convex functions, except that in this case the point   is fixed. 

 The function  zf  in S is said to be starlike of order   if and only if 
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for some  10  . We denote by ST    the class of all starlike functions of order . Similarly, a 

function  zf  in S is said to be convex of order  if and only if  
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for some  10  . We denote by CV    the class of all convex function of order . We note that the 

class 0ST    and various other subclasses of ST    have been widely studied by many authors (see [Acu 

and Owa[1], Aouf[2], Cho et al[3], Clunie[4], Duren[5], Goel and Sohi[7], Ghanim et al[10], Oladipo[12] and 

Uralgaddi and Somanatha[13] ) to mention just a few. 

Let S  p  denote the subclasses of  J  consisting of the function of the from 
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where   ,Re zs  with .10   For the function  zf  in the class S  p , we define  
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and for n 1, 2, 3…, we can write 
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Therefore, 
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where    zsRe  with 10  and Np , . 

For function  zf in the class   ,pS , we define 
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Remark: 

(i) In the case  p 1, the differential operator 
nI1  was given by Ghanim et al [10]. 

(ii) In the case  p 1 and  0, the differential operator 
nI1 was given by Frasin and Darus[6]. 

Definition: 

The function    


,pSzf   is said to be a member of the class   ,,,, pnST if it satisfies 
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 00  NNn , ,10  ,Np N  for some  10   and  2,3,.. 

It is trivial to see that   ,,1,1,0ST  is the class of starlike functions of order  and   ,0,1,1,0ST  gives 

the starlike function for allU . 

Let us now write  

       ,,,,,,,,,* pSpnSTpnS     (9) 

where   ,pS  is the class of functions of the from (7) that are analytic and univalent inU . In the present 

paper, we shall consider some properties for the classes   ,,,, pnST  and   ,,,,* pnS . 

 

II. Coefficient Inequalities 

 Our first result provides a sufficient condition for a function, analytic in U to be 

in   ,,,, pnST . 

Theorem 1: Let the function  zf  be defined by (7) and  10   if  
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then    


,,,, pnSTzf  . 

Proof: Suppose the (10) holds true for .10    Consider the expression 
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 The above inequality (11) holds true for all  10  rr . Therefore, letting 1r in (11), we obtain 
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Corollary 1: Let 0n  in theorem 1, then we have 
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Corollary 2: Let 0n  and 1  in theorem 1, then we have 
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Corollary 3: Let 0n  and 1 p  in theorem 1, then we have 
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therefore f is starlike univalent in all Uz  with condition  10  z . 

Corollary 4: Let 0n , 1 p and 1  in theorem 1, then we have 
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therefore f is starlike univalent in U . 

Corollary 5: Let ,1n 0 , and 1 p  in theorem 1, then we have 
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therefore f is convex univalent in all Uz  with condition  10  z . 

Corollary 6: Let ,0,1  n 1 p  and 1  in theorem 1, then we have 
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therefore f is convex univalent inU . 
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Next, we shall give a necessary and sufficient condition for function   ,pSf   to be in the 

class   ,,,,* pnS . 

Theorem 2: Let the function  zf  be defined by (7) and let    


,pSzf  , then 

   


,,,,* pnSzf   if and only if (10) is satisfied. The result is sharp. 

Proof: Assume that    
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where 

           211,121  pkkppk and  Uz . 

Since   zz   for all z , it follows from (12) that 
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where 

       kppk 121 ,      211  pk  and  Uz . 

We now choose the values  zf on the real axis so that 
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where  and  are as earlier defined. 

This implies that 
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which immediately yield the required condition (12). 

Our assertion in Theorem 2 is best possible for the functions of the from 
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Corollary 7: Let the function  zf  be defined by (7) and let    
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  ,,,,* pnSf  , then 
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The result in (16) is best possible for function   


 zf pk  1  given by (15). 

Now, the distortion property for the functions in the class   ,,,,* pnS  is contained in the next Theorem. 

Theorem 3: If the function  zf defined by (7) is in the class   ,,,,* pnS , then for 
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Proof: Since   ,,,,* pnS , theorem 2 readily yields the inequality 
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Thus, for 10  rz  , and making use of (19), we have 
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This completes the proof of theorem 3. 

 

III. Radii of Closes-to-Convex, Starlikeness and Convexity 

The radii of starlikeness and convexity for the class   ,,,,* pnS , is given by the following theorems. 

Theorem 4: If the function  zf  defined by (7) is in the class   ,,,,,* pnS , then  zf  is close-to-

convex of order  10   in 1rz  , where 
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The result is Sharp for the function  zfk  given by (15). 

Proof: It suffices to show that 
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and this completes the proof of theorem 4. 

Theorem 5: If the function  zf  defined by (7) is in the class   ,,,,,* pnS , then  zf  is starlike 

of order  10   in 2rz  , 
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The result is best possible for the function   


 zf pk  1  given by (15). 

Proof: It suffices to prove that 
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for 2rz  , We have 

    
 

     

 
    
























1

1

1

1
/ )(

k

pk

kp

k

pk

k

za
z

zapk

p
zf

zfz























  

 

    

  

   

 










































1

1

1

1

k

pk

k

k

pk

k

k

pk

k

k

pk

k

za

zapk

za

zapk











.  (29) 

Hence, (29) holds true if 
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and this completes the proof of theorem 5. 

Theorem 6: If the function  zf  defined by (7) is in the class   ,,,,,* pnS , then  zf  is convex 

of order  10   in 3rz  , 
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The result is best possible for the function given by (15). 

Proof: Using the same technique employed in the proof of theorem 4 and 5, we can show that 
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for 2rz   with the aid of theorem 1. Thus, we have the assertion of theorem 6. 
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IV. Convex Linear Combination 
Our next results involve linear combination of several functions of the type (15). 

Theorem 7: Let 
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Proof: From (36), (37) and (38), it is easily seen that 
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It follows from theorem 2 that the function    
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This completes the proof of theorem 7. 

Theorem 8: The class   ,,,,* pnS  is closed under convex linear combination. 

Proof: Let us suppose that the functions  zf1 and  zf2  defined by 
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which shows that    


,,,,* pnSzf   and this complete the proof of the theorem. 
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