Pseudo Weakly N-Projective Modules

Sushma Jat , Vivek Patel

Abstract: A module M is said to be weakly projective iff it has a projective cover $\pi : P(M) \longrightarrow M$ and every mapping P(M) into a finitely generated module can be factored through M via an epimorphism. In particular, if M and N are two R-modules and assume M has a projective cover $\pi : P \longrightarrow M$, We say that M is pseudo weakly N-projective if for every map $\psi : P \longrightarrow N$ there exists an epimorphism $\sigma : P \longrightarrow M$ and a homomorphism $g : M \longrightarrow N$ such that $\psi = g \cdot \pi$. In this paper we generalize the basic properties of pseudo weakly projective modules.

Keywords: Pseudo projective module, pseudo weakly projective module, Projective cover.

Definition:1

An R-module M is said to be pseudo projective if for any given R-module A, epimorphisms $g: M \to A$ and $f: M \to A$ there exists a homomorphism $h: M \to M$ such that f = g.h

Definition :2

We say that M is weakly M-Projective [Quasi Weakly Projective), If M has a projective cover $\pi: P(M) \to M$ and every homomorphism $\Psi: P(M) \to N$ can be factored through M via some epimorphism. Equivalently, a module M is weakly M projective if it has a projective cover $\pi: P(M) \to M$ and given any homomorphism $\Psi: P(M) \to N$ there exists $X \subseteq \ker \Psi$ such that P(M)

$$\frac{P(M)}{X} \cong M$$

Remarks:

1. Every projective module is pseudo projective module.

2. If every module has a quasi projective cover then it has a pseudo projective cover.

3. If every module has a pseudo projective cover then it has a projective cover.

4. Every semi-simple projective module is pseudo projective module.

Theorem :1.1

Let M and N are two R-modules and assume M is N-projective cover P via an onto homomorphism π : P \longrightarrow M then M is N projective iff for every homomorphism ψ :P \longrightarrow N, there exists a homomorphism ϕ : $M \longrightarrow$ N such that $\phi.\pi=\psi$. Equivalently ψ (ker π) =0

Proof :

Only if direction :- Let $\psi : P \longrightarrow N$ is a homomorphism. We shall first show that $\psi(\text{Ker}\pi)=0$. Let $T=\psi(\text{Ker}\pi)$ and Let $\pi_T : N \longrightarrow \frac{N}{T}$ be the natural projection. Then ψ induces $\phi : M \longrightarrow \frac{N}{T}$ defined by $\phi(m) = \pi_T \cdot \psi(\rho)$ where $M=\pi(\rho)$. Clearly $\phi\pi = \pi_T\psi$. Since M is N-projective, there exists a map $\beta : M \longrightarrow N$ such that $\phi = \pi_T \cdot \beta$.

Clearly $(\Psi - \beta \pi) P \subset T$. We claim that $\psi = \beta \pi$.

Let $x = \{\rho \in P \mid \psi(\rho) = \beta \pi(\rho)\}$. We show that X = P. Let $z \in P$.

Since $(\psi - \beta \pi)(x) \in T = \psi$ (Ker π), there exists $k \in \text{Ker } \pi$ such that

 $(\psi-\beta\pi)(x)=\psi(k)$. Therefore $\psi(z-k) - \beta\pi(z-k)=0$, since $\beta\pi(k)=0$. Thus $z-k\in X$.

Therefore $\text{Ker}\pi + X = P$ which implies X = P

Since Ker π is small in P. Therefore $(\psi - \beta \pi)P=0$

In particular (ψ - $\beta\pi$) Ker π =0, yielding ψ (Ker π)=0. Equivalently, there exists $\psi' : M \longrightarrow N$ such that $\psi'_{\pi} = \psi$.

Conversely

Let $\psi : M \longrightarrow \frac{N}{k}$ is a homomorphism. Then by the projectivity of P there exists a homomorphism $\psi' : P \longrightarrow N$ such that $\psi \pi = \pi_k \psi'$.

It follows easily that $\pi_k \phi = \psi$ as desired. The above result is dual to a well-known characterization of relative injectivity.

Definition: Pseudo weakly N-projective

Let M and N are two R-modules and assume M has a projective cover $\pi : P \longrightarrow M$. We say that M is pseudo weakly N-projective if for every map $\psi : P \longrightarrow N$ there exists an epimorphism $\sigma : P \longrightarrow M$ and a homomorphism $g : M \longrightarrow N$ such that $\psi = g . \pi$.

Theorem -1.2

Let M and N are two R-modules and assume M has a projective cover $\pi : P \longrightarrow M$. Then the following statements are equivalent :

- 1. M is pseudo weakly N-projective.
- 2. For every sub module $K \subset N$, M is pseudo weakly projective.

3. For every sub module K \subset N, M is pseudo weakly $\frac{N}{K}$ -projective.

Proof :

(i) (1) Implies (2) and (3) Assume M is pseudo weakly N-projective and let K is a sub-module of N and $\psi : P \longrightarrow K$ is a homomorphism. Then $\psi = i_{\pi}$. $\psi : P \longrightarrow N$ may be expressed as a composition $\psi = g\sigma$ for some homomorphism $g : M \longrightarrow N$ and epimorphism $\sigma : P \longrightarrow M$. Since σ is onto, the range of σ equals the range of g and so it is contained in K. Thus we may define $g : M \longrightarrow K$ via $\psi(m) = g(m)$ and then $\psi = g\sigma$, proving that M is pseudo weakly K-projective as claimed. Assume once again that M is pseudo weakly N-projective and let $f : P \longrightarrow N/K$ is a homomorphism. Since P is projective, there exists a map $\overline{f} : P \longrightarrow N$ such that $f = \pi_x \cdot \overline{f}$. The weakly N-projective of M yields an epimorphism $\sigma : P \longrightarrow M$ and a homomorphism h:M $\longrightarrow N$

such that $\overline{f} = h.\sigma$. Let $\pi_{\underline{x}}.h=f_1$ then $f_1\sigma = \pi_k.h.\sigma = \pi f = f_1$, proving that M is indeed pseudo weakly $\frac{N}{K}$

projective.

(ii) (2) or (3) implies (1) is trivially.

Remarks :

Let M and N are two R-modules and assume M has a projective cover $\pi : P \longrightarrow M$. Then M is pseudo weakly N-projective if and only if for every sub-module K \subset N and for every epimorphism $\psi : P \longrightarrow K$ there exist epimorphism $\sigma : P \longrightarrow M$ and $g : M \longrightarrow N$ such that $\psi = g.\sigma$.

Theorem:1.3

Let M and N are two R-modules and assume M has a projective cover $\pi : P \longrightarrow M$. Then M is pseudo weakly N-projective iff for every map $\psi : P \longrightarrow N$ there exist a sub module $X \subset \text{Ker}\psi$ such that $\frac{P}{X} \cong M$.

Proof :

Necessary condition :

Let $\psi : P \longrightarrow N$ is a homomorphism. Assume M is pseudo weakly N-projective and let the homomorphism $g : M \longrightarrow N$ and the epimorphism $\sigma : P \longrightarrow M$ be as in the definition of weakly relative projectivity. Since $\psi = g.\sigma$, Ker $\sigma \subset$ Ker ψ . Also $\frac{P}{Ker\sigma} \cong M$ Thus the implication is proven by choosing $X = \text{Ker } \sigma$.

Conversely :

If $X \subset P$ satisfies the condition in the statement of the theorem, then the isomorphism $\frac{P}{X} \cong M$,

composed with the natural projection $\pi_k : P \longrightarrow P/X$ is an epimorphism $\sigma : P \longrightarrow M$ satisfying that Ker $\sigma = X \subset$ Ker ψ . It follows that the map $g : M \longrightarrow N$ given by $g(m)=\psi(\rho)$ whenever $\sigma(\rho)=M$ is well defined and satisfies $\psi=g.\sigma$

Theorem :1.4

Let M and N are two R-modules and assumed M is supplemented and has a projective cover $\pi : P \longrightarrow M$. Then M is pseudo weakly N-projective if and only if for every sub-module k \subset N and for every epimorphism $\psi : P \longrightarrow K$ there exists an epimorphism $g : M \longrightarrow K$ such that for every supplement L' of Kerg

in M there exists a sub-module L⊂P such that $\frac{P}{L} \cong \frac{M}{L}$ and L + Ker ψ =P.

Proof :

Necessary Condition :

Assume M is pseudo weakly N-projective and Let $\psi : P \longrightarrow K$ is an epimorphism onto a sub-module K \subset N. Then there exists epimorphism $\sigma:P \longrightarrow M$ and $g:M \longrightarrow K$ such that $\psi=g\sigma$. Let L' is a supplement of Kerg in M and $L=\sigma^{-1}(L)$. For an arbitrary $p \in P$, $\sigma(p)$ may be written as $\sigma(P) = l'+k'$, with $l' \in L'$ and $k' \in Kerg$. It follows then that

 $\psi(p) = g\sigma(p) = g(l') + g(k') = g(l').$

Choose $p_1 \in \sigma^{-1}$ (l') \subset L. Then $\sigma(p_1) = l'$. On the other hand,

 $\psi(\mathbf{p}_1) = \mathbf{g}\sigma(\mathbf{p}_1) = \mathbf{g}'(\mathbf{l}') = \psi(\mathbf{p}).$ So P-P₁ \in Ker ψ and so L+Ker ψ =P. The fact that $\frac{P}{L} \cong \frac{M}{L'}$ follows, since L is M

the kernel of the onto map $\pi_{L}\sigma: \mathbb{P}\longrightarrow \frac{M}{L'}$.

Sufficient Condition :

Let us assume that for every sub-module K \subset N and for every epimorphism $\psi : P \longrightarrow K$ there exist an epimorphism g:M $\longrightarrow K$ such that for every supplement L' of Kerg in M there exist a sub-module L \subset P such that $\frac{P}{L} \cong \frac{M}{L'}$ and L+Kerg=P. Let $\psi : P \longrightarrow K$ is an epimorphism and g:M $\longrightarrow K$ be the corresponding

L = L' and L^+ Kerg-1. Let $\psi : 1 \longrightarrow K$ is an epinorphism and $g.W \longrightarrow K$ be the corresponding epimorphism. All we need is to produce another epimorphism $\sigma: P \longrightarrow M$ such that $\psi = g\sigma$. Let L' is a supplement for Kerg and Let L be the corresponding sub-module of P. Let $\theta: \frac{P}{L} \longrightarrow \frac{M}{L'}$ is an isomorphism. By Chinese remainder theorem that the map M+Kerg $\cap L' \longrightarrow (M+Kerg, M+L')$ is an isomorphism between

$$\frac{M}{(Ker \ g \cap L')}$$
 and $\frac{M}{(Ker \ g \times \frac{M}{L'})}$.

Also
$$\frac{M}{Ker g} \cong K$$
 via M+Ker g = g(m)

 $g = \theta \pi_L : P \longrightarrow \frac{M}{L'}$. Since Ker $\psi + L = P$, the map $\alpha : P \longrightarrow K \times \frac{M}{L'}$ given by $\alpha(p) = (\psi(p), g(p))$ is onto.

The induced epimorphism $\alpha^1 = \beta^{-1}\alpha : P \longrightarrow \frac{M}{(Kerg \cap L')}$ may then the lifted to a map

 $\sigma: P \longrightarrow M$. Since Kerg $\cap L' \leq M$. σ is indeed an epimorphism. It only remains to show that $g.\sigma=\psi$. Let us refer for the rest of this proof to $\pi_{Kerg\cap L'}$ simply as π . We know that $\pi\sigma = \sigma' = \beta'\alpha$ hence $\beta\pi\sigma = \alpha$. Let $p \in P$ be

arbitrary. Then β (α (P) +Ker g \cap L')= α (p) = (ψ (p), g(p)). On the other hand β (σ (P)+Kerg \cap L')=(g(σ (p)), $\sigma(p)+L'$). Comparing the first component in both expression yields the desired equality. Thus M is pseudo weakly N-projective.

References

- [1]. Dinguuo Wang and Jinqui Li: Characterization of rings using weakly projective module. Vietnam journal of mathematics.vol.25.(1998)
- Quasi weakly projective and quasi weakly injective module: M.R. Aloney S. Jat. Ultra scientist journal of physical sciences.(2011) [2].
- [3].
- A.K.Tiwary and B.M.Pandeya: Pseudo projective and pseudo injective modules. B.H.U. Vol.9 No.9(1978)
 S. K. Jain, Lopez Permouth, K. Oshiro and M. A. Saleh : "Weakly Projective and Weakly Injective Modules." Can. J. Math. Vol [4]. 46(5) (1994) 971-981.
- [5]. [6].
- S. R. Lopez Permouth : Ring Characterized by their Weakly Injective Modules, Glasgow Math. J. 34 (1992) 349-353. D.Wang: Characterization of rings using weakly projective module I. Vietnam journal of mathematics.vol.25.(1997) 91-98.