
IOSR Journal of Mathematics (IOSR-JM) 

e-ISSN: 2278-5728, p-ISSN:2319-765X. Volume 10, Issue 4 Ver. II (Jul-Aug. 2014), PP 38-45 
www.iosrjournals.org 

www.iosrjournals.org                                                             38 | Page 

 

Exact solution for the flow of Oldroyd-B fluid due to constant 

shear and time dependent velocity  
 

Vatsala Mathur
1
, Kavita Khandelwal

1 
 

1(Department of Mathematics, Malaviya National Institute of Technology, Jaipur, India) 

 

Abstract : In this paper, we use the finite Hankel and Laplace transforms to determine the velocity field 

corresponding to the flow of Oldroyd-B fluid in the annular region between two infinitely long coaxial cylinders. 

Initially, the fluid is at rest and the motion is produced by the inner cylinder pulled with a constant shear and 

outer cylinder moving with time dependent velocity. The obtained solution is presented under a series form in 

terms of the generalized G functions. Finally, the influence of different values of parameters, constants and 

fractional coefficient on the velocity field are also analyzed using graphical illustration. 
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I. Introduction 
From industries and engineering point of view, various fluids with complicated rheological properties 

cannot be specified as Newtonian fluids. These fluids are called Non-Newtonian fluids. Few examples of such 

fluids are slurries, lava, blood, polymers etc. The flow behavior of such fluids cannot be described by classical 

Navier-Stokes theory due to their non-linear viscoelastic behavior. Hence, many models have been proposed for 

non-Newtonian fluids such as differential type, rate type and integral type etc. Among all of these, rate type 

model has got much attention. 

Ting [1] has given first exact solution corresponding to motion of second grade fluids in cylindrical 

domains. The objective of his work was to apply Coleman and Noll’s theory to investigate certain non-steady 

flows of second-order fluids. The first exact solution corresponding to motion of Maxwell fluids in cylindrical 

domain has been determined by Srivastava [2] .Waters and King [3] published first exact solution corresponding 

to motion of Oldroyd-B fluids in cylindrical domains. The first exact solution for the motion of second grade 

fluids due to a shear stress on the boundary has been determined by Bandelli and Rajagopal [4].He studied a 

number of unidirectional transient flows of a second grade fluid in a domain with one finite dimension. 
Recently, many papers regarding such motions have been published [5-12]. Fetecau [13] used constitutive 

relation as follows 
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where  and r  are relaxation and retardation times,   is tangential tension,  is the dynamic viscosity and 

v  is the velocity. 

Using fractional approach, the constitutive relation of the generalized Oldroyd-B fluid is written as 
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where

tD  and 


tD  are fractional operators and are defined as [14]

 

































1,                                               ),(

;10                ,
)(

)(

)1(

1

)( 0








 


tf
dt

d

d
t

f

dt

d

tfD

t

t
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where ).(  is the Gamma function. 

The aim of this paper is to provide exact solution for the velocity field of flow for Oldroyd-B fluid 

between two infinitely long coaxial cylinders, where inner cylinder is pulled with constant shear and outer 

cylinder is moving with time dependent velocity. This solution is obtained by using finite Hankel and Laplace 

transform methods and the result is presented in terms of the generalized-G functions.  
 

II. Governing equations 
Let us consider the unsteady flow of an incompressible Oldroyd-B fluid in coaxial cylinders. The 

following assumptions are considered during this mathematical study. The flows are assumed to be axi-
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symmmetric. The fluid velocity at the direction of the pipe radius is assumed to be zero. The axial velocity is 

assumed to be only relevant to the cylinder radius. 

The equation of axial flow motion is written as [5] 

,
1

z

p

rrt

v



















                                                                                                                                   

(4) 

where   is the constant density of the fluid. 

Substitute Eq. (2) into Eq. (4), we get 
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  is the kinematical viscosity and 
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  is the constant pressure gradient that acts on the 

liquid in the z-direction. 

 

III. Flow through the annular region  
Consider an Oldroyd-B fluid at rest between two infinitely long coaxial cylinders. Also, consider that 

radius of inner and outer cylinders are 1R  and )( 12 RR   respectively. The inner cylinder pulled with constant 

shear and outer cylinder is moving with time dependent velocity. We have to solve the next initial and boundary 

problem, in the absence of a pressure gradient in the z-direction.  
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The initial and boundary conditions are expressed by 
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where 21, ff  are constant. 

Making the change to unknown function 
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Substitute Eq. (9) into Eq. (6), we get 
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Substitute Eq. (9) into Eqs. (7) and (8), we get
  

 

 ,0)0,(      ),()0,( t  rurVru                                                                                          (12) 

0.p      0,    t,),(      ,
)1(

),()1( 2211 





p

rrtr tftRu
t

ftRuD






                (13)

 

The Hankel Transform method with respect to r is used and is defined as follows [14] 
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The inverse Hankel Transform as defined by [14] 
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where n0110111 s  ),()()()(),( rsJsRYrsYsRJrs nnnnn  is the positive root of  .0),( 21 Rsn
 

Applying the Hankel transform to Eq. (11), we obtain 
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Applying the Hankel transform to Eq. (12), we obtain 
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Applying Laplace transform to Eq. (16), we obtain 
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Substitute Eq. (17) into Eq. (18), we obtain 
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Applying Inverse-Laplace transform to Eq. (19) and taking into account the following result [15] 
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The expression of the velocity field can be written as 
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IV. Conclusions and Numerical results  
The purpose of this paper is to establish exact solution for the velocity field corresponding to the flow of 

Oldroyd-B fluid in the annular region between two infinitely long coaxial cylinders. The motion of the fluid is 
produced by the inner cylinder pulled with a constant shear and outer cylinder is moving with time dependent 

velocity. The solution is obtained by Hankel and Laplace transform methods and the result is presented under 

series form in terms of the generalized-G functions. Plots between various parameters and constants are 

obtained and relationship has been established. 

As shown in below diagrams, the velocity ),( trv  given by Eq. (22) has been drawn against r for different 

values of the time t, constants and other relevant parameters. The velocity component v is decreasing function of 

r. Figure 1 shows the influence of the time on the fluid motion. As expected, the velocity is increasing function 

with respect to t. The kinematic viscosity , as result from Fig. 2, has a strong influence on the velocity. The 

result indicates that the velocity is increasing function of . The influences of the relaxation and retardation 

times on the fluid motion are shown in the figures 3 and 4. It indicates that the velocity is decreasing function of 

 and r . Figure 5 show the influence of the fractional parameter   on the fluid motion. It is clearly seen 

from the figure that the velocity is increasing function of . In figure 6, it is shown the influence of the 

fractional parameter   on the fluid motion. It is clearly seen from the figure that the velocity is decreasing 

function  . Figure 7 show the influences of p on the fluid motion. It is clearly seen from the figure that the 

velocity is increasing function of p. figures 8 and 9show the influences of 1f  and 2f on the fluid motion. Figure 

10 show the influence of   on the fluid motion. It is clearly seen from the figure that the velocity is increasing 

function of  . 
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