Strong Equality of MAJORITY Domination Parameters

J. Joseline Manora¹ and B. John²

¹*PG* & Research Department of Mathematics, T.B.M.L College, Porayar, Nagai Dt., Tamilnadu, India. ²Department of Science and Humanities, E.G.S.PillayEngineering College, Nagappattinam.

Abstract: We study the concept of strong equality of majority domination parameters. Let P_1 and P_2 be properties of vertex subsets of a graph, and assume that every subset of V(G) with property P_2 also has property P_1 . Let $\Psi_1(G)$ and $\Psi_2(G)$, respectively, denote the minimum cardinalities of sets with properties P_1 and P_2 , respectively. Then $\Psi_1(G) \leq \Psi_2(G)$. If $\Psi_1(G) = \Psi_2(G)$ and every $\Psi_1(G)$ -set is also a $\Psi_2(G)$ -set , then we say $\Psi_1(G)$ strongly equals $\Psi_2(G)$, written $\Psi_1(G) \equiv \Psi_2(G)$. We provide a constructive characterization of the trees T such that $\gamma_M(T) \equiv i_M(T)$, where $\gamma_M(T)$ and $i_M(T)$ are majority domination and independent majority domination numbers, respectively.

Keywords: Domination number, Majority domination number, Independent majority domination number, Strong equality. 2010 Mathematics Subject Classification: 05C69

I. Introduction:

By a graph G, we mean a finite, simple and undirected. Let G be a graph with p vertices and q edges. For a vertex $v \in V(G)$, the open neighborhood of v, $N_G(v)$ is the set of vertices adjacent to v and the closed neighborhood $N_G[v] = N_G(v) \cup \{v\}$. Other graph theoretic terminology not defined here can be found in [6]. In [6], A set $S \subseteq V$ of vertices in a graph G = (V, E) is a dominating set if every vertex $v \in V$ is either an element of S or is adjacent to an element of S. A dominating set S is called a minimal dominating set if no proper subset of S is a dominating set. The minimum cardinality of a minimal dominating set is called the domination number $\gamma(G)$ and the maximum cardinality of a minimal dominating set is called the upper domination number $\Gamma(G)$ in a graph G. A set $S \subseteq V$ of vertices in a graph G is called an independent set if no two vertices in S are adjacent. An independent set S is called a maximal independent set if any vertex set properly containing S is not independent. The minimum cardinality of a maximal independent set is called the lower independence number and also independent domination number and the maximum cardinality of a maximal independent set is called the independent enumber in a graph G and it is denoted by i(G) and $\beta_o(G)$ respectively.

Definition 1.1[3]:

A subset $S \subseteq V(G)$ of vertices in a graph G is called majority dominating set if at least half of the vertices of V(G) are either in S or adjacent to the vertices of S. i.e., $|N[S]| \ge \left\lceil \frac{p}{2} \right\rceil$. A majority dominating set S is minimal if no proper subset of S is a majority dominating set of G. The majority domination number $\gamma_M(G)$ of a graph G is the minimum cardinality of a minimal majority dominating set in G. The upper majority domination number $\overline{\gamma_M(G)}$ is the maximum cardinality of a minimal majority dominating set of a graph G. This parameter has been studied by Swaminathan V and JoselineManora J.

Definition 1.2[2]:

A set S of vertices of a graph G is said to be a majority independent set if it induces a totally disconnected subgraph with $|N[S]| \ge \left\lceil \frac{p}{2} \right\rceil$ and $|p_n[v,S]| > |N[S]| - \left\lceil \frac{p}{2} \right\rceil$ for every $v \in S$. If any vertex set S'properly containing S is not majority independent then S is called maximal majority independent set. The maximum cardinality of a maximal majority independent set of G is called majority independence number of G and it is denoted by $\beta_M(G)$. $A\beta_M$ -set is a maximum cardinality of a maximal majority independent set of G. This parameter is introduced by Swaminathan. V and JoselineManora. J.

Definition 1.3[1]:

A majority dominating set D of a graph G = (V, E) is called an independent majority dominating (IMD) set if the induced subgraph<D> has no edges. The minimum cardinality of a maximal majority independent set is called lower majority independent set of G and it is also called independent majority domination number of G, denoted by $i_M(G)$.

If the degree of a vertex v satisfies $d(v) \ge \left| \frac{p}{2} \right| -1$, then the vertex $v \in V(G)$ is called a majority

dominating vertex of G.

II. Strong equality of Majority domination Parameters.

Definition 2.1[5]:

Let P_1 and P_2 be properties of vertex subsets of a graph, and assume that every subset of V(G) with property P_2 also has property P_1 . Let $\psi_1(G)$ and $\psi_2(G)$, respectively, denote the minimum cardinalities of sets with properties P_1 and P_2 , respectively. Then $\psi_1(G) \le \psi_2(G)$ and every $\psi_1(G)$ -set is also a $\psi_2(G)$ set, then we say $\psi_1(G)$ strongly equals $\psi_2(G)$, written $\psi_1(G) \equiv \psi_2(G)$.

Definition 2.2:

Let G be any graph with p vertices. Let $\gamma_M(G)$ and $i_M(G)$ be the majority domination number and independent majority domination number of a graph G. Then $\gamma_M(G)$ and $i_M(G)$ are strongly equal for G if $\gamma_M(G) = i_M(G)$ and every $\gamma_M(G)$ -set is an $i_M(G)$ -set. It is denoted by $\gamma_M(G) \equiv i_M(G)$.

Example 2.3:

ve

Take
$$j = 2$$
, $p = 22j = 44$. $D = \{u'_{1,1}, u'_{2,1}, u'_{3,1}, u'_{4,1}, u''_{1,1}, u''_{2,1}\}$. $\gamma_M(G_j) = |D| = 6$. Since all vertices in D are independent, $i_M(G_j) = |D| = 6$. $\therefore \gamma_M(G_j) = i_M(G_j) = 3j, j = 2$. Where as $\gamma(G) = i(G) = 8j = 16$, $j = 2$.

Observations 2.4:

1.
$$\gamma_M(G_j) < \frac{|\gamma(G_j)|}{2} \Longrightarrow 3j < \frac{8j}{2} = 4j$$
, where G_j is in Fig (i).

2. When j=1, $\gamma_M(G_j)=3=i_M(G_j)$. When j=2, $\gamma_M(G_j)=6=i_M(G_j)$. When j=3, $\gamma_M(G_j)=9=i_M(G_j)$. In general, for G_j , $\gamma_M(G_j)\equiv i_M(G_j)=3j$, j=1, 2, ...

We can extend this graph by applying values to j=2,3,4,... Then we obtain $\gamma_M(G_j)=3j=i_M(G_j)$. Also, every γ_M -set is an i_M -set of G_j . Hence $\gamma_M(G_j)\equiv i_M(G_j)$.

Example 2.5:

The graph G is obtained from disjoint copies of p_5 by joining a central vertex of one p_5 to the central vertices of the remaining graphs p_5 .

When k = 5, p = 25. $D_1 = \{w_2, w_3, w_4, w_5\}$. D_1 dominates $\left|\frac{p}{2}\right| = 13$ vertices. $\therefore \gamma_M(G) = |D_1| = 4$. \therefore This γ_M -set D_1 is not an i_M -set of $G \cdot D_2 = \{w_2, w_3, v_3, v_5\} \Rightarrow i_M(G) = |D_2| = 4$. But D_2 is a γ_M -set which is also an i_M -set. Here, D_1 and D_2 are minimal majority dominating set for $G \cdot \gamma_M(G) = i_M(G) = 4$. Hence every γ_M -set is not an i_M -set for $G \cdot \gamma_M(G)$ is not $\equiv i_M(G)$, if $G = T_{5k}, k = 5$. Ingeneral, for any

Observations 2.6:

- 1. If $\gamma_M(G) = 1$ then $\gamma_M(G) \equiv i_M(G)$.
- 2. If G has a full degree vertex then $\gamma_M(G) \equiv i_M(G)$.

value of k, if $\gamma_M(G)$ is not $\equiv i_M(G)$, if $G = T_{5k}, k = 5$.

- 3. For Corona graphs $G, \gamma_M(G) \equiv i_M(G)$, if $G = (C_p \circ K_1)$ and $G = (P_p \circ K_1)$.
- 4. $\gamma_M(G) \equiv i_M(G)$ if G= Caterpillar, with exactly one pendant.
- 5. $\gamma_M(G) \equiv i_M(G)$ if $G = mK_2$.
- 6. If G is Grotzsch graph, then $\gamma_M(G) \equiv i_M(G)$.
- 7. For Tutte graph G with p = 46, q = 69. $\gamma_M(G) = i_M(G) = 6$.

Fig (iii). Tutte Graph

Every $\gamma_M(G)$ -set is an $i_M(G)$ -set. Hence $\gamma_M(G) \equiv i_M(G)$.

- 8. For a Grinberg graph G with p = 46, q = 69, then $\gamma_M(G) \equiv i_M(G)$.
- 9. For a Petersen graph P, $\gamma_M(P)$ is not strongly equal to $i_M(P)$.
- 10. For all Hajos graph H with p vertices,

where
$$p = \frac{n(n+1)}{2}$$
, $n = 3, 4 \Rightarrow p = 6, 10$, then $\gamma_M(H) \equiv i_M(H)$.
But if $n = 5$ and $p = 15$, then $\gamma_M(H)$ is not strongly equal to $i_M(H)$

Proposition 2.7:

For the path P_p and cycle C_p ,

1.
$$\gamma_M(P_{6k}) \equiv i_M(P_{6k}) = \gamma_M(C_{6k}) \equiv i_M(C_{6k}) = k, k = 1, 2, 3, ...$$

- 2. $\gamma_M(P_{6k+3}) \equiv i_M(P_{6k+3}) = \gamma_M(C_{6k+3}) \equiv i_M(C_{6k+3}) = k+1, k=0,1,2,...$
- 3. $\gamma_M (P_{6k+4}) \equiv i_M (P_{6k+4}) = \gamma_M (C_{6k+4}) \equiv i_M (C_{6k+4}) = k+1, k=0,1,2,...$

4. $\gamma_M (P_{6k+5}) \equiv i_M (P_{6k+5}) = \gamma_M (C_{6k+5}) \equiv i_M (C_{6k+5}) = k+1, k=0,1,2,...,$ but

5.
$$\gamma_M(P_{6k+1})$$
 is not $\equiv i_M(P_{6k+1}) = \gamma_M(C_{6k+1})$ is not $\equiv i_M(C_{6k+1}) = k+1, k=0,1,2,...$

6.
$$\gamma_M(P_{6k+2})$$
 is $not \equiv i_M(P_{6k+1}) = \gamma_M(C_{6k+2})$ is $not \equiv i_M(C_{6k+1}) = k+1, k=0,1,2,...$

Proposition 2.8[4]:

For any graph G, $\gamma_M(G) = 1$ if and only if G has a majority dominating vertex.

Proposition 2.9:

 $\gamma_M(G) \equiv i_M(G) = 1$ if and only if G has a majority dominating vertex.

III. Trees T with $\gamma_M(T) \equiv i_M(T)$

Our aim in this section is to give a constructive characterization for the trees T having $\gamma_M(T) \equiv i_M(T)$. For this purpose, we first prove two lemmas.

Lemma 3.1:

Let w be a vertex of a tree T_w such that every leaf of T_w , except possibly for w itself, is at distance two from w. Let S_w be the set of support vertices of T_w . Let y be a pendant vertex of a non-trivial tree T_y . Let T be obtained from $T_w \bigcup T_y$ by adding the edge wy. Then $\gamma_M(T) = \gamma_M(T_y) + 1$.

Proof: Let $T = T_y \bigcup T_w$ and y be a pendant vertex of d(y) = 2, $y \in T$. Let $\gamma_M(T_y)$ be a majority domination number of T_y . Since w is a majority dominating vertex of T_w , $\gamma_M(T_y)$ -set can be extended to a majority dominating set of T by adding the vertex $w \in T_w :: \gamma_M(T) \le \gamma_M(T_y) + 1$.

Claim: $\gamma_M(T) \ge \gamma_M(T_y) + 1$. Let *D* be a γ_M -set of *T*. Then $D_y = D \cap V(T_y)$ and $D_w = D \cap V(T_w)$. Since T_W has a majority dominating vertex *w*. $|D_w| = |\{w\}| = 1$.

Since D is a γ_M -set of T, D_y is a majority dominating set of T_y . Then $\gamma_M(T_y) \leq |D_y| \leq |D - D_w| \Rightarrow \gamma_M(T_y) \leq |D| - 1 = \gamma_M(T) - 1 \Rightarrow \gamma_M(T_y) + 1 \leq \gamma_M(T)$. Hence, $\gamma_M(T) = \gamma_M(T_y) + 1$. Lemma 3.2:

Let T_w, T_y , and T be defined as in the statement of Lemma (3.1). Then $\gamma_M(T) \equiv i_M(T)$ if and only if $\gamma_M(T_y) \equiv i_M(T_y)$.

Proof: Suppose $\gamma_M(T) \equiv i_M(T)$ (1). Let D_y be a $\gamma_M(T_y)$ -set. Then $D_y \bigcup \{w\}$ is a majority dominating set of T of cardinality $\gamma_M(T_y) + 1$. Then by lemma (3.1), $\gamma_M(T) = \gamma_M(T_y) + 1$. Therefore $D_y \bigcup \{w\}$ is a $\gamma_M(T)$ -set and by (1), it is a $i_M(T)$ -set. In particular, D_y is an independent majority dominating set of T_y and so, $|D_y| = \gamma_M(T_y) \le i_M(T_y) \le |D_y|$. Hence $|D_y| = i_M(T_y)$ and D_y is a $i_M(T_y)$ -set. Thus, every $\gamma_M(T_y)$ -set is an $i_M(T_y)$ -set. $\therefore \gamma_M(T_y) \equiv i_M(T_y)$. Conversely, Let $\gamma_M(T_y) \equiv i_M(T_y)$ (2). To prove $\gamma_M(T) \equiv i_M(T)$. Let D be a $\gamma_M(T)$ -set and $D_y = D \cap V(T_y)$ and $D_w = D \cap V(T_w)$. Suppose $w \notin D$, then $|D_w| = |S_w|$ and $|D_y| = |D - D_w| = |D| - |S_w|$. Then $|D_y| = \gamma_M(T) - |S_w| \Rightarrow \gamma_M(T) = \gamma_M(T_y) + |S_w|$, which is a contradiction to lemma(3.1), $\gamma_M(T) = \gamma_M(T_y) + 1$. Hence $w \in D$. Then $D_w = \{w\} \in T_w$, since w is a majority dominating vertex of T_w . Since T has an edge wy, w is the onlyvertex that dominates y.

Since y is already dominated by $w \in D_w$, D_y does not contain y in T_y . But D_y is itself a majority dominating set of T_y of $|D - D_w|$. *ie.*, $|D_y| = |D - D_w| = |D| - 1 = \gamma_M(T) - 1$. By lemma (3.1), $|D_y| = \gamma_M(T_y)$, by (2), $|D_y| \equiv i_M(T_y) \Rightarrow D_y$ is an independent majority dominating set of T_y . Furthermore, $D_w = \{w\}$ is also an independent majority dominating set of T_w . Hence D is an $i_M(T)$ -set. Thus every $\gamma_M(T)$ -set is an $i_M(T)$ -set. $\gamma_M(T) \equiv i_M(T) . \Box$

Next, a construction for characterization of the trees T for which $\gamma_M(T) \equiv i_M(T)$ is provided by using the following operation.

Operation -A: Let w be a vertex of a tree T_w such that every leaf of T_w , except possibly for w itself, is at distance two from w. Let S_w be the set of support vertices of T_w . Let y be a pendant vertex of a non-trivial tree T_y . Let T be obtained from $T_w \cup T_y$ by adding the edge wy. Define the family as

 $\mathfrak{T}_1 = \{T/T = K_1 \text{ or } T \text{ is obtained from a non-trivial star by a finite sequence of operation } A\}$

Theorem 3.3:

For any tree T, $\gamma_M(T) \equiv i_M(T)$ if and only if $T \in \mathfrak{I}_1$

Proof: Let $T \in \mathfrak{T}_1$. If $T = K_1$ or if T is a non-trivial star, then $\gamma_M(T) = i_M(T) = 1$ and $\gamma_M(T) \equiv i_M(T)$. On the other hand, if T is constructed from a non-trivial star by a finite sequence of atleast one operation(A), then repeated applications of lemma (3.2), we get $\gamma_M(T) \equiv i_M(T)$, since a star has majority domination number strongly equal to its independent majority domination number. Conversely, let $\gamma_M(T) \equiv i_M(T)$. To prove $T \in \mathfrak{T}_1$. By induction on the order p of a tree T for which $\gamma_M(T) \equiv i_M(T)$. If $T = K_1$ or K_2 , then $T \in \mathfrak{T}_1$. If diamT = 2 then T is a non-trivial star and so $T \in \mathfrak{T}_1$. When diamT = 3,4,5,6 which satisfy $\gamma_M(T) \equiv i_M(T)$ since $\gamma_M(T) = 1 = i_M(T)$. Then $T \in \mathfrak{T}_1$. Now, assume that $diamT \ge 7$ which satisfy $\gamma_M(T) \equiv i_M(T)$. We now root the tree at a leaf r of maximum eccentricity diamT. Let w be the vertex at distance (diamT-2) from r on a longest path starting at r.

Let T_w be the subtree of T rooted at w. Then the vertex cannot be adjacent to a leaf. If not, it will contradict our assumption that $\gamma_M(T) \equiv i_M(T)$. Hence every leaf of T_w , except possibly for w itself, is at distance two from w. Let y denote the parent of w on T and let T_y denote the component of T - wy containing y. Since $diam T \ge 7$, T_y is a non-trivial tree. By lemma (3.2), if $\gamma_M(T) \equiv i_M(T)$ then $\gamma_M(T_y) \equiv i_M(T_y)$.

Now, since T_y is a tree of order less than p satisfying $\gamma_M(T_y) \equiv i_M(T_y)$, we can apply the induction hypothesis, to T_y to show that $T_y \in \mathfrak{T}_1$. Since T is obtained form T_y by a operation A, we have $T \in \mathfrak{T}_1$. Hence the theorem. \Box

Theorem 3.4: Let $D_i\,$ be the set of all $\,\gamma_{\scriptscriptstyle M}\,$ -sets of $G\,.\,$ Then

- (i). $\gamma_M(G) \equiv i_M(G)$ if and only if induced subgraph $\langle D \rangle$ has only isolates, for every γ_M -set $D \in D_i$.
- (ii). $\gamma_M(G)$ is not $\equiv i_M(G)$ if and only if the induced subgraph $\langle D \rangle$ is not totally disconnected for any γ_M set $D \in D_i$.

Proof: Let D_i be the set of all γ_M -set D of a graph G.

(i). Suppose $\gamma_M(G) \equiv i_M(G)$. Then $\gamma_M(G) \leq i_M(G)$ and every γ_M -set D of a graph G is an independent majority dominating set of G. The induced subgraph $\langle D \rangle$ has only isolates for every γ_M -set

 $D \in D_i$. Conversely, for every γ_M -set D, the induced subgraph $\langle D \rangle$ has only isolates. Then D is an independent set of $G \Longrightarrow$ every γ_M -set D is an i_M -set of G. $\therefore i_M(G) \le \gamma_M(G)$. For any graph G, $\gamma_M(G) \le i_M(G)$. Hence $\gamma_M(G) \equiv i_M(G)$.

(ii). Suppose $\gamma_M(G)$ is not $\equiv i_M(G)$. Then for any graph G, $\gamma_M(G) \leq i_M(G)$ but not every γ_M -set D is an i_M -set of G. Then the γ_M -set D is not independent for any one $D \in D_i$. Hence, the induced subgraph $\langle D \rangle$ is not totally disconnected for any $D \in D_i$. Conversely, if $\langle D \rangle$ is not totally disconnected for at least one $D \in D_i$ then D is not an independent γ_M -set. It does not satisfy the fact that every γ_M -set is an i_M -set of G. $\therefore i_M(G) \leq \gamma_M(G)$ is not true. Thus, $\gamma_M(G)$ is not $\equiv i_M(G)$. \Box

IV. Strong Equality of $\gamma(G)$ and $\gamma_M(G)$ and of i(G) and $i_M(G)$.

Observations 4.1:

1. For any graph G, $\gamma_M(G) \leq \gamma(G)$.

2. If $\gamma(G) = 1$ then $\gamma_M(G) = 1$.

3. If G has a full degree vertex then every γ_M -set is a γ -set.

Proposition 4.2:

For any graph G, $\gamma(G) \equiv \gamma_M(G)$ if and only if G has a full degree vertex.

Proof: Let $\gamma(G) \equiv \gamma_M(G)$. Suppose *G* has no full degree vertex. Then $\gamma(G) \ge 2 \cdot G$ may have a majority dominating vertex *v* with $d(v) \ge \left\lceil \frac{p}{2} \right\rceil - 1$. Then $\gamma_M(G) = 1$ but r > 1. Therefore every γ_M -set is not a γ -set $\Rightarrow \gamma(G)$ is not strongly equal to $\gamma_M(G)$, a contradiction. Hence *G* has a full degree vertex. Conversely, if *G* has a full degree vertex, then r = 1. Then $\gamma_M(G) = 1$. Since $\gamma(G) = \gamma_M(G) = 1$, every γ_M -set is also a γ -set. Hence $\gamma(G) \equiv \gamma_M(G) = 0$.

Proposition 4.3:

For any graph G, $i(G) \equiv i_M(G)$ if and only if G has a full degree vertex.

References:

- [1]. J. JoselineManora, B. John, Independent Majority Dominating set of a Graph, International Journal of Applied Computational Science and Mathematics -Accepted.
- [2]. J. JoselineManora, B. John, Majority Independence Number of a Graph, International Journal of Mathematical Research, Vol-6, No.1 (2014), 65-74.
 [3] L. JoselineManora, V. Swaminathan, Majority dominating sets in graphs, Jamel Academic Research Journal, Vol 3, No.2 (2006).
- J. JoselineManora, V. Swaminathan, Majority dominating sets in graphs, Jamal Academic Research Journal, Vol-3, No.2 (2006), 75-82.
- [4]. J. JoselineManora, V. Swaminathan, Results on Majority dominating set, Science Magna, North West University, X'tion, P.R. china, Vol.7, No.3 (2011), 53-58.
 [5] T. W. Haunes, M. A. Hanning, P. J. Slater, Strong equality of domination parameters in trees. Discrete Mathematics 260 (2003) 77.
- [5]. T. W. Haynes, M. A. Henning, P. J. Slater, Strong equality of domination parameters in trees, Discrete Mathematics 260 (2003) 77-87.
- [6]. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.