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Abstract:  In this paper we present the Painlevè test for the (1+1) –dimensional travelling regularized long 

wave (TRLW) equation, the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli (BLMP) equation, the modified 

improved Kadomtsev-Petviashvili equation (MIKP) and the variant shallow water wave equations. The 

associated Bäcklund transformations are obtained directly from the Painlevè test. 
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(MIKP), the variant shallow water wave equations and Painlevè analysis. 

 

I.      Introduction
 

Painlevè analysis is a powerful tool in investigating the integrability properties of differential 

equations. For systems with the painlevè property, Bäcklund transformations can be defined. These appear as 

truncations of certain expansions of solutions about its singular manifold. Many methods have been established 

to study characteristic properties for integrable NLEEs and their interrelations. Some of the most important 

methods are the inverse scattering method (IST) [1-4], the Bäcklund transformations [5, 6] and the Painlevè 

analysis method [7-12]. If a PDE which has no points such as movable branch, algebraic and logarithmic then is 

called P-type. An ordinary differential equation (ODE) might still admit movable essential singularities without 

movable branch points. This method does not identify essential singularities and therefore it provides only 
necessary conditions for an ODE to be of P-type. Singularity structure analysis admitting the P-property 

advocated by Ablowitz et al. for ODEs and extended to PDE by Weiss, Tabor and Carnevale (WTC), plays a 

key role of investigating the integrability properties of many NLEEs. The well-known procedure of WTC 

requires, 

• The determination of leading orders Laurent series, 

• The identification of powers at which the arbitrary functions can enter into the Laurent series called  

   resonances,                                                                                                                                                                                                                                                      

• Verifying that, at the resonance values, sufficient number of arbitrary functions exist without         

   introducing the movable critical manifold. 

        According to the WTC method, the general solution of PDE is in the form 
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where  is a negative integer determined by balancing the powers of   of dominant terms in the equation. 

is a non-characteristic manifold, ( , ) 0x t  is the equation of singular manifold. The functions 

( , ,2,...)ju j o i  have to be determined by substitution of expansion (1.1) into the PDE, so it becomes: 
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where q is some negative constant, jE depends on  only by the derivatives of . The successive practical 

steps of Painleve´ analysis are the following: 

• Determine the possible leading orders p by balancing two or more terms of the PDE and expressing that  

   they dominate the other terms. 

• Solve equation 0 0E  for non-zero values of 0u ; this may lead to several solutions, called branches.  

• Find the resonances, i.e. the values of k  for which ku  cannot be determined from equation 0.jE   

   This last equation has generally the form 
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where n is the order of the PDE, 0 ≤ j≤ n and p  is a polynomial of degree 1n  . The values of the resonances 

are the zeros of p . 

• Determine whether the resonances are ‘compatible’ or not. At resonance, after substitution in (1.3) of  

   the previously computed
iu , 1i j  , the function Q  is either zero or non-zero then in the case 

ju
   

  
can arbitrarily be  chosen and the expansion (1.1) does not exist for arbitrary  , so the resonance is   

  called compatible. 

 

II. The (1+1) –dimensional travelling regularized long wave (TRLW) equation 
   Consider the (1+1) –dimensional travelling regularized long wave equation [13]: 

0t x x xttu u uu u                                                                                                                           (2.1) 

We first present the Painlevè test of the TRLW equation. The leading order of solution of Eq. (2.1) is assumed 
as 

0u u                                                                                                                                                            (2.2) 

Substituting Eq. (2.2) into (2.1) and equating the most dominant terms, the following results are obtained 
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For finding the resonances, the full Laurent series 
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                                                                                                                                   (2.4) 

is substituted into Eq. (2.1) and by equating the coefficients of 
5j , the polynomial equation in j is  

found as 
3 29 14 24 0j j j                                                                                                                                   (2.5) 

Using Eq. (2.5), the resonances are found to be 

1,4,6j                                                                                                                                                          (2.6) 

As usual, the resonance at 1j    corresponds to the arbitrariness of singular manifold ( , ) 0x t  . In order 

to check the existence of sufficient number of arbitrary functions at the other resonance values, the full Laurent 

expansion (2.4) is substituted in Eq. (2.1). From the coefficient of
5 , the explicit value of 0u is obtained as 

given in Eq. (2.3). 

   To construct the Bäcklund transformation of Eq. (2.1), let us truncate the Laurent series at the constant level 

term to give 
2 1

0 1u u u                                                                                                                                                (2.7) 
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where the pair of function 1( , )u u  satisfy Eq. (2.1), and hence Eq. (2.8) is the associated Bäcklund  

transformation of Eq. (2.1) relating a solution u with a known solution 1u of the Eq. (2.1) which can be taken to 

be so. 

   We can also construct another Bäcklund transformation of Eq. (2.1) to be 
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                                                                                                                                               (2.9) 

where 1,u u satisfy Eq. (2.1) while 2u  is given by: 
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and hence Eq. (2.10) is a Bäcklund  transformation too. Also let's truncate the Laurent series again we get 
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where 
1,u u  satisfy Eq. (2.1) and 

2u is given by Eq. (2.10) 
3u is given by: 
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 We can make more truncations to the Laurent series at the constant level term u4 and it will produce another 

Bäcklund transformation for Eq. (2.1). 
 

III. The (2+1)-dimensional Boiti-Leon-Manna-Pempinelli (BLMP) equation 
Consider the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli (BLMP) equation [14-17]: 

3 3 0yt xy x xx y xxxyu u u u u u                                                                                                           (3.1) 

We first present the Painlevè test of the BLMP equation. The leading order of solution of Eq. (3.1) is assumed as 

0u u                                                                                                                                                            (3.2) 

Substituting Eq. (3.2) into (3.1) and equating the most dominant terms, the following results are obtained 

0 2 ,xu      1             

                                                                                                                                                                            (3.3)                   
For finding the resonances, the full Laurent series. 
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                                                                                                                                    (3.4) 

is substituted into Eq. (3.1) and by equating the coefficients of 
5j , the polynomial equation in j is found as 

4 3 210 23 10 24 0j j j j                                                                                                                    (3.5) 

Using Eq. (3.5), the resonances are found to be 

1,1,4,6j  
 
                                                                                                                                                  (3.6) 

As usual, the resonance at 1j    corresponds to the arbitrariness of singular manifold

( , , ) 0x y t  . In order to check the existence of sufficient number of arbitrary functions at the other 

resonance values, the full Laurent expansion (3.4) is substituted in Eq. (3.1). From the coefficient of
5 , the 

explicit value of 0u is obtained as given in Eq. (3.3). 

To construct the Bäcklund transformation of Eq. (3.1), let us truncate the Laurent series at the constant 

level term to give 
1

0 1u u u                                                                                                                                                    (3.7) 

Hence 
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where the pair of function 1( , )u u satisfy Eq. (3.1) and hence Eq. (3.8) is the associated Bäcklund  

transformation of Eq. (3.1) relating a solution u with a known solution 1u of the Eq. (3.1) which can be taken to 

be so. 

   We can also construct another Bäcklund transformation of Eq. (3.1) to be 
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                                                                                                                                        (3.9) 

where 1,u u  satisfy Eq. (3.1) while 2u  is given by: 
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and hence Eq. (3.9) is a Bäcklund  transformation too. Also let's truncate the Laurent series again we get 
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where 
1,u u  satisfy Eq. (3.1) and

2u  is given by Eq. (3.10), while
3u is given by: 
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We can make more truncations to the Laurent series at the constant level term 4u  and it will produce  

another Bäcklund transformation for Eq. (3.1). 

 

IV. The modified improved Kadomtsev-Petviashvili equation (MIKP) 
Consider the modified improved Kadomtsev-Petviashvili equation (MIKP) [18, 19]: 

2 22 0tx x xx xxxx yyu uu u u au bu                                                                                                 
(4.1)

 

We first present the Painlevè test of the MIKP equation. The leading order of solution of Eq. (4.1) is assumed 

as: 

0u u                                                                                                                                                            
(4.2) 

Substituting Eq. (4.2) into (4.1) and equating the most dominant terms, the following results are obtained 

0 6 ,xu a      1        
                                                                                                                                                                            

(4.3)
                   

For finding the resonances, the full Laurent series. 
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is substituted into Eq. (4.1) and by equating the coefficients of 
5j , the polynomial equation in j is found as: 

4 3 210 29 8 48 0j j j j                                                                                                                      
(4.5)

 

Using Eq. (4.5), the resonances are found to be 

1,3,4,4j                                                                                                                                                     
(4.6)

 

As usual, the resonance at 1j    corresponds to the arbitrariness of singular manifold

( , , ) 0x y t  . In order to check the existence of sufficient number of arbitrary functions at the other 

resonance values, the full Laurent expansion (4.4) is substituted in Eq. (4.1). From the coefficient of
5 , the 

explicit value of 0u is obtained as given in Eq. (4.3). 

To construct the Bäcklund transformation of Eq. (4.1), let us truncate the Laurent series at the constant level 

term to give 
1

0 1u u u 
                                                                                                                                                  

(4.7) 
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where the pair of function
1( , )u u  satisfy Eq. (4.1) and hence Eq. (4.8) is the associated Bäcklund 

transformation of Eq. (4.1) relating a solution u with a known solution
1u of the Eq. (4.1) which can be taken to 

be so. 

   We can also construct another Bäcklund transformation of Eq. (4.1) to be 
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where 
1,u u  satisfy Eq. (4.1) while 

2u  is given by: 
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and hence Eq. (4.10) is a Bäcklund  transformation too.  

 

V. The variant shallow water wave equations 
Consider the variant shallow water wave equations [20]: 
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We first present the Painlevè test of the variant shallow water wave equations. The leading order of solution of 

system (5.1) is assumed as: 

0 ,u u     
0v v                                                                                                                                      

(5.2) 
Substituting Eq. (5.2) into (5.1) and equating the most dominant terms, the following results are obtained 
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For finding the resonances, the full Laurent series. 
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is substituted into system (5.1) and by equating the coefficients of 
5j , the polynomial equation in j is found  

as: 
3 29 14 24 0j j j                                                                                                                                   

(5.5)
 

Using Eq. (5.5), the resonances are found to be 

1,4,6j                                                                                                                                                         
(5.6)

 

As usual, the resonance at 1j    corresponds to the arbitrariness of singular manifold ( , ) 0x t  . In order 

to check the existence of sufficient number of arbitrary functions at the other resonance values, the full Laurent 

expansion (5.4) is substituted in system (5.1). From the coefficient of
5 , the explicit value of 0 ,u

 0v is 

obtained as given in Eq. (5.3). 

To construct the Bäcklund transformation of system (5.1), let us truncate the Laurent series at the constant level 

term to give 
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where the pair of function ( , )u v  and 
1 1( , )u v satisfy system (5.1), while 

2 ,u  
2v satisfy respectively the 

following equations:  
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and hence Eq. (5.8) is the associated Bäcklund transformation of system (5.1). 

   We can also construct another Bäcklund transformation of system (5.1) to be 
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where the pair of function
 
( , )u v and 4 4( , )u v satisfy system (5.1) while 2u  and 2v is given by Eq. (5.9) and 

Eq. (5.10) respectively but 3u and 3v are given respectively by the following equations: 
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hence Eq. (5.11) is a Bäcklund transformation too. 
 

VI. Conclusion 
In this paper, the Painlevè test has been successfully applied to obtain new Bäcklund transformation of 

some of the most important nonlinear partial differential equations that have many applications in different 

fields. Thus the Painlevè test can be applied to different nonlinear partial differential equations to obtain new 

Bäcklund transformation of these partial differential equations. 
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