Total Dominating Sets and Total Domination Polynomials of Square Of Wheels

T.Premala, Dr.C.Sekar.

Assistant Professor/ Mathematics, C.S.I.Institute of Technology, Thovalai Associate Professor/ Mathematics, Aditanar college of Arts and Science, Tiruchendur

Abstract: Let G = (V, E) be a simple connected graph. A set $S \subseteq V$ is a total dominating set of G if every *vertex is adjacent to an element of S. Let* $D_t(W_n^2, i)$ *be the family of all total dominating sets of the graph* W_n^2 , $n \ge 3$ with cardinality *i*, and let $d_t(W_n^2, i) = |D_t(W_n^2, i)|$. In this paper we compute $d_t(W_n^2, i)$, and obtain the polynomial $D_t(W_n^2, x) = \sum_{i=Y_t(W_n^2)}^{n+1} d_t(W_n^2, i) x^i$, which we call total domination polynomial of W_n^2 , $n \ge 3$ and obtain some properties of this polynomial.

Keywords: square of wheel, total domination set, total domination polynomial

I. Introduction

Let G = (V,E) be a simple connected graph. A set $S \subseteq V$ is a dominating set of G, if every vertex in V-S is adjacent to atleast one vertex in S. A set S \subseteq V is total dominating set if every vertex of the graph is adjacent to an element of S. The total domination number of a graph G is the minimum cardinality of a total dominating set in G, and it is denoted by $Y_t(G)$. Obviously Y(G) < |V|. The square of a simple connected graph G is a graph with same set of vertices of G and an edge between two vertices if and only if there is a path of length at most 2 between them. It is denoted by G^2 . We use the notation [x] for the largest integer less than or equal to x and [x] for the smallest integer greater than or equal to x. Also we denote the set { $1,2,\ldots,n$ by [n], throughout this paper.

In this paper, we study the concept of total dominating sets and total domination polynomials of square of wheels W_n^2 , $n \ge 3$. Let $D_t(W_n^2,i)$ be the total dominating set of W_n^2 with cardinality i. Let $d_t(W_n^2,i) = |D_t(W_n^2,i)$. The total domination polynomial of W_n^2 is $D_t(W_n^2,x) = \sum_{i=Y_t(W_n^2)}^{n+1} d_t(W_n^2,i)x^i$.

Definition 1.1

The square of a wheel W_n is a graph with same set of vertices as W_n and an edge between two vertices if and only if there is a path of length atmost 2 between them. It is denoted by W_n^2 .

Definition 1.2

Let W_n^2 , $n \ge 3$ be the square of wheel with n+1 vertices. Let $V(W_n^2) = \{v_0, v_1, v_2, \dots, v_n\}$ and $E(W_n^2) = \{v_1, v_2, \dots, v_n\}$ $\{(v_0, v_i); i=1,2,\ldots,n\} \cup \{(v_i, v_{i+1}); i=1,2,\ldots,n-1\} \cup \{(v_i, v_{i+2}); i=1,2,\ldots,n-2\} \cup (v_n, v_1), (v_{n-1}, v_1), (v_n, v_2)\}$ Let $D_t(W_n^2, i)$ be the family of total dominating sets of W_n^2 with cardinality i and let $d_t(W_n^2, i) = |V_n|^2 + |V_n|^2$ $D_t(W_n^2,i)$. Then the total dominating polynomial $D_t(W_n^2,x)$ of W_n^2 is defined as $d_t(W_n^2,x)$ $=\sum_{i=Y_t(W_n^2)}^n d_t(W_n^2, i)x^i$.

Notation 1.3

We categorize the total dominating sets of W_n^2 into two classes, the total dominating sets containing the vertex v_0 and the total dominating sets not containing the vertex v_0 , where v_0 denotes the centre of the wheel.. Let $D_t^0(W_n^2,i)$ be the collection of total dominating sets of W_n^2 containing the vertex v_0 with cardinality i. Let $D_t^1(W_n^2,i)$ be the collection of total dominating sets of W_n^2 not containing the vertex v_0 with cardinality i. The total dominating sets of W_n^2 not containing v_0 with cardinality i is same as the total dominating sets of the square of cycle C_n^2 with cardinality i. Hence $D_t^1(W_n^2,i) = D_t(W_n^2,i)$. Let $d_t^0(W_n^2,i) = |D_t^0(W_n^2,i)|$ and $d_t^1(W_n^2,i) = |D_t^1(W_n^2,i)|$

So $d_t^1(W_n^2, i) = d_t(C_n^2, i)$

But in general $d_t(W^2_n,\!i)=\ d^0_t(W^2_n,\!i)+d^1_t(W^2_n,\!i)$ That is $d_t(W_n^2,i) = d_t^0(W_n^2,i) + d_t(C_n^2,i)$

Lemma 1.4

For w_n^2 , $n \ge 3$ with $|V(w_n^2)| = n+1$, then the total domination number is $Y_t(w_n^2) = 2$

Proof:

In the graph W_n^2 , a single vertex covers all the remaining vertices of W_n^2 .

By the definition of total domination, every vertex in total dominating set S is adjacent to another vertex of S. Therefore $Y_t(w_n^2) = 2$.

Remark 1.5

 $\begin{array}{lll} We \ have \ \ Y_t(w_n^2) = 2\\ Therefore \ D_t(W_n^2,i) \neq \phi \ if \ \ 2 \leq i \leq n+1.\\ That \ is \ \ d_t(W_n^2,i) \neq 0 \ if \ \ 2 \leq i \leq n+1. \end{array}$

Lemma 1.6

Let W_n^2 , $n \ge 3$ be the square of wheel with $|V(W_n^2)| = n+1$. Then we have

(i) $D_t(W_n^2, i) = \phi \text{ if } i > n+1.$

(ii) $D_t(W_n^2,x)$ is a multiple of x^2 .

(iii) $D_t(W_n^2,x)$ is a strictly increasing function on $[0,\infty)$.

Proof of (i)

Since W_n^2 has n+1 vertices, there is only one way to choose all these vertices.

Therefore $d_t (W_n^2, n+1) = 1$.

Out of these n+1 vertices, every combination of n vertices can dominate totally only if $\delta(W_n^2) > 1$. Therefore $d_t(W_n^2,n) = n+1$ if $\delta(W_n^2) > 1$.

Therefore $D_t(W_n^2, i) = \phi$ if $i < Y_t(W_n^2)$ and $D_t(W_n^2, n+k) = \phi$, k = 2,3,...Thus $d_t(W_n^2, i) = 0$ for $i < Y_t(W_n^2)$ and $d_t(W_n^2, n+i) = 0$, for i = 2,3,...

Proof of (ii)

A single vertex of W_n^2 cannot totally dominate all the vertices of W_n^2 , $n \ge 3$. So the set of all vertices of W_n^2 is totally dominated by atleast two of the vertices of W_n^2 . Hence the total domination polynomial has no constant term as well as first degree term.

Proof of (iii)

By the definition of total domination, every vertex of W_n^2 is adjacent to an element of total dominating set. That is $D_t(W_n^2,x) = \sum_{i=Y_t(W_n^2)}^{n+1} |D_t(W_n^2,i)| x^i$

Therefore $D_t(W_n^2, x)$ is a strictly increasing function on $[0, \infty)$.

Theorem 1.7

If $D_t(W_n^2, i)$ and $D_t(C_n^2, i)$ are the collection of total dominating sets of W_n^2 and C_n^2 respectively with cardinality I, where $i > [\frac{n}{5}] + 1$ then $d_t(W_n^2, i) = nc_{i-1} + d_t(C_n^2, i)$

Proof:

We have $d_t(W_n^2, i) = d_t^0(W_n^2, i) + d_t^1(W_n^2, i)$ = $d_t^0(W_n^2, i) + d_t(C_n^2, i)$

The number of total dominating sets of W_n^2 containing the vertex v_0 with cardinality i is the number of ways to choose i-1 vertices from the vertices 1,2,3,...,n. Therefore $d_t^0(W_n^2,i) = nc_{i-1}$. Therefore $d_t(W_n^2,i) = nc_{i-1} + d_t(C_n^2,i)$.

Lemma 1.8

Let W_n^2 , $n \ge 3$ be the square of path with $|V(W_n^2)| = n+1$. Suppose that $D_t(W_n^2, i) \neq \phi$, then we have $\begin{array}{l} D_t(W^2_{n-2},i\text{-}1) \ = \phi \ \text{and} \ D_t(W^2_{n-1},\,i\text{-}1) \not= \phi \ \text{if and only if} \ i = n + 1. \\ D_t(W^2_{n-1},\,i\text{-}1) \not= \phi \ \text{,} \ D_t(W^2_{n-2},\,i\text{-}1) \ \neq \phi \ \text{ and} \ D_t(W^2_{n-3},i\text{-}1) \ = \phi \ \text{if only if} \ i = n. \end{array}$ (i) (ii) **Proof of (i)** Suppose, $D_t(W_{n-2}^2, i-1) = \phi$ and $D_t(W_{n-1}^2, i-1) \neq \phi$ \implies d_t(W_{n-2}²,i-1) = 0 and d_t(W_{n-1}²,i-1) \neq 0 \implies i-1 < Y_t(W_n²) or i-1 > n-1 and Y_t(W_n²) \le i-1 \le n If $i-1 < Y_t(W_n^2) \implies i-1 < i < Y_t(W_n^2) \implies i < Y_t(W_n^2)$ $d_t(W_n^2,i) = 0$ which is a contradiction, since $d_t(W_n^2,i) \neq 0$, so $i-1 < Y_t(W_n^2)$ is not possible. Therefore i-1 > 0 \Rightarrow n-1. \Rightarrow i > n \Rightarrow i ≥ n+1 (1)Also, we have $i-1 \leq n$ \Rightarrow i \leq n+1 (2)From (1) and (2) we get i=n+1.

Conversely, if i = n+1, then $\begin{array}{l} D_t(W_{n-2}^2,i\text{-}1) \ = D_t(W_{n-2}^2,n) \ = \phi \ \text{and} \\ D_t(W_{n-1}^2,i\text{-}1) \ = D_t(W_{n-1}^2,n) \ \neq \phi. \end{array}$ Proof of (ii) Suppose, $D_t(W_{n-1}^2, i-1) \neq \phi$, $D_t(W_{n-2}^2, i-1) \neq \phi$ Then $d_t(W^2_{n-1},\,i\text{-}1)\neq 0$, $d_t(W^2_{n-2},\,i\text{-}1)\,\neq 0$ \implies $Y_t(W_n^2) \le i-1 \le n \text{ and } Y_t(W_n^2) \le i-1 \le n-1$ \Rightarrow i-1 \leq n-1 $\Rightarrow i \leq n$ (1)Also we have $D_t(W_{n-3}^2, i-1) = \varphi$ Then $d_t(W_{n-3}^2, i-1) = 0$ \Rightarrow i-1 < $\dot{Y_t}(W_n^2)$ or i-1 > n-2 If $i-1 < Y_t(W_n^2) \implies i-1 < i < Y_t(W_n^2) \implies i < Y_t(W_n^2)$ $d_t(W_n^2,i-1) = 0$ which is a contradiction, since $d_t(W_n^2,i) \neq 0$. \Rightarrow Therefore i-1 $< Y_t(W_n^2)$ is not possible, so i-1 > n-2 \Rightarrow i > n-1 \Rightarrow $i \geq n$ (2)From (1) and (2) we get i = n. Conversely, if i = n, then $\begin{array}{l} D_t(W_{n-1}^2,i\text{-}1)=D_t(W_{n-1}^2,n\text{-}1)\neq \phi\\ D_t(W_{n-2}^2,i\text{-}1)=D_t(W_{n-2}^2,n\text{-}1)\neq \phi \text{ and} \end{array}$

$D_t(W_{n-3}^2, i-1) = D_t(W_{n-3}^2, n-1) = \varphi$

Theorem 1.9

Let W_n^2 , $n \ge 3be$ the square of wheel with $|V(W_n^2)| = n+1$. Then the following properties hold for the coefficients of $D_t(W_n^2,x)$:

For $n \ge 2$, $d_t(W_n^2, n+1) = 1$ (i) For $n \ge 2$, $d_t(P_n^2, n) = n+1$ (ii) For $n \ge 3$, $d_t(W_n^2, n-1) = (n+1)c_2$ (iii) For $n \ge 5$, $d_t(W_n^2, n-2) = (n + 1)c_2$ For $n \ge 5$, $d_t(W_n^2, n-2) = (n + 1)c_3$ For $n \ge 5$, $d_t(W_n^2, n-3) = (n + 1)c_4$ For $n \ge 7$, $d_t(W_n^2, n-4) = (n + 1)c_5 - n$ (iv) (v) (vi) Proof of (i) Since for any graph G with n+1 vertices, $d_t(G,n+1) = 1$, then $d_t(W_n^2, n+1) = 1$. Proof of (ii) To prove $d_t(W_n^2, n) = n+1$, for $n \ge 2$. We have, $d_t(W_n^2, i) = nc_{i-1} + d_t(C_n^2, i)$ $d_t(W_n^2,n) = nc_{n-1} + d_t(C_n^2,n)$ = n+1Therefore $d_t(W_n^2, n) = n+1$. **Proof of (iii)** To prove $d_t(W_n^2, n-1) = (n+1)c_2$, for $n \ge 3$ We have, $d_t(W_n^2,i) = nc_{i-1} + d_t(C_n^2,i)$ $d_t(W_n^2,n-1) = nc_{n-2} + d_t(C_n^2,n-1)$ $= \frac{1}{2}n(n-1) + n$ $=\frac{1}{2}n(n-1+2)$ $=\frac{1}{2}n(n+1)$ $= (n + 1)c_2$ $= (n + 1)c_2 - 2$, for $n \ge 5$ Proof of (iv) To prove $d_t(W_n^2, n-2) = (n+1)c_3$ for every $n \ge 5$ We have, $d_t(W_n^2, i) = nc_{i-1} + d_t(C_n^2, i)$ $d_t(W_n^2, n-2) = nc_{n-3} + d_t(C_n^2, n-2)$

 $\frac{1}{6}[n(n-1)(n-2)] - 2(n-2) + \frac{1}{2}n(n-1)$ $\frac{1}{2}n(n-1)[n-2+3]$ = $\frac{1}{6}n(n-1)[n-2+3]$ $= \frac{\frac{1}{6}}{\frac{1}{6}}n(n-1)(n+1)$ $= \frac{1}{6}(n+1)n(n-1)$ $= (n + 1)c_3$ $d_t(W_n^2, n-2) = (n+1)c_3$ for every $n \ge 5$ Proof of (v) To prove $d_t(W_n^2, n-3) = (n+1)c_4$, for $n \ge 5$. We have , $d_t(W_n^2, i) = nc_{i-1} + d_t(C_n^2, i)$ $\begin{aligned} \mathbf{t}_{t}(\mathbf{W}_{n}^{2},\mathbf{n}) &= \mathbf{n}\mathbf{C}_{i-1} + \mathbf{d}_{t}(\mathbf{C}_{n}^{2},\mathbf{n}) \\ \mathbf{d}_{t}(\mathbf{W}_{n}^{2},\mathbf{n}\cdot\mathbf{3}) &= \mathbf{n}\mathbf{c}_{n-4} + \mathbf{d}_{t}(\mathbf{C}_{n}^{2},\mathbf{n}\cdot\mathbf{3}) \\ &= \frac{1}{24}[\mathbf{n}(\mathbf{n}\cdot\mathbf{1})(\mathbf{n}\cdot\mathbf{2})(\mathbf{n}\cdot\mathbf{3})] - 2(\mathbf{n}\cdot\mathbf{2}) + \frac{1}{6}\mathbf{n}(\mathbf{n}-\mathbf{1})(\mathbf{n}\cdot\mathbf{2}) \\ &= \frac{1}{24}\mathbf{n}(\mathbf{n}\cdot\mathbf{1})(\mathbf{n}\cdot\mathbf{2})(\mathbf{n}\cdot\mathbf{3}+\mathbf{4}] \\ &= \frac{1}{24}\mathbf{n}(\mathbf{n}\cdot\mathbf{1})(\mathbf{n}\cdot\mathbf{2})(\mathbf{n}+\mathbf{1}) \\ &= \frac{1}{24}(\mathbf{n}+\mathbf{1})\mathbf{n}(\mathbf{n}\cdot\mathbf{1})(\mathbf{n}\cdot\mathbf{2}) \\ &= (\mathbf{n}+\mathbf{1})\mathbf{c}. \end{aligned}$ $=(\overset{\scriptstyle \rightarrow}{n+1})c_4$ $d_t(W^2_n,\!n\text{-}3)=(n+1)c_4$, for $n\geq 5$ Proof of (vi) To prove $d_t(W_n^2, n-4) = (n+1)c_5 - n$, for $n \ge 7$. We have, $d_t(W_n^2, i) = nc_{i-1} + d_t(C_n^2, i)$ $d_{t}(W_{n}^{2},n-4) = nc_{n-5} + d_{t}(C_{n}^{2},n-4)$ $= \frac{1}{120}[n(n-1)(n-2)(n-3)(n-4)] - 2(n-2) + \frac{1}{24}n(n-1)(n-2)(n-3) - n$ $= \frac{1}{120}n(n-1)(n-2)(n-3)[n-4+5] - n$ $= \frac{1}{120}n(n-1)(n-2)(n-3)(n+1) - n$ $= \frac{1}{120}(n+1)n(n-1)(n-2)(n-3) - n$ $= -(n+1)c_{n-2} - n$ $= (n + 1)c_5 - n$ $d_t(W_n^2, n-4) = (n+1)c_5 - n$, for $n \ge 7$.

Using theorem 1.7 and theorem 1.9, we obtain $d_t(W_n^2, i)$ for $1 \le i \le 11$ as shown in Table 1.1

Table 1.1 $u_t(v_n, t)$, the number of total dominating sets of v_n with earth							lanty I			
i	2	3	4	5	6	7	8	9	10	11
n										
3	6	4	1							
4	10	10	5	1						
5	15	20	15	6	1					
6	1`8	35	35	21	7	1				
7	14	49	70	56	28	8	1			
8	8	52	118	126	84	36	9	1		
9	9	45	165	243	210	120	45	10	1	
10	10	55	201	403	452	330	165	55	11	1

Table1.1	$d_t(W_n^2, i)$, the	number of total	l dominating sets	of W _n ²	with cardinality i
----------	-----------------------	-----------------	-------------------	--------------------------------	--------------------

Theorem 1.10

If $D_t(W_n^2,x)$ is the total dominating polynomial of square of wheel W_n^2 , then $D_t(W_n^2,x)=x[\ (1+x)^n$ - 1]+ $D_t(W_n^2,x)$