Total Dominating Sets and Total Domination Polynomials of Square Of Wheels

T.Premala, Dr.C.Sekar, Assistant Professor/ Mathematics, C.S.I.Institute of Technology,Thovalai
Associate Professor/ Mathematics, Aditanar college of Arts and Science,Tiruchendur

Abstract

Let $G=(V, E)$ be a simple connected graph. A set $S \subseteq V$ is a total dominating set of G if every vertex is adjacent to an element of S. Let $D_{t}\left(W_{n}{ }^{2}, i\right)$ be the family of all total dominating sets of the graph $W_{n}{ }^{2}$, $n \geq 3$ with cardinality i, and let $d_{t}\left(W_{n}{ }^{2}, i\right)=\left|D_{t}\left(W_{n}{ }^{2}, i\right)\right|$. In this paper we compute $d_{t}\left(W_{n}{ }^{2}, i\right)$, and obtain the polynomial $D_{t}\left(W_{n}{ }^{2}, x\right)=\sum_{\mathrm{i}=\mathrm{Y}_{\mathrm{t}}}^{n+1}\left(\mathrm{~W}_{\mathrm{n}}^{2}\right) d_{t}\left(W_{n}^{2}, i\right) x^{i}$, which we call total domination polynomial of $W_{n}{ }^{2}, n \geq 3$ and obtain some properties of this polynomial.

Keywords: square of wheel, total domination set, total domination polynomial

I. Introduction

Let $G=(V, E)$ be a simple connected graph. A set $S \subseteq V$ is a dominating set of G, if every vertex in V-S is adjacent to atleast one vertex in S . A set $\mathrm{S} \subseteq \mathrm{V}$ is total dominating set if every vertex of the graph is adjacent to an element of S. The total domination number of a graph G is the minimum cardinality of a total dominating set in G, and it is denoted by $Y_{t}(G)$. Obviously $Y(G)<|V|$. The square of a simple connected graph G is a graph with same set of vertices of G and an edge between two vertices if and only if there is a path of length at most 2 between them. It is denoted by G^{2}. We use the notation $\lfloor\mathrm{x}\rfloor$ for the largest integer less than or equal to x and $\lceil\mathrm{x}$ ךfor the smallest integer greater than or equal to x . Also we denote the set $\{$ $1,2, \ldots \ldots \ldots \ldots, n\}$ by $[n]$, throughout this paper.

In this paper, we study the concept of total dominating sets and total domination polynomials of square of wheels $W_{n}^{2}, n \geq 3$. Let $D_{t}\left(W_{n}^{2}, i\right)$ be the total dominating set of W_{n}^{2} with cardinality i. Let $d_{t}\left(W_{n}^{2}, i\right)=\mid D_{t}\left(W_{n}^{2}, i\right)$. The total domination polynomial of W_{n}^{2} is $D_{t}\left(W_{n}^{2}, x\right)=\sum_{i=Y_{t}\left(W_{n}^{2}\right)}^{n+1} d_{t}\left(W_{n}^{2}, i\right) x^{i}$.

Definition 1.1

The square of a wheel W_{n} is a graph with same set of vertices as W_{n} and an edge between two vertices if and only if there is a path of length atmost 2 between them. It is denoted by W_{n}^{2}.

Definition 1.2

Let $W_{n}^{2}, n \geq 3$ be the square of wheel with $n+1$ vertices. Let $V\left(W_{n}^{2}\right)=\left\{v_{0}, v_{1}, v_{2}, \ldots \ldots v_{n}\right\}$ and $E\left(W_{n}^{2}\right)=$ $\left\{\left(v_{0}, v_{i}\right) ; i=1,2 \ldots \ldots \ldots, n\right\} \cup\left\{\left(v_{i}, v_{i+1}\right) ; i=1,2, \ldots . \quad n-1\right\} \quad \cup\left\{\left(v_{i}, v_{i+2}\right) ; i=1,2, \ldots \ldots \ldots, n-2\right\} \cup\left(v_{n}, v_{1}\right),\left(v_{n-1}, v_{1}\right)$, $\left.\left(\mathrm{v}_{\mathrm{n}}, \mathrm{v}_{2}\right)\right\}$. Let $\mathrm{D}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}, \mathrm{i}\right)$ be the family of total dominating sets of $\mathrm{W}_{\mathrm{n}}^{2}$ with cardinality i and let $\mathrm{d}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}, i\right)=1$ $D_{t}\left(W_{n}^{2}, i\right) \mid$. Then the total dominating polynomial $D_{t}\left(W_{n}^{2}, x\right)$ of W_{n}^{2} is defined as $d_{t}\left(W_{n}^{2}, x\right)$ $=\sum_{\mathrm{i}=\mathrm{Y}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}\right)} \mathrm{d}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}, \mathrm{i}\right) \mathrm{x}^{\mathrm{i}}$.

Notation 1.3

We categorize the total dominating sets of $\mathrm{W}_{\mathrm{n}}^{2}$ into two classes, the total dominating sets containing the vertex v_{0} and the total dominating sets not containing the vertex v_{0}, where v_{0} denotes the centre of the wheel.. Let $D_{t}^{0}\left(W_{n}^{2}, i\right)$ be the collection of total dominating sets of W_{n}^{2} containing the vertex v_{0} with cardinality i. Let $D_{t}^{1}\left(W_{n}^{2}, i\right)$ be the collection of total dominating sets of W_{n}^{2} not containing the vertex v_{0} with cardinality i. The total dominating sets of W_{n}^{2} not containing v_{0} with cardinality i is same as the total dominating sets of the square of cycle C_{n}^{2} with cardinality i. Hence $D_{t}^{1}\left(W_{n}^{2}, i\right)=D_{t}\left(W_{n}^{2}, i\right)$.
Let $d_{t}^{0}\left(W_{n}^{2}, i\right)=\left|D_{t}^{0}\left(W_{n}^{2}, i\right)\right|$ and $d_{t}^{1}\left(W_{n}^{2}, i\right)=\left|D_{t}^{1}\left(W_{n}^{2}, i\right)\right|$
So $d_{t}^{1}\left(W_{n}^{2}, i\right)=d_{t}\left(C_{n}^{2}, i\right)$
But in general $d_{t}\left(W_{n}^{2}, i\right)=d_{t}^{0}\left(W_{n}^{2}, i\right)+d_{t}^{1}\left(W_{n}^{2}, i\right)$
That is $\mathrm{d}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}, \mathrm{i}\right)=\mathrm{d}_{\mathrm{t}}^{0}\left(\mathrm{~W}_{\mathrm{n}}^{2}, \mathrm{i}\right)+\mathrm{d}_{\mathrm{t}}\left(\mathrm{C}_{\mathrm{n}}^{2}, \mathrm{i}\right)$

Lemma 1.4

For $\mathrm{w}_{\mathrm{n}}^{2}, \mathrm{n} \geq 3$ with $\left|\mathrm{V}\left(\mathrm{w}_{\mathrm{n}}^{2}\right)\right|=\mathrm{n}+1$, then the total domination number is $\mathrm{Y}_{\mathrm{t}}\left(\mathrm{w}_{\mathrm{n}}^{2}\right)=2$

Proof:

In the graph W_{n}^{2}, a single vertex covers all the remaining vertices of W_{n}^{2}.
By the definition of total domination, every vertex in total dominating set S is adjacent to another vertex of S.
Therefore $\mathrm{Y}_{\mathrm{t}}\left(\mathrm{w}_{\mathrm{n}}^{2}\right)=2$.

Remark 1.5

We have $\mathrm{Y}_{\mathrm{t}}\left(\mathrm{w}_{\mathrm{n}}^{2}\right)=2$
Therefore $\mathrm{D}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}, \mathrm{i}\right) \neq \varphi$ if $2 \leq \mathrm{i} \leq \mathrm{n}+1$.
That is $\mathrm{d}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}, \mathrm{i}\right) \neq 0$ if $2 \leq \mathrm{i} \leq \mathrm{n}+1$.

Lemma 1.6

$$
\text { Let } \mathrm{W}_{\mathrm{n}}^{2}, \mathrm{n} \geq 3 \text { be the square of wheel with }\left|\mathrm{V}\left(\mathrm{~W}_{\mathrm{n}}^{2}\right)\right|=\mathrm{n}+1 \text {. Then we have }
$$

(i) $\quad D_{t}\left(W_{n}^{2}, i\right)=\varphi$ if i $>n+1$.
(ii) $\quad D_{t}\left(W_{n}^{2}, x\right)$ is a multiple of x^{2}.
(iii) $\quad D_{t}\left(W_{n}^{2}, x\right)$ is a strictly increasing function on $[0, \infty)$.

Proof of (i)

Since $\mathrm{W}_{\mathrm{n}}^{2}$ has $\mathrm{n}+1$ vertices, there is only one way to choose all these vertices.
Therefore $\mathrm{d}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}, \mathrm{n}+1\right)=1$.
Out of these $n+1$ vertices, every combination of n vertices can dominate totally only if $\delta\left(W_{n}^{2}\right)>1$. Therefore $\mathrm{d}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}, \mathrm{n}\right)=\mathrm{n}+1$ if $\delta\left(\mathrm{W}_{\mathrm{n}}^{2}\right)>1$.
Therefore $\mathrm{D}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}, \mathrm{i}\right)=\varphi$ if $\mathrm{i}<\mathrm{Y}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}\right)$ and $\mathrm{D}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}, \mathrm{n}+\mathrm{k}\right)=\varphi, \mathrm{k}=2,3, \ldots \ldots \ldots$.
Thus $d_{t}\left(W_{n}^{2}, i\right)=0$ for $i<Y_{t}\left(W_{n}^{2}\right)$ and $d_{t}\left(W_{n}^{2}, n+i\right)=0$, for $i=2,3, \ldots \ldots \ldots$

Proof of (ii)

A single vertex of W_{n}^{2} cannot totally dominate all the vertices of $W_{n}^{2}, n \geq 3$. So the set of all vertices of W_{n}^{2} is totally dominated by atleast two of the vertices of $\mathrm{W}_{\mathrm{n}}^{2}$. Hence the total domination polynomial has no constant term as well as first degree term.

Proof of (iii)

By the definition of total domination, every vertex of W_{n}^{2} is adjacent to an element of total dominating set.
That is $D_{t}\left(W_{n}^{2}, x\right)=\sum_{i=Y_{t}\left(W_{n}^{2}\right)}^{n+1}\left|D_{t}\left(W_{n}^{2}, i\right)\right| x^{i}$
Therefore $\mathrm{D}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}, \mathrm{x}\right)$ is a strictly increasing function on $[0, \infty)$.

Theorem 1.7

If $D_{t}\left(W_{n}^{2}, i\right)$ and $D_{t}\left(C_{n}^{2}, i\right)$ are the collection of total dominating sets of W_{n}^{2} and C_{n}^{2} respectively with cardinality I, where $\mathrm{i}>\left\lceil\frac{\mathrm{n}}{5}\right\rceil+1$ then $\mathrm{d}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}, \mathrm{i}\right)=\mathrm{nc}_{\mathrm{i}-1}+\mathrm{d}_{\mathrm{t}}\left(\mathrm{C}_{\mathrm{n}}^{2}, \mathrm{i}\right)$
Proof:
We have $d_{t}\left(W_{n}^{2}, i\right)=d_{t}^{0}\left(W_{n}^{2}, i\right)+d_{t}^{1}\left(W_{n}^{2}, i\right)$

$$
=\mathrm{d}_{\mathrm{t}}^{0}\left(\mathrm{~W}_{\mathrm{n}}^{2}, \mathrm{i}\right)+\mathrm{d}_{\mathrm{t}}\left(\mathrm{C}_{\mathrm{n}}^{2}, \mathrm{i}\right)
$$

The number of total dominating sets of W_{n}^{2} containing the vertex v_{0} with cardinality i is the number of ways to choose $\mathrm{i}-1$ vertices from the vertices $1,2,3, \ldots \ldots \ldots, n$. Therefore $d_{t}^{0}\left(W_{n}^{2}, i\right)=n c_{i-1}$. Therefore $d_{t}\left(W_{n}^{2}, i\right)=$ $\mathrm{nc}_{\mathrm{i}-1}+\mathrm{d}_{\mathrm{t}}\left(\mathrm{C}_{\mathrm{n}}^{2}, \mathrm{i}\right)$.

Lemma 1.8

. Let $W_{n}^{2}, n \geq 3$ be the square of path with $\left|V\left(W_{n}^{2}\right)\right|=n+1$. Suppose that $D_{t}\left(W_{n}^{2}, i\right) \neq \varphi$, then we have
(i) $\quad D_{t}\left(W_{n-2}^{2}, i-1\right)=\varphi$ and $D_{t}\left(W_{n-1}^{2}, i-1\right) \neq \varphi$ if and only if $i=n+1$.
(ii) $\quad D_{t}\left(W_{n-1}^{2}, i-1\right) \neq \varphi, D_{t}\left(W_{n-2}^{2}, i-1\right) \neq \varphi$ and $D_{t}\left(W_{n-3}^{2}, i-1\right)=\varphi$ if only if $i=n$.

Proof of (i)
Suppose, $D_{t}\left(W_{n-2}^{2}, i-1\right)=\varphi$ and $D_{t}\left(W_{n-1}^{2}, i-1\right) \neq \varphi$
$\Rightarrow \mathrm{d}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}-2}^{2}, \mathrm{i}-1\right)=0$ and $\mathrm{d}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}-1}^{2}, \mathrm{i}-1\right) \neq 0$
$\Rightarrow \mathrm{i}-1<\mathrm{Y}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}\right) \quad$ or $\mathrm{i}-1>\mathrm{n}-1$ and $\mathrm{Y}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}\right) \leq \mathrm{i}-1 \leq \mathrm{n}$ If $\mathrm{i}-1<\mathrm{Y}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}\right) \quad \Rightarrow \mathrm{i}-1<\mathrm{i}<\mathrm{Y}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}\right) \quad \Rightarrow \mathrm{i}<\mathrm{Y}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}\right)$
$\Rightarrow d_{t}\left(W_{n}^{2}, i\right)=0$ which is a contradiction, since $d_{t}\left(W_{n}^{2}, i\right) \neq 0$, so $i-1\left\langle Y_{t}\left(W_{n}^{2}\right)\right.$ is not possible. Therefore $\left.\mathrm{i}-1\right\rangle$ n-1.
$\Rightarrow \mathrm{i}>\mathrm{n} \Rightarrow \mathrm{i} \geq \mathrm{n}+1$
Also, we have $\mathrm{i}-1 \leq \mathrm{n}$

$$
\begin{equation*}
\Rightarrow \mathrm{i} \leq \mathrm{n}+1 \tag{1}
\end{equation*}
$$

From (1) and (2) we get $\mathrm{i}=\mathrm{n}+1$.

Conversely, if $\mathrm{i}=\mathrm{n}+1$, then
$D_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}-2}^{2}, \mathrm{i}-1\right)=\mathrm{D}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}-2}^{2}, \mathrm{n}\right)=\varphi$ and
$\mathrm{D}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}-1}^{2}, \mathrm{i}-1\right)=\mathrm{D}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}-1}^{2}, \mathrm{n}\right) \neq \varphi$.
Proof of (ii)
Suppose,
$D_{t}\left(W_{n-1}^{2}, i-1\right) \neq \varphi, D_{t}\left(W_{n-2}^{2}, i-1\right) \neq \varphi$
Then $\mathrm{d}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}-1}^{2}, i-1\right) \neq 0, \mathrm{~d}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}-2}^{2}, \mathrm{i}-1\right) \neq 0$
$\Rightarrow \mathrm{Y}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}\right) \leq \mathrm{i}-1 \leq \mathrm{n}$ and $\mathrm{Y}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}\right) \leq \mathrm{i}-1 \leq \mathrm{n}-1$
$\Rightarrow \mathrm{i}-1 \leq \mathrm{n}-1$
$\Rightarrow \mathrm{i} \leq \mathrm{n}$
Also we have $\mathrm{D}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}-3}^{2}, \mathrm{i}-1\right)=\varphi$
Then $\mathrm{d}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}-3}^{2}, \mathrm{i}-1\right)=0$
$\Rightarrow \mathrm{i}-1<\mathrm{Y}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}\right) \quad$ or $\mathrm{i}-1>\mathrm{n}-2$
If i-1 $<\mathrm{Y}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}\right) \Rightarrow \mathrm{i}-1<\mathrm{i}<\mathrm{Y}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}\right) \quad \Rightarrow \mathrm{i}<\mathrm{Y}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}\right)$
$\Rightarrow \quad d_{t}\left(W_{n}^{2}, i-1\right)=0$ which is a contradiction, since $d_{t}\left(W_{n}^{2}, i\right) \neq 0$.
Therefore $\mathrm{i}-1<\mathrm{Y}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}\right)$ is not possible, so $\mathrm{i}-1>\mathrm{n}-2$

$$
\begin{array}{ll}
\Longrightarrow & i>n-1 \\
\Longrightarrow & i \geq n
\end{array}
$$

From (1) and (2) we get $i=n$.
Conversely, if $\mathrm{i}=\mathrm{n}$, then
$\mathrm{D}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}-1}^{2}, \mathrm{i}-1\right)=\mathrm{D}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}-1}^{2}, \mathrm{n}-1\right) \neq \varphi$
$D_{t}\left(W_{n-2}^{2}, i-1\right)=D_{t}\left(W_{n-2}^{2}, n-1\right) \neq \varphi$ and
$D_{t}\left(W_{n-3}^{2}, i-1\right)=D_{t}\left(W_{n-3}^{2}, n-1\right)=\varphi$

Theorem 1.9

Let $W_{n}^{2}, n \geq 3$ be the square of wheel with $\left|V\left(W_{n}^{2}\right)\right|=n+1$. Then the following properties hold for the coefficients of $D_{t}\left(W_{n}^{2}, x\right)$:
(i) For $\mathrm{n} \geq 2, \mathrm{~d}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}, \mathrm{n}+1\right)=1$
(ii) For $\mathrm{n} \geq 2, \mathrm{~d}_{\mathrm{t}}\left(\mathrm{P}_{\mathrm{n}}^{2}, \mathrm{n}\right)=\mathrm{n}+1$
(iii) For $\mathrm{n} \geq 3, \mathrm{~d}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}, \mathrm{n}-1\right)=(\mathrm{n}+1) \mathrm{c}_{2}$
(iv) For $n \geq 5, \mathrm{~d}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}, \mathrm{n}-2\right)=(\mathrm{n}+1) \mathrm{c}_{3}$
(v) For $\mathrm{n} \geq 5, \mathrm{~d}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}, \mathrm{n}-3\right)=(\mathrm{n}+1) \mathrm{c}_{4}$
(vi) For $\mathrm{n} \geq 7, \mathrm{~d}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}, \mathrm{n}-4\right)=(\mathrm{n}+1) \mathrm{c}_{5}-\mathrm{n}$

Proof of (i)

Since for any graph G with $n+1$ vertices, $d_{t}(G, n+1)=1$, then

$$
\mathrm{d}_{\mathrm{t}}\left(\mathrm{~W}_{\mathrm{n}}^{2}, \mathrm{n}+1\right)=1
$$

Proof of (ii)

To prove $d_{t}\left(W_{n}^{2}, n\right)=n+1$, for $n \geq 2$.
We have, $\mathrm{d}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}, \mathrm{i}\right)=\mathrm{nc}_{\mathrm{i}-1}+\mathrm{d}_{\mathrm{t}}\left(\mathrm{C}_{\mathrm{n}}^{2}, \mathrm{i}\right)$
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}, \mathrm{n}\right)=\mathrm{nc}_{\mathrm{n}-1}+\mathrm{d}_{\mathrm{t}}\left(\mathrm{C}_{\mathrm{n}}^{2}, \mathrm{n}\right)$

$$
=n+1
$$

Therefore $\mathrm{d}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}, \mathrm{n}\right)=\mathrm{n}+1$.

Proof of (iii)

To prove $d_{t}\left(W_{n}^{2}, n-1\right)=(n+1) c_{2}$, for $n \geq 3$
We have, $\mathrm{d}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}, \mathrm{i}\right)=\mathrm{nc}_{\mathrm{i}-1}+\mathrm{d}_{\mathrm{t}}\left(\mathrm{C}_{\mathrm{n}}^{2}, \mathrm{i}\right)$
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}, \mathrm{n}-1\right)=\mathrm{nc}_{\mathrm{n}-2}+\mathrm{d}_{\mathrm{t}}\left(\mathrm{C}_{\mathrm{n}}^{2}, \mathrm{n}-1\right)$
$=\frac{1}{2} \mathrm{n}(\mathrm{n}-1)+\mathrm{n}$
$=\frac{1}{2} n(n-1+2)$

$$
=\frac{1}{2} n(n+1)
$$

$$
=(\mathrm{n}+1) \mathrm{c}_{2}
$$

$=(n+1) c_{2}-2$, for $n \geq 5$

Proof of (iv)

To prove $d_{t}\left(W_{n}^{2}, n-2\right)=(n+1) c_{3}$ for every $n \geq 5$
We have, $\mathrm{d}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}, \mathrm{i}\right)=\mathrm{nc}_{\mathrm{i}-1}+\mathrm{d}_{\mathrm{t}}\left(\mathrm{C}_{\mathrm{n}}^{2}, \mathrm{i}\right)$

$$
\mathrm{d}_{\mathrm{t}}\left(\mathrm{~W}_{\mathrm{n}}^{2}, \mathrm{n}-2\right)=\mathrm{nc}_{\mathrm{n}-3}+\mathrm{d}_{\mathrm{t}}\left(\mathrm{C}_{\mathrm{n}}^{2}, \mathrm{n}-2\right)
$$

$$
\begin{aligned}
& =\frac{1}{6}[n(n-1)(n-2)]-2(n-2)+\frac{1}{2} n(n-1) \\
& =\frac{1}{6} n(n-1)[n-2+3] \\
& =\frac{1}{6} n(n-1)(n+1) \\
& =\frac{1}{6}(n+1) n(n-1) \\
& =(n+1) c_{3}
\end{aligned}
$$

$d_{t}\left(W_{n}^{2}, n-2\right)=(n+1) c_{3}$ for every $n \geq 5$

Proof of (v)

To prove $d_{t}\left(W_{n}^{2}, n-3\right)=(n+1) c_{4}$, for $n \geq 5$
We have, $\mathrm{d}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}, \mathrm{i}\right)=\mathrm{nc}_{\mathrm{i}-1}+\mathrm{d}_{\mathrm{t}}\left(\mathrm{C}_{\mathrm{n}}^{2}, \mathrm{i}\right)$

$$
\begin{aligned}
d_{t}\left(W_{n}^{2}, n-3\right)= & n c_{n-4}+d_{t}\left(C_{n}^{2}, n-3\right) \\
= & \frac{1}{24}[n(n-1)(n-2)(n-3)]-2(n-2)+\frac{1}{6} n(n-1)(n-2) \\
& =\frac{1}{24} n(n-1)(n-2)[n-3+4] \\
& =\frac{1}{24} n(n-1)(n-2)(n+1) \\
& =\frac{1}{24}(n+1) n(n-1)(n-2) \\
& =(n+1) c_{4}
\end{aligned}
$$

$d_{t}\left(W_{n}^{2}, n-3\right)=(n+1) c_{4}$, for $n \geq 5$

Proof of (vi)

To prove $d_{t}\left(W_{n}^{2}, n-4\right)=(n+1) c_{5}-n$, for $n \geq 7$.
We have, $d_{t}\left(W_{n}^{2}, i\right)=n c_{i-1}+d_{t}\left(C_{n}^{2}, i\right)$

$$
\begin{aligned}
\mathrm{d}_{\mathrm{t}}\left(\mathrm{~W}_{\mathrm{n}}^{2}, \mathrm{n}-4\right)= & \mathrm{nc}_{\mathrm{n}-5}+d_{\mathrm{t}}\left(C_{n}^{2}, n-4\right) \\
= & \frac{1}{120}[\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)(\mathrm{n}-3)(\mathrm{n}-4)]-2(\mathrm{n}-2)+\frac{1}{24} \mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)(\mathrm{n}-3)-\mathrm{n} \\
& =\frac{1}{120} \mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)(\mathrm{n}-3)[\mathrm{n}-4+5]-\mathrm{n} \\
& =\frac{1}{120} n(\mathrm{n}-1)(\mathrm{n}-2)(\mathrm{n}-3)(\mathrm{n}+1)-\mathrm{n} \\
& =\frac{1}{120}(\mathrm{n}+1) \mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)(\mathrm{n}-3)-\mathrm{n} \\
& =(\mathrm{n}+1) \mathrm{c}_{5}-\mathrm{n}
\end{aligned}
$$

$d_{t}\left(W_{n}^{2}, n-4\right)=(n+1) c_{5}-n$, for $n \geq 7$.
Using theorem 1.7 and theorem 1.9 , we obtain $\mathrm{d}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}, \mathrm{i}\right)$ for $1 \leq \mathrm{i} \leq 11$ as shown in Table 1.1
Table1.1 $d_{t}\left(W_{n}^{2}, i\right)$, the number of total dominating sets of W_{n}^{2} with cardinality i

i	2	3	4	5	6	7	8	9	10	11
n										
3	6	4	1							
4	10	10	5	1						
5	15	20	15	6	1					
6	$1 ` 8$	35	35	21	7	1				
7	14	49	70	56	28	8	1			
8	8	52	118	126	84	36	9	1		
9	9	45	165	243	210	120	45	10	1	
10	10	55	201	403	452	330	165	55	11	1

Theorem 1.10

If $D_{t}\left(W_{n}^{2}, x\right)$ is the total dominating polynomial of square of wheel W_{n}^{2}, then $D_{t}\left(W_{n}^{2}, x\right)=x\left[(1+x)^{n}-1\right]+$ $\mathrm{D}_{\mathrm{t}}\left(\mathrm{W}_{\mathrm{n}}^{2}, \mathrm{x}\right)$
Proof:
We have, $D_{t}\left(W_{n}^{2}, x\right)=\sum_{i=2}^{n+1} d_{t}\left(W_{n}^{2}, i\right) x^{i}$

$$
\begin{aligned}
& =\sum_{\mathrm{i}=2}^{\mathrm{Y}_{\mathrm{t}}\left(\mathrm{C}_{\mathrm{n}}^{2}\right)-1} \mathrm{~d}_{\mathrm{t}}\left(\mathrm{~W}_{\mathrm{n}}^{2}, \mathrm{i}\right) \mathrm{x}^{\mathrm{i}}+\sum_{\mathrm{i}=\mathrm{Y}_{\mathrm{t}}\left(\mathrm{C}_{\mathrm{n}}^{2}\right)}^{\mathrm{n}+1} \mathrm{~d}_{\mathrm{t}}\left(\mathrm{~W}_{\mathrm{n}}^{2}, \mathrm{i}\right) \mathrm{x}^{\mathrm{i}} \\
& =\sum_{\mathrm{i}=2}^{\mathrm{Y}_{\mathrm{t}}\left(\mathrm{C}_{\mathrm{n}}^{2}\right)-1} \mathrm{~d}_{\mathrm{t}}^{0}\left(\mathrm{~W}_{\mathrm{n}}^{2}, \mathrm{i}\right) \mathrm{x}^{\mathrm{i}}+\sum_{\mathrm{i}=\mathrm{r}_{\mathrm{t}}\left(\mathrm{C}_{\mathrm{n}}^{2}\right)}^{\mathrm{n}+1}\left\{\mathrm{rc}_{\mathrm{i}-1}+\mathrm{d}_{\mathrm{t}}\left(\mathrm{C}_{\mathrm{n}}^{2}, \mathrm{i}\right)\right\} \mathrm{x}^{\mathrm{i}} \\
& =\sum_{i=2}^{\gamma_{t}\left(C_{n}^{2}\right)-1}{n c_{i-1}} x^{i}+\sum_{i=Y_{t}\left(C_{n}^{2}\right)}^{n+1} \mathrm{nc}_{\mathrm{i}-1} x^{i}+\sum_{i=Y_{t}\left(C_{n}^{2}\right)}^{n+1} d_{t}\left(C_{n}^{2}, i\right) x^{i} \\
& =\sum_{i=2}^{\gamma_{t}\left(c_{n}^{2}\right)-1}{n c_{i-1}} x^{i}+\sum_{i=Y_{t}}^{n+1}\left(c_{n}^{2}\right) d_{t}\left(C_{n}^{2}, i\right) x^{i} \\
& =x \sum_{\mathrm{i}=2}^{\mathrm{n}+1} \mathrm{nc}_{\mathrm{i}-1} \mathrm{x}^{\mathrm{i}-1}+\mathrm{D}_{\mathrm{t}}\left(\mathrm{C}_{\mathrm{n}}^{2}, \mathrm{x}\right) \\
& \mathrm{D}_{\mathrm{t}}\left(\mathrm{~W}_{\mathrm{n}}^{2}, \mathrm{x}\right)=\mathrm{x}\left[(1+\mathrm{x})^{\mathrm{n}}-1\right]+\mathrm{D}_{\mathrm{t}}\left(\mathrm{C}_{\mathrm{n}}^{2}, \mathrm{x}\right)
\end{aligned}
$$

