τ^{**} - gs - Continuous Maps in Topological Spaces

T. Indira¹ S.Geetha²

 ¹PG and Research Department of Mathematics, Seethalakshmi Ramaswami College, Trichy- 620 002, Tamil Nadu, India.
²Department of Mathematics, Seethalakshmi Ramaswami College, Trichy- 620 002, Tamil Nadu, India.

Abstract: In this paper, we introduce a new class of maps called τ^{**} - generalized semi continuous maps in topological spaces and study some of its properties and relationship with some existing mappings. **Key Words:** scl*, τ^{**} -topology, τ^{**} -gs-open set, τ^{**} -gs-closed set, τ^{**} -gs-continuous maps.

I. Introduction

In 1970, Levine[7] introduced the concept of generalized closed sets as a generalization of closed sets in topological spaces. Using generalized closed sets, Dunham [3] introduced the concept of the closure operator cl* and a topology τ^* and studied some of its properties. Pushpalatha, Easwaran and Rajarubi [10] introduced and studied τ^* -generalized closed sets, and τ^* -generalized open sets. Using τ^* generalized closed sets, Easwaran and Pushpalatha [4] introduced and studied τ^* -generalized continuous maps.

The purpose of this paper is to introduce and study the concept of a new class of maps, namely τ^{**} -gs-continuous maps. Throughout this paper X and Y are topological spaces on which no separation axioms are assumed unless otherwise explicitly stated. For a subset A of a topological space X, cl(A), scl(A), scl*(A) and A^C denote the closure, semi-closure, generalized semi closure and complement of A respectively.

II. Preliminaries

Definition: 2.1

For the subset A of a topological space X, the generalized semi closure of A (i.e., $scl^*(A)$) is defined as the intersection of all gs-closed sets containing A.

Definition: 2.2

For the subset A of a topological space X, the topology [6]

 $\tau^{**} = \{G : scl^{*}(G^{C}) = G^{C} \}.$

Definition: 2.3

A subset A of a topological space X is called τ^{**} -generalized semi closed set [6] (briefly τ^{**} -gs-closed) if $scl^*(A) \subseteq G$ whenever $A \subseteq G$ and G is τ^{**} -open.

The complement of τ^{**} -generalized semi closed set is called the τ^{**} - generalized semi open set (briefly τ^{**} - open).

Definition: 2.4

The τ^{**-} generalized semi closure operator $cl_{\tau^{**}}$ for a subset A of a topological space (X, τ^{**}) is defined by the intersection of all τ^{**-} generalized semi closed sets containing A. (i.e.,) $cl_{\tau^{**}}(A) = \cap\{G: A \subseteq G \text{ and } G \text{ is } \tau^{**} \text{ -gs-closed}\}$

Definition: 2.5

A map f: $X \rightarrow Y$ from a topological space X into a topological space Y is called:

- continuous if the inverse image of every closed set (or open set) in Y is closed(or open) in X.
- (2) strongly gs-continuous if the inverse image of each gs-open set of Y is open in X.
- (3) semi continuous [12] if the inverse image of each closed set of Y is semi-closed in X.
- (4) sg-continuous [12] if the inverse image of each closed set of Y is sg-closed in X.
- (5) gs-continuous [13] if the inverse image of each closed set of Y is gs-closed in X.
- (6) gsp-continuous [2] if the inverse image of each closed set of Y is gsp-closed in x.
- (7) α g-continuous [5] if the inverse image of each closed set of Y is α g –closed in X.
- (8) pre-continuous [9] if the inverse image of each open set of Y is pre-open in X.
- (9) α -continuous [10] if the inverse image of each open set of Y is α -open in X.

(10) sp-continuous [1] if the inverse image of each open set of Y is semi-preopen in X.

Remark: 2.6

- 1) In [6] it has been proved that every closed set is τ^{**} gs closed.
- 2) In [6] it has been proved that every gs-closed set in X is τ^{**} -gs closed.

III. τ^{**} - gs- Continuous Maps In Topological Spaces

In this section, we introduce a new class of map namely τ^{**} -generalized semi continuous map in topological spaces and study some of its properties and relationship with some existing mappings.

Definition: 3.1

A map f:X \rightarrow Y from a topological space X into a topological space Y is called τ^{**} -generalized continuous map(briefly τ^{**} - gs-continuous) if the inverse image of every closed set in Y is τ^{**} -gs-closed in X.

Theorem: 3.2

Let $f: X \to Y$ be a map from a topological space (X, τ^{**}) into a topological space (Y, σ^{**}) .

The following statements are equivalent:

a) f is τ^{**} - gs-continuous.

b) the inverse image of each open set in Y is τ^{**} - gs-open in X.

(ii) If $f: X \to Y$ is τ^{**} - gs-continuous, then $f(cl_{\tau^{**}}(A)) \subseteq cl(f(A))$ for every subset A of X.

Proof:

Assume that $f: X \rightarrow Y$ is τ^{**} - gs-continuous. Let G be open in Y. Then G^C is closed in Y. Since f is τ^{**} - gs-continuous, $f^1(G^C)$ is τ^{**} - gs-closed in X.

But
$$f^{1}(G^{C}) = X - f^{1}(G)$$
. Thus $X - f^{1}(G)$ is τ^{**} - gs-closed in X. Therefore (a) \Longrightarrow (b).

Conversely, assume that the inverse image of each open set in Y is τ^{**} - gs-open in X.

Let F be any closed set in Y. Then F^{C} is open in Y. By assumption, $f^{1}(F^{C})$ is τ^{**} - gs-open in X. But $f^{1}(F^{C}) = X - f^{1}(F)$. Therefore, X - $f^{1}(F)$ is τ^{**} - gs-open in X and so $f^{1}(F)$ is τ^{**} - gs-closed in X. Therefore, f is τ^{**} - gs-continuous.

Hence (b) \Longrightarrow (a). Thus (a) and (b) are equivalent.

(ii) Assume that f is τ^{**} - gs-continuous. Let A be any subset of X, f(A) is a subset of Y. Then cl(f(A))) is a closed subset of Y.

Since f is τ^{**} - gs-continuous, $f^{1}(cl(f(A)))$ is τ^{**} - gs-closed in X and it containing A. But

 $cl_{\tau^{**}}(A)$ is the intersection of all τ^{**} - gs-closed sets containing A.

$$\operatorname{cl}_{\tau^{**}}(A) \subseteq f^{-1}(\operatorname{cl}(f(A)))$$

 \implies f(cl_{$\tau^{**}(A)$}) \subseteq cl(f(A)).

Theorem: 3.3

If a map $f: X \rightarrow Y$ from a topological space X into a topological space Y is τ^{**} - gs-continuous then f is not gs-continuous.

Proof:

Let V be a closed set in Y. Then $f^{1}(V)$ is τ^{**} - gs-closed in X, since f is τ^{**} - gs-continuous. But every τ^{**} - gs-closed set is not gs-closed. Therefore, $f^{1}(V)$ is not gs-closed in X. Hence f is not gs-continuous.

Theorem: 3.4

If a map $f : X \to Y$ from a topological space X into a topological space Y is continuous then it is τ^{**} - gs-continuous but not conversely.

Proof:

Let $f: X \to Y$ be continuous. Let V be a closed set in Y. Since f is continuous, $f^{1}(V)$ is closed in X. By Remark: 2.6(2), $f^{1}(V)$ is τ^{**} - gs-closed. Thus, f is τ^{**} - gs-continuous.

The converse of the theorem need not be true as seen from the following example.

Example:

Let $X = Y = \{a, b, c\}, \tau = \{X, \Phi, \{c\}\} \text{ and } \sigma = \{Y, \Phi, \{b\}, \{c\}, \{b, c\}\}.$

Let $f: X \to Y$ be an identity map. Then f is τ^{**} - gs-continuous. But f is not continuous. Since for the closed set $V = \{a\}$ in Y, $f^{1}(V) = \{a\}$ is not closed in X.

Theorem: 3.5

If a map $f: X \rightarrow Y$ from a topological space X into a topological space Y is gs-continuous then it is τ^{**} - gs-continuous but not conversely.

Proof:

Let $f: X \to Y$ be gs-continuous. Let V be a closed set in Y. Since f is gs-continuous, $f^{1}(V)$ is gs-closed in X. Also, by Remark: 2.6(2), $f^{1}(V)$ is τ^{**} - gs-closed. Then, f is τ^{**} - gs-continuous. The converse of the theorem need not be true as seen from the following example.

Example:

Let $X = Y = \{a,b,c\}, \tau = \{X,\Phi,\{a\},\{a,b\}\}$ and $\sigma = \{Y,\Phi,\{a\},\{c\},\{a,c\}\}$. Let $f : X \to Y$ be an identity map. Then f is τ^{**} - gs-continuous. But it is not gs-continuous. Since for the closed set $V = \{a,b\}$ in Y, $f^1(V) = \{a,b\}$ is not gs-closed in X and $V = \{b\}$ in Y, $f^1(V) = \{b\}$ is not gs-closed in X.

Theorem: 3.7

If a map $f: X \rightarrow Y$ from a topological space X into a topological space Y is strongly gs-continuous then it is τ^{**} - gs-continuous but not conversely.

Proof:

Let $f: X \to Y$ be strongly gs-continuous. Let V be a closed set in Y, then G is gs-closed. Hence G^C is gs-open in Y. Since f is strongly gs-continuous $f^{-1}(G^C)$ is open in X. But $f^{-1}(G^C) = X - f^{-1}(G)$. Therefore $f^{-1}(V)$ is closed in X. By Remark: 2.6(1),

 $f^{\,1}(G)$ is τ^{**} - gs-closed in X. Therefore f is τ^{**} -gs-continuous.

Note:

If $f: X \to Y$ and $g: Y \to Z$ are both τ^{**} -gs-continuous then the composition gof ; $x \to z$ is not τ^{**} -gs-continuous mapping.

Example:

Let $X = Y = Z = \{a,b,c\}, \tau = \{X,\Phi,\{a\},\{b\},\{a,b\}\}$ and $\sigma = \{Y,\Phi,\{a\}\}.$ Define $f: X \to Y$ by f(a) = c, f(b) = a and f(c) = b and define $g: Y \to Z$ by g(a) = a, g(b) = c, g(c) = b. Then f and g are τ^{**} -gs-continuous mappings. The set $\{b\}$ is closed in Z. $(gof)^{-1}(\{b\}) = f^{-1}(g^{-1}(\{b\})) = f^{-1}(\{c\}) = \{a\}$ which is not τ^{**} -gs-closed in X. Hence gof is not τ^{**} -gs-continuous.

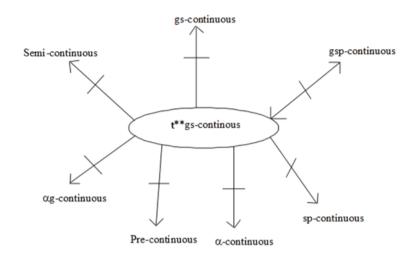
Remark: 3.8

From the above discussion, we obtain the following implications.

Let $X = Y = \{a,b,c\}$. Let $f : X \rightarrow Y$ be an identity map.

- 1) Let $\tau = \{X, \Phi, \{a\}, \{a,c\}\}\$ and $\sigma = \{Y, \Phi, \{a\}, \{a,c\}\}\$ Then f is both τ^{**} gs-continuous and semicontinuous.
- 2) Let $\tau = \{X, \Phi, \{c\}\}$ and $\sigma = \{Y, \Phi, \{b\}, \{c\}, \{b, c\}\}$. Then f is τ^{**} gs-continuous. But it is not semicontinuous. Since for the closed set $V = \{a, c\}$ in Y, $f^1(V) = \{a, c\}$ is not semi-closed in X.
- 3) Let $\tau = \{X, \Phi, \{a\}, \{b\}, \{a,c\}\}\$ and $\sigma = \{Y, \Phi, \{a\}, \{a,c\}\}\$. Then f is both τ^{**} gs-continuous and sg-continuous.
- 4) Let $\tau = \{X, \Phi, \{a\}\}$ and $\sigma = \{Y, \Phi, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}$. Then f is τ^{**} gs-continuous. But it is not gs-continuous. Since for the closed set $V = \{a\}$ in Y, $f^{-1}(V) = \{a\}$ is not gs- closed in X.
- 5) Let $\tau = \{X, \Phi, \{c\}\}\)$ and $\sigma = \{Y, \Phi, \{a\}, \{b\}, \{b, c\}, \{a, b\}\}\)$. Then f is $\tau^{\frac{1}{2}*}$ gs-continuous. But it is not gsp-continuous. Since for the closed set $V = \{c\}\)$ in Y, $f^{-1}(V) = \{c\}\)$ is not gsp-closed in X.
- 6) Let $\tau = \{X, \Phi, \{a,c\}\}$ and $\sigma = \{Y, \Phi, \{a\}, \{c\}, \{a,b\}, \{a,c\}\}$. Then f is gsp-continuous. But it is not τ^{**} gs-continuous. Since for closed set $V = \{c\}$ in Y, $f^{-1}(V) = \{c\}$ is not τ^{**} gs-closed in X.
- 7) Let $\tau = \{X, \Phi, \{b\}\}\)$ and $\sigma = \{Y, \Phi, \{c\}, \{a, c\}\}\)$. Then f is τ^{**} gs-continuous. But it is not α g-continuous. Since for the closed set $V = \{b\}$ in Y, $f^{-1}(V) = \{b\}$ is not α g-closed in X.
- 8) Let $\tau = \{X, \Phi, \{a\}\}$ and $\sigma = \{Y, \Phi, \{c\}, \{a, c\}, \{b, c\}\}$. Then f is τ^{**} gs-continuous. But it is not precontinuous. Since for the closed set $V = \{b, c\}$ in Y, $f^{-1}(V) = \{b, c\}$ is not pre-open in X.

- 9) Let $\tau = \{X, \Phi, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \Phi, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}$. Then f is τ^{**} gs- continuous. But it is not α -continuous. Since for the closed set $V = \{a, c\}$ in Y, $f^1(V) = \{a, c\}$ is not α -open in X.
- 10) Let $\tau = \{X, \Phi, \{a\}, \{a,c\}\}$ and $\sigma = \{Y, \Phi, \{a\}, \{a,c\}\}$. Then f is both sp-continuous and τ^{**} -gs-continuous.
- 11) Let $\tau = \{X, \Phi, \{c\}\}$ and $\sigma = \{Y, \Phi, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}$. Then f is τ^{**} -gs-continuous. But it is not sp-continuous. Since for the open set $V = \{b\}$ in $Y, f^1(V) = \{b\}$ is not sp-open in X.



IV. Conclusion

The class of τ^{**} -gs-continuous maps defined using τ^{**} -gs-closed sets. The τ^{**} -gs-closed sets can be used to derive a new homeomorphism, connectedness, compactness and new separation axioms. This concept can be extended to bitopological and fuzzy topological spaces.

References

- M.E. Abd El-Monsef, S.N.El.DEEb and R.A.Mahmoud, β-open sets and and β-continuous mappings, Bull. Fac. Sci. Assiut Univ.12(1)(1983),77-90.
- [2]. J.Dontchev, On generalizing semipreopen sets, Mem. Fac. Sci. Kochi Uni. Ser A, Math., 16(1995), 35-48.
- [3]. W. Dunham, A new closure operator for non-T1 topologies, Kyungpook Math.J.22(1982), 55-60.
- [4]. S. Easwaran and A Pushpalatha, τ* generalized continuous maps in topological spaces, International J. of Math Sci & Engg. Appls.(IJMSEA) ISSN 0973-9424 Vol.3, No.IV,(2009),pp.67-76.
- [5]. Y. Gnanambal, On generalized preregular sets in topological spaces, Indian J. Pure Appl. Math.(28)3(1997),351-360.
- [6]. T. Indira and S. Geetha , τ** gs- closed sets in topological spaces, Antarctica J. Math., 10(6)(2013), 561-567.
- [7]. N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19, (2)(1970), 89-96.
- [8]. A.S.Mashhour, I.A.Hasanein and S.N.El-Deeb, On precontinuous and weak precontinuous functions, Proc. Math. Phys. Soc.Egypt 53(1982),47-53.
- [9]. A.S. Mashhour, I.A.Hasanein and S.N.El-Deeb, On α-continuous and α-open mappings, Acta. Math.Hunga.41(1983),213-218.
- [10]. A.Pushpalatha, S.Easwaran and P.Rajarubi, τ*-generalized closed sets in topological spaces, Prodeedings of World Congress on Engineering 2009 Vol II WCE 2009, July 1-3,2009, London, U.K., 1115-1117.
- [11]. P.Sundarm, H.Maki and K.Balachandran, sg-closed sets and semi-T_{1/2} spaces. Bull.Fukuoka Univ. Ed..Part III,40(1991),33-40.
- [12]. Semi open sets and semi continuity in topological spaces, Amer. Math.,
- [13]. Semigeneralized closed and generalized closed maps, Mem.Fac.Sci.Kochi.