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Abract: In recent papers solution Two â€“Dimensional Diffusion Equations of partial differential equations with 

nonlocal boundary conditions was introduced using iterative laplace transform method. This method which 

combines two method iterative method and laplace transform method is successfully implemented these numerical 

schemes for both Homogeneous and Inhomogeneous cases of the important equation comparsion with Special 

Class of Pade Approximants ,the numerical results of ILTM show that based numerical schemes are quite 

accurate and easily implemented  
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I. Introduction 
Partial differential equations arise in formulations of problems involving functions of several variables 

such as the propagation of sound or heat, electrostatics, electrodynamics, fluid flow, and elasticity, [2].Parabolic 

partial differential equations with nonlocal boundary conditions arise in modeling of a wide range of important 

application areas such as chemical diffusion, thermoelasticity,heat conduction process, control theory and 

medicine science[3], in this paper introduce non classical initial boundary value problems that is the solution of 

Two â€“Dimensional Diffusion Equations of partial differential equations with nonlocal boundary conditions. In 

2006, Daftardar-Gejji and Jafari proposed a new iterative method to seek numerical solutions of nonlinear 

functional equations[4],[5]Jafari et al. firstly applied Laplace transform in the iterative method and proposed anew 

direct method called iterative Laplace transform method to search for numerical solutions partial differential 

equations [6].The method is based on Laplace transform, iterative method. Jafari and Seifi successfully obtained 
the numerical solutions of Jafari and Seifi successfully obtained the numerical solutions of two systems of 

space-time fractional differential equations [8].  

 

II. Basic Idea of Iterative Laplace Transform Method[8] 
In this section, the aim idea of the iterative Laplace transform method [6] consider the general two â€“dimensional 

diffusion equations of partial differential equation of the form.  
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with initial value condition  
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.Taking Laplace transfer of both sides of ( Eq.(1))results in:  
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given by:  
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Operating with Laplace inverse (denoted by 
1L  throughout the present paper)0n the both sides of ( Eq.(4))gives:  
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Which can be written (Eq.(5))given by form:  
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The iterative Laplace transform method represents the solution as an infinite series:  
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where the terms nu  are to be recursively computed. The linear or nonlinear operator ),,(
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computed as follows:  
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Substituting (Eq.(7)) and (Eq.(8)) into (Eq.(6))introduce:  
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The above equations gives results follows:  
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Then the m-term numerical solution of (Eq.(1))-(Eq.(2)) is given by:  
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III. Numerical Solution of Two â€“Dimensional Diffusion Equations with 

Nonlocal Boundary Conditions 
In this section ,the iterative Laplace transform method will be applied to solve three problems of two 

â€“dimensional diffusion equations with initial conditions and nonlocal boundary conditions. 

 

Example(1):[1],[7] 

consider the diffusion equation in two space variables, that is given by the following: 
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where u = u(x,y,t), with Dirichlet time-dependent boundary conditions on the boundary   of the square   

introduce by  
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and nonlocal boundary condition  
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where the exact solution is given by 
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Taking Laplace transform on both sides of (Eq.(12))gives:  
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 Now,taking Laplace inverse of both sides of (Eq.(17))  
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Substituting (Eq.(7))and (Eq.(8)) into (Eq.(18)) and applying (Eq.(10)), obtain the components of the solution as 

follows:  
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 Therefore, the solution of(Eq.(12)),(Eq.(15))in a closed form can be obtained as follows:  
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Table  1: comparsion between numerical results of pade method and ILTM,t=1 
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 x   y   solution ILTM   solution pade method   exact solution  

 0.0   0.0   7.38905610   7.38905610   7.38905610  

 0.1   0.1   9.03997223   9.04041689   9.02501350  

 0.2   0.2   11.06097532   11.06951484   11.02317638  

 0.3   0.3   13.50449822   13.54531347   13.46373804  

 0.4   0.4   16.46784350   16.55780082   16.44464677  

 0.5   0.5   20.18956786   20.21997846   20.08553692  

 0.6   0.6   24.60456722   24.67258833   24.53253020  

 0.7   0.7   29.90728645   30.09034598   29.96410005  

 0.8   0.8   36.60777324   36.69004490   36.59823444  

 0.9   0.9   44.70562963    44.74237856   44.70118449  

 1.0   1.0   54.59815003   54.59815003   54.59815003  

 

Example(2):[7] 

Consider the following two-dimensional diffusion problem 
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with initial condition  

 

 
xeyyxu )(1=,0),(   (22) 

and the boundary conditions is given by: 
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and nonlocal boundary condition  

 1,01,0,)42(11=),,(

)(1

0

1

0




yxeedxdytyxu t

xx

 (24) 

The exact solution is given by 
txeytyxu  )(1=),,(  Taking Laplace transform on both sides of 

(Eq.(21))introduces:  
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Now,taking Laplace inverse on both sides of (Eq.(26))observe the following Laplace equation:  
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The results gives the following algorithm:  
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The solution in series form is then introduce by:  
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Table  2: Numerical results of Example (2),t=1 
 x   y   solution ILTM   solution pade method   exact solution  

 0.0   0.0   2.71828183   2.71828183   2.71828183  

 0.1   0.1   2.65976522   2.63778350   2.70374942  

 0.2   0.2   2.60852741   2.59254212   2.65609354  

 0.3   0.3   2.53923642   2.50819548   2.56850767  

 0.4   0.4   2.40752433   2.37679262   2.43311998  

 0.5   0.5   2.22564212   2.18935112   2.24084454  

 0.6   0.6   1.95226422   1.93566543   1.98121297  

 0.7   0.7   1.62857433   1.60411454   1.64218422  

 0.8   0.8   1.19965833   1.18144246   1.20992949  

 0.9   0.9   0.65834215   0.65250663   0.66858944  

 1.0   1.0   0.00000000   0.00000000   0.00000000  

 

Example(3):[3] 

Consider the two-dimensional nonhomogeneous diffusion problem  
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 The problem has initial condition  
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 and nonlocal boundary condition  
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The exact solution is given by )(1=),,( 22 yxetyxu t  
. By using iterative Laplace transform method , 

taking Laplace inverse on both sides of (Eq.(30)) gives:  
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 Now,taking Laplace inverse of both sides of (Eq.(35))  



Numerical Solution of Two Dimensional Diffusion Equations with Nonlocal Boundary Conditions by  

DOI: 10.9790/5728-11216065                     www.iosrjournals.org                              65 | Page 

 4))}}(({
1

{1=),,( 22

2

2

2

2
122 









  yxe

y

u

x

u

s
yxtyxu tLL  (36) 

 Then above equation(Eq.(36))given the following series  
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Table  3: Exact and numerical solution of t=1 
 x   y   solution ILTM   solution pade method   exact solution  

 0.0   0.0   1.00000000   1.00000000   1.00000000  

 0.1   0.1   1.00734322   1.00738402   1.00735759  

 0.2   0.2   1.02942120   1.02953533   1.02943036  

 0.3   0.3   1.06620942   1.06645182   1.06621830  

 0.4   0.4   1.11752532   1.11813036   1.11772142  

 0.5   0.5   1.18389921   1.18456735   1.18393972  

 0.6   0.6   1.26454422   1.26575934   1.26487320  

 0.7   0.7   1.36073259   1.36170370   1.36052185  

 0.8   0.8   1.47079257   1.47239930   1.47088568  

 0.9   0.9   1.59588723   1.59784805   1.59596469  

 1.0   1.0   1.73575888   1.73575888   1.73575888  

   

IV. Conclusions 
In this paper, introduce iterative laplace transform numerical schemes and implementation of these 

schemes on two dimensional diffusion equations with nonlocal boundary conditions on four boundaries.This 

method is conceder successfully applied to solve two dimensional diffusion equations and reduces the 
computational work to Largely, also It is the method can be applied to solve other nonlinear problems of partial 

differential equation.  
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